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Discriminant analysis is a technique for the multivariate study of group differences. More

specifically, it provides a method of examining the extent to which multiple predictor variables

are related to a categorical criterion, that is, group membership. Situations in which the technique

is particularly useful include those in which the researcher wishes to assess which of a number of

continuous variables best differentiates groups of individuals or in which he or she wishes to

predict group membership on the basis of the discriminant function (analogous to a multiple

regression equation) yielded by the analysis. The method is also useful as a follow-up to a

significant analysis of variance. In this article, I describe the method of discriminant analysis,

including the concept of discriminant function, discriminant score, group centroid, and discrim-

inant weights and loadings. I discuss methods for testing the statistical significance of a function,

methods of using the function in classification, and the concept of rotating functions. The use of

discriminant analysis in both the two-group case and the multigroup case is illustrated. Finally,

I provide a number of illustrative examples of use of the method in the counseling literature. I

conclude with cautions regarding the use of the method and with the provision of resources for

further study.

The technique of discriminant analysis, developed by R. A.

Fisher (1936). is one method for the multivariate study of

group differences. When used for explanatory purposes, dis-

criminant analysis is particularly appropriate when one wishes

(a) to describe, summarize, and understand the differences

between or among groups, fb) to determine which of a set of

continuous variables best captures or characterizes group

differences, (c) to describe the dimensionality of group differ-

ences (much like factor analysis describes the dimensionality

of a set of continuous variables), (d) to test theories that use

stage concepts or taxonomies, and (e) to examine the nature

of group differences following a multivariate analysis of vari-

ance (MANOVA; Borgen & Seling, 1978).

Probably the most frequent applications of discriminant

analysis are for predictive purposes, that is, for situations in

which it is necessary or desirable to classify subjects into

groups or categories. The results of a discriminant analysis

allow the prediction of group membership based on the best

linear composite or combination of predictor scores. Discrim-

inant analysis is analogous to multiple regression in that both

involve prediction from a set of continuous predictor variables

(sometimes designated independent variables) to a criterion.

The major difference between them is that multiple regression

predicts to a continuous criterion variable (sometimes desig-

nated the dependent variable), whereas discriminant analysis

predicts to a categorical criterion, that is, group membership.

Thus, given multiple predictor variables, multiple regression

would be the appropriate method of analysis if the dependent

variable were continuous, and discriminant analysis would be

appropriate if the dependent variable were categorical, with

two or more levels.
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Some examples of research questions that would be appro-

priate for the application of discriminant analysis in the

educational or vocational area include the following: (a) the

major variables that distinguish successful and unsuccessful

employees in a work setting or organization; (b) the differen-

tial characterization of students who do and those who do not

successfully complete a given education program, for exam-

ple, a PhD program in Counseling Psychology; and (c) the

characteristics of women who pursue careers in traditionally

male-dominated fields versus those who pursue careers in

traditionally female-dominated areas.

In other areas of counseling research, discriminant analysis

might be an appropriate method for comparing premature

terminators in counseling with those who complete counsel-

ing, suicide-prone individuals who do with those who do not

ultimately attempt suicide, participants in cigarette-smoking

cessation programs who do with those who do not suffer

relapses after completing a treatment program, and partici-

pants in marriage counseling who do with those who do not

stay married after completion of counseling.

Discriminant analysis has also been suggested as a follow-

up to MANOVA, which is a method used to examine group

differences on a set of dependent variables. In contrast to the

use of multiple (tests, the use of MANOVA provides a test of

the existence of group differences across all dependent vari-

ables simultaneously. A statistically significant multivariate F

indicates the likely presence of group differences, but follow-

up analyses are necessary to discern the nature or sources of

the differences.

Typically, researchers use separate univariate F tests as a

follow-up to a significant MANOVA, but some investigators

(Borgen & Seling, 1978; Bray & Maxwell, 1982; Huberty,

1975a; Tatsuoka, 1971) suggest that discriminant analysis

may have some advantages over separate F tests. One advan-

tage of discriminant analysis as a follow-up to MANOVA is that
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it makes it possible for researchers to avoid the experiment-

wise error inherent in repeated univariate tests by providing

for simultaneous examination of the variables. Further, it

provides information concerning the dimensionality of group

differences and may thus provide a more parsimonious expla-

nation of the data. More specifically, assume that univariate

tests indicated that the groups differed significantly on 6 of

the 10 variables studied; discriminant analysis might yield

two meaningful discriminant functions, each of which in-

cluded 3 of the 6 significant dependent variables. In a case

like this, the use of two functions versus the use of six variables

would lead to more parsimonious description of group differ-

ences.

There are problems with the use of discriminant analysis

for this purpose, particularly when the variables are more

highly intercorrelated; these problems and their solution are

discussed in more detail in the subsequent section on inter-

preting the results of a discriminant analysis. For a detailed

discussion of the use of discriminant analysis as a follow-up

to MANOVA, see Bray and Maxwell (1982).

Notice that each of the above uses of discriminant analysis

would yield information of both theoretical and applied in-

terest. That is, discriminant analysis can contribute to the

understanding of the nature and extent of group differences

and thus to an understanding of the dynamics of behavior

and behavior change. In addition, it results in an equation,

known as the discriminant function, by which group mem-

bership can be predicted. This information might be used in

new samples to identify high-risk individuals for whom special

interventions might be warranted. For example, the predictive

function could be used to identify those at high risk for

premature termination of counseling, to predict dropout from

an educational program, or to predict relapse after a smoking-

cessation program. (Again note the similarity of this applica-

tion of discriminant analysis to the predictive uses of a mul-

tiple regression equation. The close relation between discrim-

inant analysis and linear multiple regression is discussed

below.)

Before the method and results of a discriminant analysis

are described, it may be useful to compare the discriminant

analysis with other approaches to similar research problems.

Discriminant analysis is related to a whole class of methods,

including regression and MANOVA, that are based on the

genera] multivariate linear model (see Bock, 1975; Borgen &

Seling, 1978). Distinctions among the methods concern the

research questions they address, the number and types of

variables for which they are appropriate, and their special

uses.

A first major type of research question is whether or not

groups differ on variables of interest. In the univariate case,

group differences are examined with / tests or one-way anal-

yses of variance (ANOVAS). In the multivariate case, group

differences are best examined with the related methods of

Hotelling's T
2
 statistic, MANOVA, or discriminant analysis. All

three of these methods are preferable to the use of multiple t

tests or multiple ANOVAS because they control the experi-

mentwise error rate, that is, the overall risk of Type I error.

Use of these methods allows us to answer the question of

whether or not there are significant multivariate differences

between two or more groups (although it should be noted that

use of Hotelling's T
2
 statistic is only appropriate in the two-

group case). The need for the use of discriminant analysis as

a follow-up to MANOVA was emphasized in the previous

section, but MANOVA should also be viewed as one of several

methods for the multivariate study of group differences. In

relation to the other methods, discriminant analysis is unique

in its provision of information concerning the dimensionality

of group differences, but it has the disadvantage, like multiple

regression, of being a maximization procedure (to be dis-

cussed subsequently).

An understanding of discriminant analysis can probably

best be conveyed by a discussion of its conceptual and math-

ematical similarity to multiple regression. Discriminant analy-

sis, like multiple regression, provides the researcher with a

linear equation with beta weights indicating the relative im-

portance of each variable in predicting the criterion. In mul-

tiple regression the criterion is a continuous variable, whereas

in discriminant analysis group membership is the criterion.

In both cases, the weights are determined mathematically to

maximize predictability of the criterion. In discriminant

analysis the weights yielded are those that maximally differ-

entiate or separate the groups. The limitations of discriminant

analysis resulting from its maximizing characteristic will be

discussed later, but the reader's knowledge of the limitations

of multiple regression should provide useful background.

Data Analysis and Interpretation

Nature of the Data

The data used in a discriminant analysis include scores on

two or more variables for two or more groups. The groups

can be formed on the basis of demographic characteristics

(e.g., sex, race, marital status), intellectual or personality

attributes (e.g., Holland interest types, gifted vs. average in-

telligence groups), or actual behavior (e.g., being successful

vs. being unsuccessful in school, work, or a treatment pro-

gram, continuing vs. dropping out from counseling). The

variables are those the researcher views as potentially impor-

tant in understanding the nature of group differences; usually

they are measured as continuous variables, but discrete vari-

ables may also be used on occasion. The variables are

called discriminant or discriminator variables (e.g., Brown &

Tinsley, 1983), but they are equivalent to predictor variables

or independent variables when used for the prediction of

group membership.

A variety of computer programs are available for the data

analysis, including the Statistical Package for the Social Sci-

ences (SPSS) program DISCRIMINANT (Nie, Hull, Jenkins,

Steinbrenner, & Bent, 1975), Statistical Analysis System SAS

DISCRIM (SAS, Inc., 1985), and Biomedical Data Package

(BMDP)'s program for stepwise discriminant analysis (Dixon,

1985). Although the programs yield similar types of infor-

mation, there are minor variations in the types of statistics

provided. As in the case when multiple regression is used, the

researcher must decide on the strategy by which variables are

to be entered into the predictive equation; options usually

include forward selection and stepwise selection.
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Discriminant Function

Discussion of the mathematical computations of a discrim-

inant analysis is beyond the scope of this article, but can be

found in Morrison (1976) or Tatsuoka (1971). A discriminant

analysis is designed to enable the researcher to search for the

linear equation that will maximize differences between the

groups. Recall the general form of a linear equation, Y = bX

+ a, and the form in linear multiple regression:

Y = b,X, + b?X2 + . . . brXr + a, (1)

where the As are the weights applied to the variables X, the a

is a constant (reflecting the ^-intercept of the regression line)

and the Y is the continuous variable to be predicted. On the

basis of the familiar principle of least squares, the weights are

selected so as to minimize the sum of squared errors, that is,

the squared errors in the prediction of y from Y. Similarly,

the linear equation that is the basis of discriminant analysis

is called a discriminant function and takes the following

analogous form:

D = b,X, + b2X2 + ... + a, (2)

where D is the categorical variable to be predicted, specifically

group membership. The objective of the use of the discrimi-

nant analysis is to form a linear equation for each group that

maximizes the differences between the weighted group means,

the Ds, also called group centroidx (see subsequent discussion).

Another way of describing this, for those more comfortable

with the ANOVA paradigm, is that the weights are chosen to

maximize the ratio of the between-groups sum of squares to

the within-groups sum of squares. In effect, variables on which

the groups differ are generally weighted more heavily, and

those variables on which the groups are similar receive smaller

weights. Note that the technique emphasizes group differences

and deemphasizes group similarities.

A discriminant analysis thus results in a discriminant func-

tion, or set of beta weights to be applied to the variables, in

which the weights indicate the importance of each variable in

contributing to group differences. The method also provides

information regarding the statistical significance of the func-

tion as a whole and of the individual variable weights (statis-

tical significance is described in the section on interpreting a

discriminant function). A statistically significant function,

and its associated beta weights, are used for explanatory

purposes, that is, to enhance understanding of the nature of

group differences. For predictive purposes, discriminant

scores are calculated for each individual and compared with

group centroids to determine probabilities of group member-

ship. These concepts are discussed in the next section.

Just as a multiple regression equation can be used to

calculate a predicted score on the criterion for each subject, a

discriminant function can be used to calculate an individual's

discriminant score. Again, on the basis of the general formula

for a linear equation (Y = bX + a), the individual's scores on

each variable are multiplied by the corresponding discrimi-

nant weight. Multiplication of raw scores by unstandardized

weights would result in a discriminant score in the same units

as the original variables. Multiplication of standard scores by

standardized weights would yield discriminant scores in stan-

dard score units. Application of Equation 2 to the calculation

of the standardized discriminant score' for the i* individual

would result in the following:

A = b,X,, + b, X2, + (3)

(Note that in the calculation of standardized scores, the con-

stant drops out. Subsequent formulas assume that standard-

ized discriminant scores and centroids, rather than their un-

standardized equivalents, are being calculated.)

In order to understand the concept of a centroid, consider

the fact that the distribution of discriminant scores of mem-

bers of a group, like any set of continuous scores, would have

a certain distribution with a mean and standard deviation.

The mean of discriminant scores within a group is known as

the group centroid. The group centroid is calculated by apply-

ing the discriminant weights to the group means on each

variable. Equation 4 would be the formula for calculating the

centroid of Group A:

DA = (4)

As mentioned previously, the discriminant function yielded

is that which maximizes the difference between group cen-

troids and which therefore also minimizes overlap between

the distributions of scores for the groups. The most important

use of discriminant scores and centroids is in the prediction

of group membership for individuals, in other words, for

classification.

Classification

A discriminant analysis enables the investigator to make a

prediction of group membership for each individual in the

sample. Classification is based on the concepts of the discrim-

inant score and the group centroid, as discussed previously;

very simply, classification of an individual case involves cal-

culation of the individual's discriminant score and compari-

son of it with the centroid of each group studied. The centroid

to which the individual's score is closest is the group to which

he or she is predicted to belong.

The reader may note that predicted group membership can

be compared with actual group membership in the sample in

which the function was calculated. The percentage of correct

predictions based on the function can be compared with the

percentage that can be predicted correctly with other strate-

gies; if no other alternatives are available, the percentage

correctly classified can be compared with the percentage of

correct predictions expected on the basis of chance.

If the groups are equal in size, the percentage of correct

predictions based on chance is equal to 1/fc, where k is the

number of groups. For example, if we have three equal-sized

groups, the chances of correctly classifying any given individ-

ual are .333. When sample sizes are unequal, there are two

ways of estimating the percentage that could be correctly

classified by chance. The first, which assumes that all correct

predictions are equal in value, is to use the formula n/N,



396 NANCY E. BETZ

where n is the size of the largest group and A' is the total

sample size. For example, assume that we have 300 successes

and 100 failures in a job training program. If we make a

prediction of success for every individual, we will be correct

75% of the time, that is, 300/400 = .75 by using the above

formula. However, predicting success for all 400 cases doesn't

help with the problem at hand, which is to predict in advance

those individuals who will fail. An alternative formula that

assumes a comparable rate of error across groups is

P,a, pKaK. (5)

In the formula, the p values refer to the proportion of cases

in the sample belonging to each group, the values of a refer

to the proportion actually classified as belonging to that group,

and k is the number of groups. Assume that in the earlier

example, the discriminant function led to the prediction of

60% successes and 40% failures. By inserting these values into

the formula we would have a chance rate of correct prediction

of (.75) (.60) + (.25) (.40) = .55. Note that the latter value is

considerably less than the value of .75 that was based on the

prediction of success for all cases.

The actual percentage of correct predictions can be com-

pared statistically to that expected on the basis of chance by

using the z test for the difference between proportions (Glass

& Stanley, 1970). Thus, the ability of a discriminant function

to make a statistically significant improvement in the accuracy

of classification can be assessed. It is essential to note that

cross-validation is absolutely necessary if the investigator

wishes to apply the function to the prediction of group mem-

bership in subsequent samples of individuals (versus those in

the sample in which the function was originally developed).

As has already been mentioned, discriminant analysis is a

maximization procedure, which means that it capitalizes on

sample-specific error. In order to assess the probability of

correct classification in any new group, the discriminant

weights must be applied in a new sample and the actual

percentage of correct predictions determined. This new per-

centage is a better approximation of the long-term predictive

accuracy of the function. (Methods of cross-validation are

discussed below.)

This discussion provides a somewhat simplified but con-

ceptually meaningful explanation of how a discriminant score

is assigned to a group in discriminant analysis. For complete

accuracy, it should be noted that the actual statistical proce-

dure derives a probability of group membership and takes

into account other information, including information re-

garding base rates (also called prior or unconditional proba-

bilities of group membership) and conditional probabilities,

which are used in the formula for Bayes's theorem (e.g., see

Hays, 1981) to yield a posterior probability, that is, the

probability of membership in a given group for an individual

with score X. A case is classified, on the basis of its discrimi-

nant score, in the group for which the posterior probability is

largest; in other words, a case is assigned to the most likely

group on the basis of its discriminant score.

In cases in which the prior probabilities of correct classifi-

cation (base rates) diverge greatly from 50%, it may be more

difficult to improve upon the accuracy of classification pos-

sible through classification of every individual into the largest

group. Assume, for example, a population in which past

history shows that 90% of the people are successful; if a guess

of success for each new member is made, the guess will be

correct 90% of the time. It will be difficult to achieve greater

accuracy in the prediction of success than that which is

possible by using base rates alone, although the function may

still considerably increase our accuracy in predicting failures.

The example that follows provides an example of this situa-

tion. See Brown and Tinsley (1983), Cronbach and Gleser

(1965), Meehl and Rosen (1955), Taylor and Weiss (1972),

and Wiggins (1973) for more extensive discussions of these

and other issues involved in classification.

If the discriminant function is to be used for predictive

purposes in new populations, it is essential that the sample

specificity of the discriminant analysis, and thus its tendency

to overestimate the accuracy of classification, be considered.

There are several methods of cross validation, including the

following (Dillon & Goldstein, 1984; Brown & Tinsley, 1983):

(a) cross-validation using a holdout sample; (b) double cross-

validation; and (c) what has been called the jackkm'fe, U-

method, or "leaving-one-out" method.

In the holdout method of cross-validation, the sample is

split in two. One part, usually at least half the group of

subjects, is used to derive the initial discriminant function,

and the weights are then applied to the classification of the

subjects in the second or holdout sample. Although this

represents an unbiased method of estimating the true mis-

classification rate, it requires large sample sizes if reasonably

sound initial discriminant functions are to be derived. In

double cross-validation, the total sample is divided in half.

Separate discriminant analyses are performed on each sample,

and the results are cross-validated on the other sample.

In the third method, one observation at a time is held out,

the discriminant function is estimated on the basis of the

remaining observations, and that discriminant function is

used to classify the held-out observation. This process is

repeated until all observations have been classified. Error rates

can be determined on the basis of the cumulative findings.

The jackknife method is available on BMDP, and discussions

of its use are offered by Efron (1983) and Dillon and Goldstein

(1984).

Examples

In order to illustrate the ideas presented up to this point, as

well as to introduce the idea of statistical significance of a

discriminant function, results from a study of predictors of

students' continuation in college mathematics studies are

presented. This study illustrates the use of discriminant analy-

sis with a dichotomous criterion variable, that is, a criterion

consisting of two groups. An example presented later illus-

trates use of the method with a polychotomous criterion, that

is, one with three or more groups.

Mathematics has been called the "critical filter" of career

development (Sells, 1982; Sherman, 1982, p. 428) because

lack of high school and college mathematics serves to filter

people out from many potentially interesting career possibil-

ities. Thus, it is important to understand the factors that
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influence individuals' plans to continue math studies in both

high school and college because of the important role that

knowledge of mathematics plays in making a range of edu-

cational and career options available to them. As pan of a

larger study of the correlates of math anxiety in college

students (Bander & Betz, 1981; N. E. Betz, 1978), a discrim-

inant analysis of predictors of intent to continue in college

mathematics was performed.

The dependent or predictor variables used in the analysis

were variables, including sex, math anxiety, math ability, prior

math background, and interest in choosing a major in one of

the sciences, postulated to be related to the extent to which

college students continued to study mathematics. The inde-

pendent or grouping variable was intent to continue math

studies. The subjects were students enrolled in freshman math

courses. The results of this analysis are described below.

Interpretation: Significance testing. Table 1 shows the dis-

criminant weights or coefficients which, when multiplied by

the individual's scores on the variables or by the group means,

will yield the discriminant score or group centroid, respec-

tively. However, in order to interpret the results of a discrim-

inant analysis, the investigator's first concern should be that

of the statistical significance of the function yielded.

There are several methods of testing the significance of a

discriminant function. One common method, based on the

familiar concepts of between-groups, within-groups, and total

sums of squares, tests the null hypothesis that the weighted

group means (centroids) are equal by using Wilks's lambda

statistic. Wilks's lambda is the ratio of within-groups variance

to total variance (sum of squares) and is therefore the per-

centage of variance in discriminant scores not explained by

group membership. It is useful to transform the variance ratio

into lambda, because lambda can be transformed into a

Table 1

Results of Discriminant Analysis of Variables Related to

Intent to Continue Mathematics Coursework

Among College Freshmen (N — 376)

Predictor variable

Sex

Relative freedom

from math anxiety

ACT math score

Amount of high

school math

Interest in a science

major

Standardized

discriminant

function

coefficient

-.75

.58

-.51

-.04

.35

Wilks's

lambda

.953

.980

.999

.997

.986

F< 1,374)

18.6"

7.5«

0.13

1.17

5.40*

Note. In interpreting the direction of the weights, it may be noted

that intent to take more math was coded 2, whereas plans to discon-

tinue math were coded 1. For sex, male was coded 1, female 2. Higher

scores on the math anxiety scale were indicative of less anxiety (more

positive attitudes) and are, thus, shown as "freedom from math

anxiety" to facilitate interpretation. For the function as a whole,

Wilks's lambda = .91, distributed as a \' statistic with 5 degrees of

freedom and equal to 33.6, p < .001, the eigenvalue = .09, and R =

.29. Group centroids were . 14 and —.60 for continuers and noncon-

tinuers, respectively. ACT = American College Test,

statistic that has a chi-square distribution. As shown in the

note at the bottom of the table, the value of Wilks's lambda

for the function calculated was .91, distributed as a x^S.A' =

376) = 33.6, p < .OOi. This is interpreted as indicating that

the null hypothesis of equality of group means can be rejected

at the .001 level.

An eigenvalue can also be calculated; the eigenvalue is the

ratio of between-groups to within-groups sum of squares, so

that large eigenvalues indicate good functions. The canonical

correlation /?c is a measure of the degree of association

between the discriminant scores and group membership, and

is equivalent to the eta derivable from ANOVA (Klecka, 1975).

In the two-group case, the canonical correlation is equal to a

point-biserial correlation between the continuously distrib-

uted discriminant scores and dichotomous group membership

(Klecka; Thorndike, 1978).

As is the case with other statistical methods, statistical

significance may not always lead to practical significance,

particularly when sample sizes are large. The present case

provides a good example of this because the actual values of

Wilks's lambda, although statistically significant (the N was

376), are unimpressive. Further, the eigenvalue of .09 and the

Rc of .29 (see the note to Table 1) indicate that the actual

percentage of variance accounted for by the function is un-

impressive even though the group centroids differ signifi-

cantly. In such cases, the usefulness of the function for prac-

tical purposes may rest on its ability to classify individuals

into groups (see discussion later in this section.)

If the overall function is statistically significant, then the

weights, the contributions of the individual variables to the

differentiation of the groups, can be evaluated for significance.

Methods of testing the significance of the discriminant weights

include a univariate F calculated for each variable (equal to

the value of F for a one-way ANOVA with the same number

of groups) and Wilks's lambda for the univariate case. When

variables are considered individually, lambda is the ratio of

within-groups to total sum of squares. A lambda of 1 occurs

when all group means are equal, but values closer to 0 indicate

that most of the total variability can be attributed to between-

groups differences. Thus, smaller values of Wilks's lambda

indicate variables that better differentiate the groups.

From an examination of the weights shown in Table 1, it

is evident that smaller values of Wilks's lambda correspond

to the same variables for which the F is statistically significant.

Specifically, the weights corresponding to sex, math anxiety,

and interest in a major in science were statistically significant,

indicating that these variables make significant contributions

to the prediction of intent to continue studies in math. Sub-

stantive interpretation of the direction of weights can be

performed by using the tables of group means and standard

deviations (which should always be provided in studies re-

porting the findings of a discriminant analysis) and by using

information about the direction of coding of categorical vari-

ables and of scoring of continuous variables. (The reader

should note that it is always necessary to provide numerical

values for categorical values, e.g., by coding continuers 2 and

noncontinuers 1. The analysis can be done only if all variables

have numerical values, even though these values are not

meaningful in a numerical sense. This is often referred to in
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computer manuals and elsewhere as dummy coding.) In the

present case, positive coefficients are associated with students"

intention to take more math courses, and negative coefficients

with their intention to discontinue their study of math. The

negative value for sex Indicates the association of being a

male (coded 1) versus being a female (coded 2) with the

intention to continue studies in math. Thus, the conditions

of being a male, being less math-anxious, and planning to

major in science significantly differentiated students who did
from those who did not plan to continue studies in math.

Although statistically significant weights indicate variables
that contribute significantly to group differences, intercorre-

lations among variables reduce the extent to which the weights

and their statistical significance can be considered unambig-

uous. Discriminant coefficentsare equivalent to partial regres-

sion coefficients. Thus, if the predictors are intercorrelated,

one predictor may have received most of the weight, whereas

another may have received little weight (see Bock, 1975, pp.

417-420 for examples; see also Bray & Maxwell, 1982, p.

345). Further, only the standardized weights can be compared
in absolute size, because the magnitude of the unstandardized

weights varies with different units of measurement of the

variables.

In addition to its usefulness in interpreting the variables
contributing to the understanding of group differences, dis-

criminant analysis can also be used for classification, as

illustrated in this example. As was mentioned earlier, the
discriminant weights, when multiplied by an individual's

standard scores on each variable, yield a discriminant score,

and when multiplied by the score means for a group, yield

the group centroid. The function used to calculate the stand-
ardized discriminant score for the rth individual would he as

follows:

Di = -.75 (Sex), + .58 (Math Anxiety), -.51
(American College Test [ACT] Math Score), -.04

(Amount of High School Math), + .35
(Science Major Plans),

Similarly, the group centroid for the continuers would involve
multiplying the weights by the group means on the variables.

In the present case, the group centroids were .14 for the

continuers and -.60 for the noncontinuers.

Figure 1 shows the distribution of individual scores around
their own group centroid. Assume, for example, that two

subjects, A and B, are selected at random from the sample,
without the experimenter's knowledge of the group to which

each belongs. The discriminant score for Subject A is calcu-
lated as .30 and that for Subject B as -.90. The discriminant

score for Subject A is closer to the centroid of the continuers

and that for Subject B is closer to that of the centroid of the
noncontinuers. Accordingly, we would predict that Subject A

would continue and Subject B would not continue studies in
math. For further information about the geometric represen-

tation of individual discriminant scores around their group

centroids and the relation of that to classification, see Tat-
suoka(1971).

Results concerning the accuracy of the discriminant func-
tion in classifying continuers and noncontinuers in math

studies are presented by the cross-tabulation shown in Table
2. As shown in the table, the function resulted in correct

predictions being made for 66% of the subjects; 64% of the
continuers and 71% of the noncontinuers were correctly

classified. As was mentioned previously, this percentage may

be compared to the percentage of correct predictions that

would be possible if alternative strategies were used. If it is

assumed that our only alternative strategy is chance predic-

tion, this study shows that the two methods of determining
the percentage of correct predictions on the basis of chance

will yield different conclusions regarding the usefulness of the
function in classification.

Because of the disparate size of the two groups, the largest

percentage of correct classifications based on chance would

be obtained by assigning every individual to the continuer
group. In accordance with the formula n/N, where n is the

size of the largest group and .TV is the total sample size, the

result was 303/376, or 81%. Clearly our obtained value of
66% is inferior to the result obtained by the latter method of

calculating chance accuracy. However, consider the fact that

although we correctly predicted 81 % of the total number of

cases, by predicting that all subjects would be in the continuer

group we misclassified all 73 noncontinuers. Thus, for the

Noncontinuers Continuers

1.0 0.8 0.6 0.4

DB = ~ 0.90 DNC = - 0.60

Figure 1. Plot of ceniroids for students planning to continue studies in college math versus those not

planning to continue and discriminant scores for Subjects A and B.
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Table 2

Hit Rales Using a Discriminant Function to Predict Intent to

Continue in College Mathematics

Predicted group

Actual group

Plans to continue

No.

%

Does not plan to

continue

No.

%

Total

No.

%

Continue

195

64%

21

29%

216

57%

Dropout

108

36%

52

71%

160

43%

Total

303

81%

73

19%

376

Note. Values on the diagonal are "hits" and are in italic type. There

are a total of 247 hits, or 66%. Conversely, the 129 misses account

for 34% of the cases.

latter group, our success rate based on chance was 0 versus

the 71% success rate that it is possible to obtain by using the

function. Because one of our research objectives was to iden-

tify the probable noncontinuers in order to give them special

help to encourage them to continue studies in math, it is

important to predict the noncontinuers as accurately as the

continuers. Thus, the second formula, p, a, + p2 a2 + ...

pifOK, could be used. In the present case, we would have this

value: (81%) (57%) + (19%) (43%) = 54% expected on the

basis of chance. Not only was our obtained value of 66% an

improvement over this value of 54%, but in using the z-test

for the difference between two proportions (e.g., Glass &

Stanley, 1970, p. 313), we found that it is a statistically

significant improvement. Use of the function would lead to a

large number of misclassifications, especially among students

planning to continue math studies who were predicted to drop

out, but 71 % of the potential dropouts would be correctly

identified. Thus, the function would be useful in identifying

students in need of support to continue math studies.

Additional Issues in Interpreting Discriminant

Functions

In addition to providing information about discriminant

weights, a discriminant analysis usually includes a canonical

structure matrix, that is, a matrix of the correlations of each

variable with each function; these correlations are known as

canonical variate correlations or as discriminant loadings

(Bray & Maxwell, 1982). These loadings are conceptually

similar to factor loadings (Huberty, 1975a) and can therefore

be used to interpret the dimensionality of group differences

(Borgen & Seling, 1978). Some statisticians contend that these

loadings are more stable on cross-validation than are discrim-

inant weights and thus may be safer to interpret. However,

studies comparing the stability of weights versus loadings on

cross-validation (Barcikowski & Stevens, 1975; Huberty,

1975b; Thorndike & Weiss, 1973) do not consistently suggest

the superiority of one over the other.

In terms of practical uses, discriminant weights, which

reflect the unique contribution of a variable to a composite,

are useful in determining whether or not to retain a variable

in the set of discriminators to be used. Discriminant loadings,

because they reflect the shared variance between a variable

and an underlying composite, may be especially useful for

interpreting the substantive nature of the composite or func-

tion.

Also useful in the interpretation of a discriminant analysis,

particularly one using three or more groups and resulting in

two or more significant functions, is the fact that the functions

can be rotated to improve clarity and simplicity of structure.

A set of discriminant functions is analogous to the principal

axes obtained at the beginning of a factor analysis. Thus, like

principal axes, the functions may be more interpretable and

meaningful after rotation.

In essence, the initial discriminant loadings are rotated to

form new factors, which are simply linear combinations of

the old factors. In rotation for simple structure, the rotated

function is to correlate highly with a few predictors and at a

level near zero with the rest. Specifically, the rotated (as

opposed to the initial) values of the standardized discriminant

coefficients and loadings will typically be closer to 0 or 1,

thereby improving the interpretability of the function and

group differences. However, the total discriminatory power of

the model and the relative position of the groups remains the

same after rotation. For further discussion of the rationale for

and methods of rotation, particularly as they relate to uses in

counseling psychology, see Lunneborg and Lunneborg (1978).

For an example of the use of rotation, see Anderson, Wahl-

berg, and Welch (1969).

The next example illustrates the use of rotated factor load-

ings in the interpretation of the results of a discriminant

analysis. The example, from a study by Martin and Bartol

(1986), was designed to investigate differences among students

enrolled in six different areas of concentration in a master of

business administration program. In one part of the study,

discriminant analysis was used to examine the extent to which

scores on the six Holland (1973, 1985) themes differentiated

students in different areas of concentration. Thus, there were

six predictors (the six Holland themes, as measured by Hol-

land's, 1978, Vocational Preference Inventory) and six groups

to be differentiated. The maximum number of discriminant

functions that can be yielded in a discriminant analysis is one

fewer than the number of groups (k) or the number of

discriminant variables, whichever is smaller. Thus, in the

two-group case, only one discriminant function is yielded.

In the present example using six groups, five functions are

yielded. Each successive function is formed so that it is

uncorrelated with previous functions and so that it maximizes

the ratio of residual between-groups to within-groups varia-

bility. In other words, the first function extracted accounts for

the maximum possible between-groups variance. Later func-

tions attempt to account for leftover or residual between-

groups variance. Although k - 1 functions may be yielded,

the number of statistically significant and therefore interpret-

able functions may range from zero to k - 1.

Table 3 shows the rotated discriminant structure matrix

(the loadings) and the group centroids resulting from Martin
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Table 3

Group Cenlroids and Discriminant Structure Matrix for

Discriminant Analysis of Holland Theme Differences

Among Groups of MBA Students

Group or variable

Discriminant function

- j ;

Group

Accounting

Finance

Information systems

Management

Management sci-

ence

Marketing

Variable"

Realistic

Investigative

Social

Conventional

Enterprising

Artistic

Group centroids

0.381

0.127

0.081

-0.616

-0.985

0.195

0.008

-0.402

0.034

1.034

-0.230

0.316

0.101

-0.167

0.746

-0.289

0.121

-0.650

Discriminant structure matrix

0.221

-0.269

-0.091

0.720

0.479

0.134

0.007

0.036

0.809

-0.096

0.402

0.496

0.836

0.632

0.013

0.065

-0.102

0.446

Note. Data from a study by Martin & Bartol (1986). MBA = master

of business administration.

'The variables are scores on the Holland (1973, 1985) themes as

measured by the Vocational Preference Inventory (Holland, 1978).

and Banol's (1986) analysis of group differences in Holland

scores. First, of the five possible discriminant functions, three

were statistically significant. The three functions accounted

for 50%, 29%, and 17% of the variance accounted for by the

five-function solution (meaning that the two nonsignificant

functions accounted for only 4% of the variance). It may be

noted from the centroids that the first and largest function

separates the management and management science groups

(with large negative centroids) from the accounting and fi-

nance groups (large positive centroids); the variable having

the highest loading on Function 1 was the Holland Conven-

tional score, on which higher scores were characteristic of the

accounting and finance groups versus the management

groups. The second function separated the management from

the finance group on the Social theme, with higher scores

characterizing the managers and lower scores characterizing

the finance majors. Finally, the third function particularly

distinguished the information systems from the marketing

groups, with high Realistic and Investigative scores more

characteristic of the former than of the latter group.

Use of the results of the analysis to classify subjects into

one of the six groups resulted in an overall hit rate of 37.9%,

versus an a priori probability of 16.6% (because all groups

were the same size, the chance rate would be 'A, or 16.6%).

However, the percentages of hits varied markedly across

groups, ranging from a low of 12.5% for the accounting group

to a high of 59.1 % for the management students. Thus, with

the assumption that these results held up on cross-validation,

the utility of the functions would depend on for what purpose

the students were classified according to major area concen-

tration.

Representative Applications of Discriminant Analysis

The range of possible applications of discriminant analysis

within counseling psychology is large and diverse, and in the

following section some examples of recently published or

completed research that used this method are provided. Note

that these examples are only a small sample of the wealth of

possibilities.

First, in the area of research on educational and career

development, E. L. Betz (1982) used discriminant analysis to

examine differences between three groups of women on the

five needs postulated by Abraham Maslow, that is, security-

safety, social, autonomy, esteem, and self-actualization. The

three groups of women were homemakers, women employed

in professional-managerial occupations, and women em-

ployed in clerical and sales occupations. The analysis yielded

one statistically significant function that differentiated home-

makers from working women and was characterized by higher

scores on the higher order needs among the working women

and higher scores on the lower needs among the homemakers.

Beutell and Brenner (1986) used discriminant analysis to

study gender differences in work values. Their discriminant

analysis of the 25 work values measured by Manhardt's (1972)

job orientation scale, with gender as the grouping variable,

yielded a significant discriminant function. Of the 25 values

(called job outcomes by Manhardt), 18 contributed signifi-

cantly to the differentiation of the sexes. Variables particularly

characteristic of the female group included higher scores on

the values of working with congenial associates, using one's

education in a job, of having a feeling of accomplishment, of

being respected by others, and of being able to work inde-

pendently. Values for which higher male scores contributed

significantly to the function included higher income, job

security, and the opportunity for advancement. Tinsley and

Kass (1980) investigated the degree to which different psycho-

logical needs were satisfied by different leisure activities.

Utz (1983) compared three groups of students with voca-

tional problems on three measures; the three groups were (a)

a group of students who sought counseling at the counseling

center; (b) a group of students enrolled in a course on career

planning; and (c) a group of students who were undecided

about careers but who had not sought help. Discriminant

analysis indicated several differences among the groups, in-

cluding more positive attitudes toward counselors and coun-

seling among the students who had sought help at the center.

In an important study of minority group concerns, La-

Fromboise (1986) used discriminant analysis to investigate

the degree to which low expectations of self-efficacy were

related to the extreme underrepresentation of American In-

dian women in U.S. colleges and universities (LaFromboise,

1984). LaFromboise constructed four 10-item efficacy scales

that were used to assess expectations of personal efficacy with

respect to academic success, career advancement, ability to

manage stress, and ability to survive socially in a white-

dominated collegiate environment. Discriminant analysis us-

ing the four subscale scores indicated the behavioral domains

most important in differentiating American Indian from

white women, and analyses of the items within each scale
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indicated the areas of perceived deficit versus competence

characterizing each group.

Note the utility of LaFromboise's study in both understand-

ing the obstacles faced by American Indian women and in

the design of interventions targeted toward those areas of

behavioral performance in which the efficacy expectations of

American Indians are particularly low relative to those of

Anglo women. LaFromboise also notes that discriminant

analysis is especially useful in the study of cross-cultural issues

because of the diagnostic information it provides when sub-

jects are misclassified. Exploration of the background and

experience of American Indians whose discriminant scores

were more similar to the Anglo centroid could contribute to

attempts to assist American Indian women.

In the therapeutic area, Sloat, Leonard, and Gutsch (1983)

compared drug users and nonusers on the scales of the 16

Personality Factor Questionnaire. The discriminant analysis

indicated that 8 of the 16 scales significantly differentiated

users from nonusers. Not only do these findings contribute to

the understanding of the personality correlates of drug abuse,

but the classification methods of discriminant analysis could

be used to compare the discriminant scores of individuals in

high risk populations with user and nonuser centroid scores

to derive a predicted group membership, thus identifying

individuals at risk for abuse.

Discriminant analysis can be very useful in some types of

theory testing and explication. For example, the E. L. Betz

(1982) study described earlier used the method to examine

the applicability of Maslow's need theory to women's career

development. Other stage theories, for example those of

Super, Perry, Chickering, Erikson, or Kohlberg, could be

further explicated by examination of the degree to which

various individual difference variables differentiated individ-

uals at various stages postulated by the theory. Discriminant

analysis is one useful method for the study of individual and

group differences and, as was mentioned earlier, is useful as

a follow-up examination of the univariate effects contributing

to a significant multivariate F. Finally, the research studies

used as examples at the beginning of this article all represent

areas for the fruitful application of discriminant analytic

techniques.

Discussion and Summary

Cautions in the Use of Discriminant Analysis

In order to use any statistical method, it is necessary to

understand the mathematical and distributional assumptions

inherent in the technique and to ensure that the characteristics

of the data do not violate these assumptions. In the case of

discriminant analysis, it is assumed (a) that there is linearity

in the relation between predictors, (b) that the continuous

variables come from a multivariate normal population, and

(c) that the covariance matrices for the groups are equal.

Therefore, the researcher should first check the distributions

of the individual variables for significant departures from

normality and the bivariate scatterplots for deviations from

linearity. (Normality of the individual distributions is a nec-

essary though not sufficient requirement for multivariate

normality.) The equality of group covariance matrices can be

tested by using Box's M test (cf. Norusis, 1985), which tests

the null hypothesis of equality of the matrices.

Recently several new approaches to checking the assump-

tions of multivariate normality and homoscedasticity have

been developed, for example, Hawkins's (1981) procedure,

which is available on the BMDP and SAS software packages.

The effects of violation of these assumptions, which include

reductions in the accuracy of prediction and decreased stabil-

ity in discriminant weights, are reviewed in detail by Dillon

and Goldstein (1984). Dillon and Goldstein also discuss meth-

ods of handling cases in which some of the predictors are

discrete rather than continuous.

Discriminant analysis, like multiple regression, is a max-

imization procedure; that is, it locates the set of weights (the

linear equation) that maximizes the correlation between the

predictor set and group membership. All maximization pro-

cedures capitalize on sample-specific covariation, and dis-

criminant analysis is no exception. Note that to ensure that a

discriminant function is valid and generalizable beyond the

sample in which it was initially derived, it should be cross-

validated to determine the stability of the weights and the

actual predictive accuracy of the equation. Thorndike (1978)

provides an example of how the size of discriminant loadings

and of the canonical correlation can shrink dramatically after

cross-validation.

In order to minimize the capitalization on sample-specific

error, it is useful to perform an a priori test for profile

separation by using Hotelling's T
2 (see Harris, 1975; Morri-

son, 1976). Although a statistically significant value of T
2

cannot be considered unambiguous, because this statistic is

susceptible to sample-specific error, performance of further

discriminant analyses after obtaining a nonsignificant T
2 test

result is likely to extract sample-specific rather than general-

izable group differences.

A final caution arises from the conceptual basis of discrim-

inant analysis, specifically its emphasis on difference and its

deemphasis on similarity. Thus, the method exacerbates a

sometimes unfortunate tendency to emphasize difference

rather than similarity in the field of psychology as a whole.

For example, findings of gender or racial similarities are

almost never viewed as conceptually interesting, yet if they

are viewed within the larger context of a society which fosters

gender and racial differences, they gain a unique and major

import. Thus, the theoretical importance and meaning of

human difference versus similarity should be a consideration

of our research.

Resources for Further Study

For readers who would like additional information about

discriminant analysis, a variety of references is available. For

a readable and informative overview of multivariate methods,

including discriminant analysis, see Weiss's chapter in Dun-

nette's (1976) Handbook of Industrial and Organizational

Psychology. Brown and Tinsley (1983) also provide a readable
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and understandable summary of discriminant analysis, with

an emphasis on its use in leisure research. Most major texts

on multivariate or correlational methods have chapters on

discriminant analysis; some of the more helpful include Tat-

suoka's (1971) Multivariate Analysis, Thorndikc's (1978) Cor-

relational Procedures for Research, Marascuilo and Levin's

(1983) Multivariate Statistics in the Social Sciences, and

Dillon and Goldstein's (1984) Muliivariate Analysis. Most

computer packages are a good source of reviews of the meth-

ods available; some of them are quite extensive. See, for

example, Norusis's (1985) SPSS Advanced Statistics Guide

for a detailed discussion of discriminant analysis and its

interpretation. Goldstein and Dillon (1978) review six com-

puter programs that are helpful in the performance of discrim-

inant analyses.

At a more advanced level are Morrison's (1976, 1983) texts

on multivariate methods, Huberty's (I975a) review of dis-

criminant analysis, Tatsuoka's (1971) excellent discussion of

the geometric representation of the results of discriminant

analysis, particularly when there are two or more significant

functions, Lunneborg and Lunneborg's (1978) discussion of

rotation, Borgen and Seling's (1978) comparison of discrimi-

nant analysis to univariate ANOVAS following MANOVA, and

Harris's (1975) treatment ofHotelling's T
2
 statistic, including

discussion of its use for profile analysis.

Summary

Discriminant analysis provides information that contrib-

utes to an increased understanding of the nature, extent, and

dimensionality of group differences, as well as to the predic-

tion of group membership for purposes of selection, place-

ment, and intervention, and for testing stage and taxonomic

theories. The utility of this method, like many others, has not

been fully appreciated in counseling psychology. It is hoped

that this introduction will increase readers' interest in and

ability to appropriately use discriminant analysis.
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