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A diagnostic method, which uses the two-sided directional power spectra of complex­

valued engine vibration signals, is presented and tested with four-cylinder compression 

and spark ignition engines for the diagnosis of cylinder power faults. As spectral estima­

tors, the maximum likelihood and FFT methods are compared, and the multi-layer neural 

network is employed for pattern recognition. Experimental results show that the success 

rate for identifying the misfired cylinder is much higher with the use of two-sided direc­

tional power spectra than conventional one-sided power spectra. 

INTRODUCTION 

As the stringent regulatory requirements on the reduc­

tion of exhaust gas emissions are imposed, the detec­

tion and the isolation of misfired cylinder in the au­

tomotive engine become increasingly important. A di­

rect method for detecting a misfired engine cylinder 

is to measure the cylinder pressure. However, this is 

not practical because it is difficult to insert pressure 

sensors inside all cylinders. This leads to the develop­

ment of indirect methods among most of the investiga­

tors in this area. Signature analysis of fluctuations of 

crankshaft speed presented by Rizzoni (1989), Con-
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nolly and Yagle (1993), used the instantaneous angu­

lar velocity of an engine flywheel as a diagnostic tool 

for engine. But this method requires setting up an ad­

ditional equipment to measure torsional velocity vari­

ation, and using a trigger pulse signal. Kim and Lyon 

(1992) proposed a high level diagnostic method, utiliz­

ing cepstral analysis to extract the robust transfer func­

tion and then to identify the cylinder pressure from 

measurement of engine block vibrations. It requires 

the pressure signal of a cylinder and can be applied 

to the same kind of engines. But a reference trigger 

signal was required for detecting a misfired cylinder. 
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To diagnose defective elements in a structure or ma­

chine, signature analysis is necessary to extract some 

important features which describe the condition of 

each element. Spectral analysis is probably the most 

popular signal processing technique for diagnosing 

mechanical failures or faults because the frequency 

components and the corresponding amplitudes vary in 

accordance with various fault mechanisms. In partic­

ular, the directional power spectra (dPS) of complex­

valued signals have proven to be a diagnostic tool for 

rotating machinery (Lee, 1991; Lee, 1993; Lee and 

Joh, 1994a; Lee and Joh, 1994b). However, the dPS 

technique, originally developed for rotating machin­

ery, can also be applied to nonrotating machines, as 

will be shown in this paper. 

In this work, complex-valued vibration signals 

measured from an engine block are used to acquire 

some important features of its motion in space. As a 

spectral estimator, the FFf method has inherent limi­

tations related to frequency resolution, variability, and 

inability to discern between narrow-band random and 

true periodic components, while the Autoregressive 

(AR) and Maximum Likelihood (ML) spectral estima­

tors possess better capabilities in frequency resolution 

and power estimates, respectively (Sherman, 1991). 

In this paper, the directional AR and ML spectral 

estimators are introduced to accommodate complex­

valued signals, the resulting dPS are used for diag­

nosis of engine cylinder power faults, and the results 

are compared with the conventional FFf method. Fur­

thermore, the diagnostic technique used in this work is 

fully compared with the one that uses the conventional 

one-sided PS. 

For the automatic detection/diagnosis of cylinder 

power faults, a pattern recognition method using the 

. multi-layer neural networks is employed. 

DIRECTIONAL POWER SPECTRUM 

Recently, use of dPS has been proposed for effec­

tive identification and diagnosis of rotating machinery 

(Lee, 1991; Lee, 1993; Lee and Joh, 1994a; Lee and 

Joh, 1994b; Park and Lee, 1995). The key idea is that, 

in general, a planar whirling motion of a rotor in oper­

ation can be decomposed into backward (the direction 

opposite to the rotor rotation) and forward (the same 

direction as the rotor rotation) harmonic components. 

The harmonic components, backward or forward, can 

be directly identified in the directional spectrum which 

is acquired from the Fourier transform of the complex­

valued signal representing planar motion of the rotor. 

The complex-valued signal is usually made up of two 
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FIGURE 1 Representation of a complex-valued signal as 

the sum of two contra-rotating vectors. 

real-valued signals measured from two vibration trans­

ducers, placed perpendicular to each other. The pos­

itive (negative) frequency components appearing in 

the dPS physically correspond to forward (backward) 

whirling components. Thus the variations in forward 

and backward frequency components of dPS can be 

effectively used for diagnosing any defects or faults in 

a rotating machine, which cause the change in whirl 

orbits or Lissajous figures. 

The same idea can also be applied to nonrotating vi­

bratory machines. A point of interest on a machine in 

operation will generally vibrate in three-dimensional 

space, making a complicated trajectory. The projected 

trajectory on an arbitrary plane, resembling a whirl or­

bit, can then be treated in a similar way to a whirling 

motion of a rotor. Let us first consider a complex sig­

nal pet) = yet) + jz(t) by using a complex notation 

for the projected planar motion. Here, yet) and z(t) 

are the real signals, j (= .J=T) denotes the imagi­

nary number. It is then natural to associate the com­

plex signal pet) with a moving point, or a moving vec­

tor drawn from the origin, in the plane whose Carte­

sian coordinates are yet) and z(t). When we try to 

display the complex signal pet) geometrically in the 

complex plane, the y-axis becomes the real axis, the 

z-axis being the imaginary axis, as indicated in Fig. 1. 

The complex harmonic signal pet) of frequency OJ can 

be rewritten in polar form, using Euler's formula, as 



where, pf(t) = rfejwt , pb(t) = rbe-jwt , yet) = 

yccoswt + yssinwt, z(t) = zccoswt + Zssinwt, 

rf = Irflejt/J', rb = Irblejt/Jb. Here the superscripts 

b and f denote the backward (clockwise) and for­

ward (counter-clockwise in Fig. 1) components, and, 

Yc and Ys (zc and zs) are the Fourier coefficients as­

sociated with yet) (z(t)). Note that the complex term 

ejwt (e-jwt ) is associated with the forward (backward) 

rotating unity vector at the circular rotating speed of 

w and that the complex quantity rf (rb) is associ­

ated with the vector having the amplitude, Irfl (Irbl), 

and the initial phase, lPf (lPb ). It is well known that 

the complex harmonic signal, which is the resultant of 

two contra-rotating vectors, each with different ampli­

tudes and initial phases, forms an ellipse in the com­

plex plane. The shape and directivity of the elliptic pla­

nar motion are determined as follows: 

rf (rb) = 0 : backward (forward) circular planar 

motion, 

Irb I > Irf I : backward elliptic planar motion, (2) 

Irb I = Irf I : straight line motion, 

Irb I < Irf I : forward elliptic planar motion. 

Note that the power spectral components at the fre­

quencies -Wk and (Uk are equal to Irk 12 and Ir{ 12, re­

spectively. The directional spectral density functions 

of a complex-valued signal pet) are defined in terms 

of the conventional spectral density functions, as 

Ppp(w) = Pyy(w) + pu.(w) + j(pyz(w) - PZy(w») 

= Pyy(w)+Pzz(w)-2.Im{Pyz(w)}. (3) 

Here, the quantity Ppp(w) is called the directional 

power spectral density function (dPSD). For the real 

random signals, the spectral density functions satisfy 

such symmetric properties as 

Pyy(-w) = Pyy(w) = Pyy(w), 

Pyz(-w) = Pyz(w) = PZy(w) (4) 

which implies that the conventional PSD, Pyy(w), is a 

real, even function of w. Thus, the directional spectra 

satisfy 

Ppp(-w) = PPP(w) (5) 

which suggests that the dPSD, Ppp(w), of a complex 

signal is a real, but not necessarily even function of w. 

And, the dPSD has the nonnegative property, that is, 

Ppp(w);;;: o. (6) 
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Note that the dPSD defined in Eq. (3) gives not only 

frequency content but also directivity and shape of 

the planar motion, unlike the conventional PSD which 

only gives one-sided frequency content. In this way, 

the dPSD contains richer information regarding the 

planar motion than the PSD. 

In this paper, the dPSD technique is introduced for 

diagnosis of two automobile engines, typical nonrotat­

ing machines. 

PROPERTIES OF AR AND ML SPECTRA 

It is well known (Capon,1969; Lacoss, 1971; Kay, 

1988) that the dPS estimate of an observation process 

by the ML method, can be expressed as 

n f 1 
PML< ) = HR-1 ' 

e nne 

(7) 

where e is the complex sinusoid vector given by 

e = {I exp(j21lfh) ... exp 02rrf(n - l)h)}" 

Here R;;,I is the inverse of the n x n estimated com­

plex autocorrelation matrix, the prime and superscript 

H denote the transpose and Hermitian, respectively, 

and h is the equi-spaced sampling interval. The rela­

tionship between ML power spectrum and AR power 

spectral densities (PSD) is given as (Burg, 1972; Kay, 

1988) 

1 n 1 

n f = L" (8) 
PML () ;=1 SAR (f) 

; ha; 
SAR(f) =. , 

11 - L!n=llPm exp(j21lfmh)12 

1 1 
- 2h ~ f ~ 2h (9) 

where the superscript i denotes the AR order, l/Jm are 

the complex AR coefficients and the a; is the variance 

of noise. The low frequency resolution of the ML is 

due to the "parallel resistor network averaging" of the 

lowest to the highest resolution AR spectra. 

The asymptotic behaviors of the AR and ML esti­

mates are given as (Foias et al., 1989; Kay, 1988) 

atf = fk, 

otherwise, 

atf = fk' 
otherwise, 

(10) 

where Ss (f) denotes the complex noise PSD. Accord­

ing to Eq. (9), in any regular noise environment and 
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FIGURE 2 Experimental setup and coordinate system. 

for any signal-to-noise ratio, the sequence of ML es­

timates converges monotonically either to zero if the 

frequency does not correspond to a sinusoid, or to the 

power of the sinusoid if it does. Thus it provides signal 

amplitude and frequency information simultaneously. 

Practically all spectral estimation methods, including 

the very popular FFf- and AR-based approaches, suf­

fer from the problem that for a finite value of corre­

lation lag there is no natural rule for deciding which 

peaks correspond to sinusoids and which do not. 

Hence, they usually assume that the highest spectral 

peaks correspond to the point spectrum. The mono­

tonic convergence of the ML estimate in (10) provides 

a natural rule for detecting and estimating point spec­

tra using a finite number n (Sherman and Lou, 1989). 

Equation (10) implies that it is generally impossible 

to extract signal amplitude information directly from 

the AR spectral estimate; for sufficiently well behaved 

noise, it may be possible to obtain a reliable power 

spectral estimate for a sinusoid with a known fre­

quency by calculating the area under the power spec­

tral density peak (Lacoss, 1971; Kay, 1988). The AR 

power spectral density estimates S~R (f) can be used 

as a good frequency detector for point spectra. 

In this work, the conventional AR and ML esti­

mators are extended to accommodate complex-valued 

signals and adopted as frequency and power detectors, 

respectively. 

Preprocessing 

Pattern Vectors Feature vectors 

±O.5, ±l.O, ±1.5X 

Components 

Data Acquisition using 

Triaxial Accelerometer 

Multilayer Neural 
Network 

FIGURE 3 Schematic diagram of diagnosis procedures. 

EXPERIMENT 

Experimental Set-up 

Experiments were carried out using the following 

two setups: one was a four-stroke four-cylinder in­

line compression ignition engine on three-point en­

gine mounts, mounted on a test stand in the labora­

tory, and the other was a four-stroke four-cylinder in­

line spark ignition engine, mounted in a vehicle. To 

simulate the misfiring in a cylinder of the compression 

ignition engine, the fuel line to the cylinder was dis­

connected when the engine was idling. In the vehicle 

equipped with the spark ignition engine, the electric 

wiring connected with a spark ignition plug was taken 
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FIGURE 4 Typical ML dPSs of engine vibration: compression ignition engine. (a) normal, 

(b) abnormal (cylinder No.4 misfired). 

out in an idling speed. A triaxial accelerometer posi­

tioned at the midpoint of the top of the engine block 

was used to measure the vibrations in the three per­

pendicular directions x, y and z, as shown in Fig. 2. 

The vibration signals were low-pass filtered to prevent 

aliasing and subsequently sampled at a rate of 140 Hz 

by a 12-bit NO converter. The sampled data sequences 

were saved in a personal computer for the directional 

spectral analysis. In the compression (spark) ignition 

engine, thirty (ten) data sets were obtained under both 

normal and abnormal engine conditions, where each 

data set consisted of 1024 data points. Throughout the 

experiments, the compression (spark) ignition engine 

speed was held to about 770 (1500) rpm with no load­

ing. 

With the measurements in the x, y, and z directions, 

we can define three different planar motions, one of 

which can always be regenerated from the other two. 

For convenience, we will only deal with the frontal 

planar motion by introducing the complex-valued sig­

nal pet) = yet) + jz(t). Figure 3 shows the schematic 

diagram of signal processing procedures employed for 

detection of a misfired engine cylinder. Considering a 

normal four-stroke four-cylinder engine with ignition 

interval T, th~ complex-valued vibration signal mea­

sured from the engine block can be treated as a pe­

riodic function with period T(= },,). Thus, the ma-
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FIGURE 5 Typical AR dPSD of engine vibration: compression ignition engine with cylinder 

No.4 misfired. 

jor peaks in the dPS of the vibration signals appear 

at frequencies ±kfn, k = 1,2, ... Similarly, consid­

ering an abnormal engine with a misfired cylinder, 

a complex-valued vibration signal can be treated as 

a periodic function with period 4T (fa == A = 

0.5X; IX = crankshaft rotation frequency), and the 

amplitudes of these fractional order terms are affected 

more dramatically than the integer order terms. Thus, 

we intended to utilize the six frequencies components, 

±~ (±0.5X), ±2{n (±IX) and ±~ (±1.5X) for 

pattern classifications by neural networks as shown in 

Fig. 3. 

RESULTS AND DISCUSSION 

Figure 4 shows the typical ML dPS of the acceler­

ation signals measured under the normal and abnor­

mal engine conditions. Note that the ±O.5X, ±IX and 

±1.5X components become significant for the abnor­

mal engine condition as expected, and that it is re­

quired to have at least n = 30 for adequate spectral es­

timates. Figure 5 shows the typical AR dPSD estimate, 

which indicates that its frequency resolving property 

is far superior to the ML spectrum (Sherman and Lou, 

1989). However, the peaks of the AR dPSD at the cor­

responding frequencies exhibit no consistent trend as 

n increases, because it is a density function estimate. 

Figure 6 shows the typical trajectory of the mea­

surement point on the engine block with cylinder no. 3 

misfired and the orbits of the harmonic components as­

sociated with ±O.5X, ±IX and ±1.5X. 

Figures 7 and 8 show the normalized power spec­

tral estimates, at the frequencies of interest, obtained 

by the FFf and ML methods, respectively, where 30 

data sets are used for calculations of means and stan­

dard deviations. Because the data sets have been mea­

sured in enough time intervals, the power spectral es­

timates have some derivations. The power spectral es­

timate at a frequency of interest by the FFf method 

was obtained by calculating the area under the corre­

sponding spectral peak, while the peak value of the 

ML dPS estimate itself at a frequency directly corre­

sponds to power. Deviation in the dPS estimates by 

FFf is found to be slightly larger than that by ML as . 

shown in Tables 1 and 2. Note that the dPS with cylin­

der no. 1 or 4 misfired is clearly distinguishable from 

the dPS with cylinder no. 2 or 3 misfired by compar­

ing ±IX components, and the dPS with cylinder no. 2 

(no. 1) misfired differs particularly in ±1.5X (±IX 

and ±1.5X) components from that with cylinder no. 3 

(no. 4) misfired. 

For the automatic detection/diagnosis of cylinder 

power faults, a pattern recognition method using the 

multi-layer neural network shown in Fig. 9 is em­

ployed (pao, 1989). The neural network is composed 

of the input layer with six nodes, the output layer with 

five nodes, which are due to the six frequency com­

ponents of interest and the five patterns, i.e., the nor­

mal and four abnormal patterns, and the hidden layer 

with five nodes. The generalized delta rule, so-called 

the error back-propagation algorithm, is used as learn­

ing algorithm of the neural network. The change in 

connection weights for the generalized delta rule is re-
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FIGURE 6 Trajectory of measurement point on engine block: compression ignition engine with 

cylinder No.3 misfired. 

Table 1. Normalized Means of dPS Estimates by FFf: Compression Ignition Engine at 770 rpm 

Normalized Means of Power Estimates Avg. of 

Conditions -1.5x -LOx -O.5x 0.5x LOx 1.5x Dev.(%)(3) 

Normal 0.044(51.)<2) 0.142(8.4) 0.006(77.) 0.005(81.) 0.120(5.7) 0.025(48.) (45.7) 

Cyl. # 1(1) 0.857(12.) 0.459(9.9) 0.151(7.3) 0.145(8.6) 0.550(18.) 0.861(11.) (11.5) 

Cyl. #2 0.827(15.) 0.019(34.) 0.173(14.) 0.172(14.) 0.155(7.8) 0.860(16.) (17.3) 

Cyl. # 3 1.000(9.4) 0.026(44.) 0.189(7.7) 0.170(8.5) 0.094(18.) 0.994(7.8) (16.0) 

Cyl. #4 0.667(5.8) 0.510(4.3) 0.166(11.) 0.161(12.) 0.609(5.6) 0.729(4.8) (7.42) 

Note: (1) Misfired Cylinder No., (2) Si = Standard DeviationIMean x 100%, (3) Si = ! L~=l Si 

Average of Total Dev.(Excluding Normal) = ~ L~!:l Si = 19.6% (13%), Datapoints Used = 1024 

Table 2. Normalized Means of dPS Estimates by ML: Compression Ignition Engine at 770 rpm 

Normalized Means of Power Estimates Avg. of 

Conditions -1.5x -LOx -0.5x 0.5x LOx 1.5x Dev.(%) 

Normal 0.012(49.) 0.014(4.0) 0.003(34.) 0.002(41.) 0.118(7.2) 0.011(54.) (32.0) 

Cyl. # 1 0.831(12.) 0.449(9.3) 0.147(6.4) 0.142(7.5) 0.544(18.) 0.851(11.) (11.1) 

Cyl. #2 0.798(18.) 0.010(16.) 0.170(14.) 0.169(15.) 0.146(6.6) 0.849(18.) (14.8) 

Cyl. # 3 0.969(7.2) 0.016(36.) 0.183(6.3) 0.166(7.1) 0.088(15.) 0.980(6.7) (13.3) 

Cyl. #4 0.627(4.5) 0.495(3.5) 0.163(11.) 0.158(11.) 0.601(5.7) 0.711(4.6) (6.82) 

Average of Total Dev.(Excluding Normal) = 15.6% (11.5%), Datapoints Used = 256 
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FIGURE 7 Typical dPS estimates by FFf: compression ignition engine. 

Table 3. Percentages of Misclassification (MUFFf): Compression Ignition Engine at 770 rpm 

Patterns N.N. No. of Percentages of Misclassification (%) 

Used Architectures Iterations Normal Cyl. #1 Cyl. #2 Cyl. #3 Cyl. #4 

Ppp 6-5-5 1400/1820 0.010.0 0.0/10.0 0.0/0.0 0.0/0.0 0.0/0.0 

pyy, pzz. 6-5-5 5320/5082 0.010.0 20.0/16.7 10.0/13.3 3.316.7 0.0/0.0 

pyy 3-5-5 6566/6321 0.010.0 33.3/26.7 0.0/0.0 3.310.0 3.3/13.3 

pzz 3-5-5 691617063 0.0/0.0 30.0123.3 13.3/6.7 10.0120.0 0.0/0.0 

a = 0.8, T/ = 0.95, Limit of RMS Error = 0.005 

Table 4. Percentages of Misclassification (MLIFFT): Spark Ignition Engine at 1500 rpm 

Patterns N.N. No. of Percentages of Misclassification (%) 

Used Architectures Iterations Normal Cyl. #1 Cyl. #2 Cyl. #3 Cyl. #4 

Ppp 6-5-5 3087/3647 0.010.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 

Pyy, Pzz 6-5-5 4046/4165 0.0/0.0 0.010.0 0.0/0.0 0.0/0.0 0.0/10.0 

Pyy 3-5-5 16359/19684 0.0/40.0 10.0/30.0 20.0120.0 50.0/30.0 40.0170.0 

Pzz 3-5-5 3689/5593 0.010.0 0.0/0.0 0.0/0.0 0.0/0.0 10.0/10.0 

a = 0.7, T/ = 0.9, Limit ofRMS Error = 0.005 
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FIGURE 8 Typical dPS estimates by ML: compression ignition engine. 
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produced as follows: 

b.Wji(l + 1) = YJOjOi +exb.Wji(l), 

b.Wkj(l + 1) = YJOkOj + exb.Wkj(I), 

Ok = (tk - Ok)Ok(l - Ok), 

OJ = OJ(1- OJ) I)kWkj 

k 

(11) 

where the indices i, j and k denote the input, hidden 

and output layer nodes, respectively, tk is the desired 

output, and Ok and OJ are the actual outputs in each 

layer. Here ex and YJ are the momentum coefficient and 

learning rate, respectively. For learning the neural net­

work, three patterns are used in each case of the nor­

mal and abnormal conditions: one is the mean of 30 

(10) patterns in the compression (spark) ignition en­

gine; the others are patterns with the two largest de­

viations from the mean. The learning iteration is con­

tinued until the rms error of weighting factors is re­

duced to 0.005, for ex = 0.8 (0.7) and 11 = 0.95 (0.9) 

in the compression (spark) ignition engine. Figure 10 
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FIGURE 10 Learning curves of neural networks: ML estimates in compression ignition engine. 

shows the learning curves for the ML patterns, indi­

cating that it is more effective to use the dPS patterns 

than the conventional PS patterns on learning the neu­

ral network. Tables 3 and 4 present success rates for 

diagnosis of cylinder power faults along with detec­

tion of misfired cylinder position in the compression, 

resp. spark, ign!tion engine, indicating that the diag­

nostic scheme using the dPS is very effective, and far 

superior to the one using the conventional PS. Here, 

the ML method shows a similar performance to the 

FFf method although the number of data points (256) 

used for the ML method is much less than the number 

(1024) used for the FFf method. 

CONCLUSIONS 

A diagnostic method of cylinder power faults utilizing 

the two-sided directional power spectra of complex-

valued vibration signals measured from engine blocks 

is presented and tested with a compression igni­

tion engine in the laboratory and a vehicle equipped 

with a spark ignition engine. For the automatic de­

tection/diagnosis of cylinder power faults, a pattern 

recognition method using the multi-layer neural net­

work is employed. The experimental results show that 

the diagnostic scheme using the ML estimate of the 

dPS, which has been originally developed for rotating 

machine diagnosis, can also be a tool for diagnosis of 

nonrotating machines such as automobile engines. 
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