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Abstract. The environments in which we live, work, and

play are subject to enormous variability in air pollutant

concentrations. To adequately characterize air quality (AQ),

measurements must be fast (real time), scalable, and re-

liable (with known accuracy, precision, and stability over

time). Lower-cost air-quality-sensor technologies offer new

opportunities for fast and distributed measurements, but

a persistent characterization gap remains when it comes

to evaluating sensor performance under realistic environ-

mental sampling conditions. This limits our ability to in-

form the public about pollution sources and inspire pol-

icy makers to address environmental justice issues related

to air quality. In this paper, initial results obtained with

a recently developed lower-cost air-quality-sensor system

are reported. In this project, data were acquired with the

ARISense integrated sensor package over a 4.5-month time

interval during which the sensor system was co-located with

a state-operated (Massachusetts, USA) air quality monitor-

ing station equipped with reference instrumentation mea-

suring the same pollutant species. This paper focuses on

validating electrochemical (EC) sensor measurements of

CO, NO, NO2, and O3 at an urban neighborhood site

with pollutant concentration ranges (parts per billion by

volume, ppb; 5 min averages, ±1σ): [CO] = 231 ± 116 ppb

(spanning 84–1706 ppb), [NO] = 6.1 ± 11.5 ppb (spanning

0–209 ppb), [NO2] = 11.7 ± 8.3 ppb (spanning 0–71 ppb),

and [O3] = 23.2 ± 12.5 ppb (spanning 0–99 ppb). Through

the use of high-dimensional model representation (HDMR),

we show that interference effects derived from the variable

ambient gas concentration mix and changing environmen-

tal conditions over three seasons (sensor flow-cell temper-

ature = 23.4 ± 8.5 ◦C, spanning 4.1 to 45.2 ◦C; and relative

humidity = 50.1 ± 15.3 %, spanning 9.8–79.9 %) can be ef-

fectively modeled for the Alphasense CO-B4, NO-B4, NO2-

B43F, and Ox-B421 sensors, yielding (5 min average) root

mean square errors (RMSE) of 39.2, 4.52, 4.56, and 9.71 ppb,

respectively. Our results substantiate the potential for dis-

tributed air pollution measurements that could be enabled

with these sensors.

1 Introduction

Protecting populations from exposure to poor air quality

(AQ) is one of the greatest public health challenges affecting

all nations on earth (WHO, 2014). For the past half century,

developed countries have made an effort to measure concen-

trations of major pollutants known to degrade health or dam-

age plants and physical structures. Generally, the focus has

been on the most populated areas, with an intent to assess

daily, monthly, or annual concentrations on a regional ba-

sis. While greater spatial and temporal resolution has been

desired, the costs of purchasing and operating instruments

sufficiently robust, accurate, and free of interferences to gen-

erate reliable data has been prohibitive – an instrument to

assess a single pollutant at ambient levels can cost many tens

to hundreds of thousands of US dollars.

In this situation it is therefore easy to understand the

motivation to develop inexpensive, rapid-response air qual-

ity monitoring devices that can be deployed in large num-

Published by Copernicus Publications on behalf of the European Geosciences Union.



3576 E. S. Cross et al.: Use of electrochemical sensors for measurement of air pollution

bers around point sources or throughout specific neighbor-

hoods to create the desired high spatial and temporal resolu-

tion AQ data grid (Snyder et al., 2013; Kumar et al., 2015;

McKercher et al., 2017). Indeed, within the past decade,

many researchers, entrepreneurs, and manufacturers have

pursued the development, deployment, and evaluation of

lower-cost devices that measure air pollution (Mead et al.,

2013; Williams et al., 2014b; Masson et al., 2015; Jiao et al.,

2016; Lewis et al., 2016; Castell et al., 2017; Hagan et al.,

2017; Mueller et al., 2017; Zimmerman et al., 2017).

While electrochemical (EC) sensors have formed the ba-

sis for workplace and hazardous leak detection applications

for many decades (Stetter and Li, 2008), their transition from

workplace to ambient air is accompanied by much lower tar-

get concentration ranges over which the sensors must ac-

curately measure the analyte species of interest (Borrego et

al., 2016). Coincident with the need to resolve much lower

concentrations is the need to fully understand and model the

influence of non-analyte interferences resulting from chang-

ing temperature (T ), relative humidity (RH), pressure (P ),

or other gas molecules that may compete with the oxidation–

reduction reactions occurring at the working electrode (WE)

of a given EC sensor (Mueller et al., 2017). Unless great care

is taken when measuring ambient air pollutants, interferences

may result in reported pollutant concentrations that are or-

ders of magnitude greater than the true values. At the core

of this quantification challenge is the fact that electrochemi-

cal sensors rely on resolving very small changes in current

(µA) and, in turn, reliably converting that raw sensor sig-

nal into a concentration. The path from raw sensor output

to concentration requires (1) a mechanical design that pro-

vides consistent, empirically validated sampling of the am-

bient air, (2) low-noise electrical circuitry (potentiostats) to

amplify and resolve small changes in current, (3) electronic

filters to remove electrical transients (e.g., radiofrequency in-

terference), and (4) a method for converting raw signal to

concentration that takes into account calibration and interfer-

ence data.

In order to calibrate and characterize interferences, labo-

ratory and field-based co-location experiments must be car-

ried out spanning the full range of pollutant concentrations

and ambient sampling conditions that may be encountered

in an actual stand-alone deployment. Deploying lower-cost

AQ-sensor systems in the absence of such calibration signifi-

cantly undermines the credibility of the data. Indeed, reports

have appeared recently raising concerns about the reliability

of data produced from inexpensive monitoring devices con-

taining EC sensors (Lewis and Edwards, 2016).

This paper describes results obtained from a newly de-

veloped, integrated lower-cost EC-sensor system, ARISense,

which has been developed at Aerodyne Research, Inc., for

simultaneous, real-time measurement of a wide range of

ambient-level atmospheric pollutants and accompanying me-

teorological metrics. Air quality monitoring systems can be

roughly divided into three cost tiers: (1) high-cost and high-

accuracy systems costing ∼ USD 10 000–100 000 per pol-

lutant species, such as those used at regulatory monitoring

stations; (2) lower-cost systems costing ∼ USD 1000–10 000

per integrated sensor node, such as ARISense, AQMesh, or

the Real-time Affordable Multi-Pollutant (RAMP) package

recently developed by Carnegie Mellon University and Sen-

Severe (Zimmerman et al., 2017); and (3) low-cost systems

(costing ∼ USD 10–100 s per device) designed for the con-

sumer market that typically only measure a single pollutant

and generally suffer from poor data quality (EPA, 2017).

The goal of second tier systems is to provide data quality

approaching tier 1 at a small fraction of the cost. In this

paper, we describe the mechanical and electronic design of

the ARISense system and demonstrate a field-based calibra-

tion technique that combines co-located measurements with

a high-dimensional model representation (HDMR) of the in-

terferences. Our results show that lower-cost EC-sensor sys-

tems can provide reliable measurements of air pollution un-

der real-world ambient concentrations.

2 Experimental

2.1 ARISense

The ARISense system used in the present study (ver-

sion 1.0) measures ambient levels of five gaseous pollu-

tants (CO, NO, NO2, O3, and CO2), atmospheric aerosol

particles (0.4–17 µm in diameter), and related meteorolog-

ical and environmental parameters (temperature, pressure,

relative humidity, wind speed and direction, solar irradi-

ance, and noise). Mechanical drawings of the ARISense

system are shown in Fig. 1. Each system is housed

in a NEMA (National Electrical Manufacturers Associa-

tion) weather-proof enclosure (Polycase, PN: YH-080804;

21.8 cm L × 13 cm D × 21.8 cm H) weighing approximately

2.7 kg fully integrated. ARISense v1.0 is powered off of 120–

240V AC and designed for stationary fixed-site monitoring.

ARISense v1.0 contained the following EC sensors (pur-

chased from Alphasense Ltd., UK): carbon monoxide (CO-

B4), nitric oxide (NO-B4), nitrogen dioxide (NO2-B43F),

and total oxidants (Ox-B421). (More recent versions of

ARISense have been upgraded to model Ox-B431.) The inte-

grated system also includes a nondispersive infrared (NDIR)

carbon dioxide (CO2) sensor (Alphasense pyroelectric IRC-

A1) and an optical particle counter (OPC) for measure-

ment of particulate matter size distributions (number-count;

∼ 0.4 ≤ dp ≤ 17 µm over 16 size bins; Alphasense OPC-N2).

The following environmental and meteorological measure-

ments are also included: relative humidity and temperature

sensor (Sensirion AG, PN: SHT21), barometric pressure and

temperature sensor (BOSCH, PN: BMP180), solar intensity

sensor (OSRAM Opto Semiconductors, PN: BPW 34), and

a microphone for audible noise detection (CUI, Inc., PN:

CMC-5044PF-A). An anemometer (Davis Instruments, Van-

Atmos. Meas. Tech., 10, 3575–3588, 2017 www.atmos-meas-tech.net/10/3575/2017/



E. S. Cross et al.: Use of electrochemical sensors for measurement of air pollution 3577

Figure 1. Mechanical drawings (wires excluded) showing the main components of the ARISense system. Each system includes an anemome-

ter (A) mounted to the back bracket of the NEMA enclosure providing a description of the wind fields in the immediate proximity to the gas

and particle sampling inlets of the system. Mounting brackets for wall or pole-mount configurations attach at position (B). Expanded view

of the internal components reveals the optical particle counter (C), gas sampling manifold (D) with embedded electrochemical and NDIR

and RH/T sensors, transformer/power PCB (E), main controller PCB (side view) (F), communication PCB for ethernet connectivity (G), gas

sampling inlet and exhaust rain hoods (H, I), RJ11 and RJ45 connections for anemometer data and CAT-5 connectivity (J, K), microphone as-

sembly (L), weather tight AC power input (M), and solar sensor assembly for light intensity measurement (N). The 3-D-printed parts include

the gas sampling manifold, rain hoods, exhaust and microphone mounting bracket, solar sensor interface, and PCB mounting scaffold. As

described in the text, the gas and particle sampling inlets are separate, with the OPC-N2 sampling through the bottom face of the enclosure

to protect from liquid water penetration.

tage Pro 6410) for wind speed and direction was mounted to

the top of the ARISense NEMA enclosure, measuring condi-

tions ∼ 60 cm above the sampling inlets (see Fig. 1).

ARISense electronics were designed to integrate all sen-

sor measurements into a unified data acquisition framework

and provide user access and control over the system’ s con-

figuration and operation. EC-sensor signals were collected

and processed by custom-built electronics designed to min-

imize noise and amplify raw signals (i.e., potentiostat cir-

cuitry). Connectivity for v1.0 systems was enabled via hard-

line CAT-5 ethernet connections (Lantronix XPort Pro). Data

were saved at user-defined sampling intervals (5–60 s) onto a

local USB drive and (if internet-connected) to the ARISense

database (https://arisense.io/), where data are available for

real-time visualization and download. Upgraded ARISense

systems configured for cellular connectivity and stand-alone

solar power are currently under development.

The ARISense system has two sampling inlets, one for

measuring gas-phase pollutants and the other dedicated to

the measurement of particulate matter. In both cases, the air

flow is driven by small DC-powered fans embedded at the

downstream end of the sample flow path, minimizing the

loss of sticky or reactive gas molecules (NO2, O3) or par-

ticles due to surface reactivity or deposition. The gas sam-

ple flow includes both an intake and an exhaust port in the

NEMA enclosure, protected from water penetration via 3-D-

printed rain hoods (Formlabs; Form 2, stereolithography 3-D

printer) mounted to the exterior of the case (see components

H and I in Fig. 1). The gas sampling flow manifold and in-

ternal printed circuit board (PCB) mounting brackets were

also 3-D printed. Laboratory tests reveal that the 3-D-printed

material is inert to NO2 and O3 and does not result in signif-

icant losses of either species when sampling ambient-level

concentrations. The gas sampling manifold provides a con-

sistent, compact interface for the four electrochemical sen-

sors as well as the CO2 sensor. The manifold includes an

embedded RH/T sensor positioned adjacent to the electro-

chemical cells which is used to model the temperature and

relative humidity-derived interference effects on the raw sen-

sor response. Given the active flow of the gas sampling inlet

and minimal residence time (∼ 1 s) of the sample air within

the manifold, the RH and T measurements recorded by the

ARISense system closely track changes in ambient RH and T

conditions. Over the co-location period described here, tem-

perature measurements inside the flow manifold were within

∼ 20 % of the ambient values at all times. Note that the CO2
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measurements are not discussed in this paper, which focuses

on the four species measured by the electrochemical sensors,

but will be addressed in a future paper.

The particle inlet is on the bottom face of the NEMA en-

closure (Fig. 1, component C). Given the body of evidence

implicating PM2.5 concentrations in adverse health outcomes

(Lim et al., 2012), recent years have seen substantial growth

in the development, evaluation, and deployment of low-cost

OPCs (Holstius et al., 2014; Williams et al., 2014a; Han et

al., 2017; Zikova et al., 2017). The principal measurement

challenge of these devices is the minimum size detection

limit, often dp ≥ 0.5 µm (for devices that cost ∼ USD 250 to

800) or dp ≥ 1.0 µm (cost ∼ USD 15 to 200). Unfortunately,

given these size detection limits, such low-cost OPCs are in-

adequate when the accumulation mode aerosol size distribu-

tion peaks at dp ≤ 0.25 µm, which is typical in most urban lo-

cations. Low-cost OPC size detection limits also make near-

field particulate combustion emission characterization (i.e.,

near roadways) very challenging since the combustion mode

of particles is typically dp < 0.1 µm. A detailed assessment

of the ARISense particulate measurements in laboratory and

field experiments will be provided in a subsequent paper.

This paper presents results for the four electrochemical

sensors in a single ARISense system. Note that nominally

identical electrochemical sensors can have widely different

sensitivities and exhibit variable environmental interference

effects. As a result, the specific calibration models described

in this paper cannot be broadly applied to all ARISense

systems. Until the reproducibility of electrochemical sen-

sor manufacturing improves, system-specific HDMR models

will need to be developed for each individual ARISense sys-

tem to maintain robust sensor quantification metrics.

2.2 Measurement site

Two ARISense systems (indicated with yellow circles in

Fig. 2) were deployed south of Boston, MA, from July to

November 2016. This initial deployment of the ARISense

systems was in conjunction with an existing four-node net-

work (the Dorchester Air Quality Sensor System, DAQSS,

project) established in January of 2016. The DAQSS node

locations are indicated with green markers on the map.

The neighborhoods of Roxbury and Dorchester are among

Boston’s largest and most economically diverse, including

low-income residential areas interspersed with light and

heavy industry, as well as the Interstate 93 (I-93) corridor

which runs along the eastern edge of Dorchester. Given their

location and activities therein, Dorchester and Roxbury ex-

perience a high frequency of automobile, commercial truck,

and heavy duty diesel traffic, much of which is constrained

to stop-and-go driving patterns on congested, narrow streets,

in close proximity to housing and pedestrians. The original

DAQSS deployment and initial ARISense proof-of-concept

efforts were motivated by the need to assess the viability

of lower-cost AQ-sensor systems in communities suffering

from environmental health knowledge gaps, such as the un-

explained doubling of the adult asthma rate in north Dorch-

ester between 2001 and 2010 (Backus et al., 2012).

In order to validate our measurements, each ARISense

system was co-located with a Massachusetts Department of

Environmental Protection (MassDEP) air quality monitoring

station (indicated with red circles on the map) for the dura-

tion of the present study. This paper presents ARISense and

MassDEP reference data for the Roxbury site (left-hand yel-

low circle in Fig. 2) located adjacent to Harrison Avenue in

Dudley Square (latitude +42.3295, longitude −71.082619).

Forthcoming papers will present results from the DAQSS

project and the I-93 ARISense node location, covering lower-

cost AQ-sensor results over longer deployment timescales

(18–24 months) and across multiple types of microenviron-

ments in Roxbury and Dorchester.

2.3 Reference data

The MassDEP Roxbury air monitoring site (ID: 25-025-

0042), established in December 1998, hosts continuous and

semi-continuous gas and particle measurements. The refer-

ence measurements used in this study include ozone (O3;

Teledyne Model T400 Photometric Ozone Analyzer; limit

of detection [LOD] < 0.6 ppb [parts per billion by volume];

root mean square “zero” noise [RMSzero] < 0.3 ppb), carbon

monoxide (CO; Teledyne Model 300EU Carbon Monoxide

Analyzer; LOD < 20 ppb; RMSzero ≤ 10 ppb), and nitrogen

oxides (NO, NOx , NO2; Teledyne Model T200 Nitrogen Ox-

ide Analyzer; LOD = 0.4 ppb; RMSzero < 0.2 ppb). The ref-

erence NO/NO2 measurement is based on chemilumines-

cence. This method relies on converting NO molecules to

NO2 via exposure to O3. Operationally, there are two mea-

surements channels, one for NO alone and one for total NOx .

In the NOx channel, a catalytic–reactive converter is used

to convert any existing NO2 molecules to NO, prior to ex-

posure to O3. NO2 concentrations are determined by taking

the difference between NOx and NO. Additional on-site ref-

erence measurements include a meteorological tower (rel-

ative humidity, temperature, pressure, wind direction, wind

speed, solar intensity; Met One), PM2.5 (BAM, Beta Atten-

uation Mass Monitor), PM10, black carbon, and several of-

fline gravimetric filter samplers including PM2.5 speciation.

Given its level of instrumentation, the Roxbury location is

considered an NCore site within the MassDEP network of

monitoring stations across the state and provides critical data

comparisons for determining the viability of lower-cost AQ-

sensor systems. For the current study, MassDEP provided

real-time (1 min average) pollutant concentration data files

from its reference gas analyzers to permit data comparisons

with the ARISense EC-sensor response under rapidly chang-

ing conditions of temperature, humidity, and ambient gas

concentrations.
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Figure 2. Map showing the locations of the two ARISense systems (yellow circles) and the four Boston metropolitan area DEP monitoring

stations (red circles). The two ARISense systems were co-located with reference stations at the Harrison Avenue site (in Dudley Square,

Roxbury) and Von Hillern Street site (∼ 35 feet from I-93 north) in Dorchester. The data presented in this paper were obtained from the

Dudley Square location, an urban neighborhood site, primarily impacted by local combustion sources and vehicles operating on secondary

routes in close proximity to the area. Green markers are shown to indicate the positions of four additional sensor nodes deployed as part of

the Dorchester Air Quality Sensor System (DAQSS) project, which predated the development of ARISense.

2.4 ARISense calibration

Calibration is a critical issue for trusting the output of EC

sensors. Recent papers (Lewis et al., 2016; Castell et al.,

2017) have highlighted that the lack of rigorous calibration

protocols for lower-cost AQ-sensors results in significant po-

tential error when the sensor system is deployed in ambi-

ent conditions. For example, Mead et al. (2013) modeled the

temperature-dependent baseline drift of an Alphasense NO

sensor using an exponential curve fit through 24 h of ambient

data. Their analysis revealed that temperature-derived base-

line drift could exceed a +600 ppb bias if unaccounted for

in their calibration (sampling between 20 and 28 ◦C). Con-

sidering that the ambient NO concentration range encoun-

tered in the current study was 0–200 ppb with sensor temper-

atures varying from 5–45 ◦C (5 min averages), modeling the

NO-B4 sensor temperature-derived interference is crucial to

obtaining useful measurements from the sensor. As Mead et

al. (2013) point out, when measuring gas concentrations at

the ppb level, temperature and humidity interference effects

have a first-order impact on quantification, whereas drift in

sensitivity over time has second-order effects (much smaller

in magnitude than temperature or humidity influence). Both

first and second-order effects need to be correctly parameter-

ized in order to apply lower-cost sensors to long-term (∼ 18–

36 months) ambient outdoor air quality measurements.

Alphasense provides some guidance to customers regard-

ing calibration and temperature compensation of electro-

chemical sensor response (Alphasense Application Note no.

AAN 803-03, December 2014). This document highlights

the utility of including a fourth electrode in their B4-series

electrochemical sensors such as were used in this study. The

purpose of this fourth electrode (called the auxiliary elec-

trode, AUX) is to provide a real-time correction for environ-

mentally derived interferences at the working electrode. The

AUX electrode is comprised of an identical catalyst to that of

the WE and is designed to mimic the WE’s response to en-

vironmental changes such as temperature, pressure, and hu-

midity. Since the AUX electrode is fully submerged in the

electrolyte and directly below the WE, the AUX signal is

theoretically “blind” to the target analyte gas species which

readily oxidize or reduce at the WE surface (which is ex-

posed to the air on one side and the electrolyte layer on the

other). In an ideal world, a simple subtraction of the current

generated at the AUX electrode from the current generated

by the WE would provide a signal that is linearly propor-

tional to the target analyte over the full concentration range

of interest. Unfortunately, we have found that in practice the

AUX electrodes in most sensors are not able to track the

changes in the corresponding WE over the nominal opera-

tional temperatures of the system. Specifically, at sensor tem-

peratures > 25 ◦C, the AUX electrode response lags behind

that of the working electrode and, in some cases (CO-B4,

for example), the WE and AUX electrode currents diverge

as temperature increases (i.e., the WE current decreases with

increasing temperature, while the AUX electrode current in-
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creases with increasing temperature). In this case, recording

just the differential current without correction leads to an in-

creasingly negative concentration error for CO at sensor tem-

peratures above 25 ◦C. Alphasense provides users with a ta-

ble in which, for each sensor model, the user can identify a

correction constant to use to compensate for observed behav-

ior at specified temperature ranges. At temperatures ≤ 20 ◦C

the Alphasense documentation shows that differential mea-

surements remain fairly stable in comparison to the higher

temperature conditions. The Alphasense approach to temper-

ature compensation also requires the use of four static con-

stants for each individual EC sensor – subtracting specific

electronic and zero currents from both the WE and AUX

electrodes, prior to calculating the difference. While there

are some advantages to the additional information provided

by the AUX electrode, at temperatures higher than 25 ◦C, the

disparate response between the two electrodes can compli-

cate quantification steps considerably.

In practice, we have found that the manufacturer’s rec-

ommended WE and AUX electrode corrections do not lead

to pollutant concentration values of acceptable accuracy for

ambient air analysis. In addition, the EC-sensor response is

impacted by other environmental conditions besides temper-

ature, such as relative humidity and the concentrations of

other gas-phase species. At the low concentrations present in

the atmosphere (10–1000 s ppb), characterizing the full (mul-

tidimensional) interference response is critical to achiev-

ing reliable measurements. In this work we demonstrate the

use of a multidimensional mathematical modeling approach

(HDMR) that has the ability to adequately identify and quan-

tify the complex EC-sensor response to multiple environ-

mental variables and interfering gas species simultaneously.

2.5 High-dimensional model representation (HDMR)

The ARISense system uses high-dimensional model repre-

sentation techniques to convert the raw sensor outputs into

units of concentration (ppb). HDMR is a numerical method

consisting of a general set of quantitative model assessments

and analyses for capturing input–output system behavior

without reliance on a physics-based model or the sensor man-

ufacturer’s empirical correction procedure. When applied to

a set of experimental data (with sufficient variability), it can

produce a mathematical model relating user-defined input

variables to output variables of interest; the resulting model

can capture the interdependencies of the variables and pro-

vide a mathematical description of the system that is other-

wise difficult or impossible to describe with a physics-based

model. The HDMR model can be used to identify and quan-

tify which variables and variable interactions have the most

impact on data reduction, relative to an identified output (i.e.,

reference concentration). In collaboration with the research

group of Herschel Rabitz of Princeton University, Aerodyne

has implemented HDMR methods in a software tool called

ExploreHD, providing graphical and command line user in-

terfaces to HDMR algorithms.

The details of the HDMR algorithms used here are dis-

cussed in detail elsewhere (Li and Rabitz, 2010; Sipilä et

al., 2010; Li and Rabitz, 2012; Li et al., 2012). One of the

key underlying tenets of the HDMR framework is that many

input–output relationships for complex physical systems can

be captured adequately by low-order combinations of input

variables, even in systems with high dimensionality in in-

put variables. Each component function provides an additive

contribution to the overall model prediction. The modeling

process involves three steps. In the first step, the user spec-

ifies a maximum variable interaction order (for example, a

second-order HDMR model would allow component func-

tions involving combinations of two input variables), and the

HDMR algorithm considers orthogonal component functions

(in this case, cubic polynomials) involving all possible vari-

able combinations up to the maximum specified order. In

the second step, a statistical analysis (using F test) is per-

formed to identify the input variables and combinations of

input variables that contribute significantly to variation in the

output of interest. In the final step, coefficients for compo-

nent basis functions are calculated through a least squares

analysis that minimizes the deviation between the HDMR

model prediction and the training data. The coefficients and

the associated orthogonal basis functions determined through

the above analysis together define an HDMR model for the

input–output relationship under consideration.

In the current study, the HDMR approach uses the raw

EC-sensor output and environmental variables to model the

multidimensional relationship between sensor output and the

reference concentration. We used approximately 25 % of the

dataset to train the model. Sensor interference can be a prod-

uct of the combined influences of temperature, humidity,

pressure, non-analyte gas species, etc. The structure of the

computational model accounts for both absolute (i.e., highest

to lowest concentrations) and transient (1x/1t , or deriva-

tive) changes in the sampling conditions encountered by the

sensor system. By spanning three seasons in the Northeast-

ern United States, a wide range of environmental conditions

was captured within the training window for the model. This

emphasizes the advantage (i.e., variability in sampling condi-

tions) and disadvantage (extended time span) of a field-based

co-location approach to sensor calibration. The HDMR mod-

els developed in the current work were second order (ex-

amining all possible input parameter pairs) with orthogonal

polynomial component functions allowed up to a degree of

three (cubic) in each input variable.

The metrics used to evaluate the model are the slope and

intercept of a linear least squares regression of the model out-

put with the reference measurements, the coefficient of de-

termination of the linear fit (r2), the root mean square error

(RMSE), the mean absolute error (MAE), and the mean bias

error (MBE). The equations for these metrics are given in Ta-
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ble S1 in the Supplement, and model-to-measurement results

are summarized in Tables 2 and 3.

An example of how the HDMR model is developed for

the NO-B4 sensor is provided in the Supplement. The left

column of Table S2 lists all available input parameters, and

the other columns denote which parameters were included in

the input matrix for each model run. The bottom rows list

the RMSE, MAE, and MBE for each model run for both the

training data (model generation) and test data (model evalu-

ation).

The data presented in this paper were recorded over a 4.5-

month sampling interval (7 July 2016–23 November 2016).

All four electrochemical sensors used in this study were first

removed from their packaging on 9 May 2016. That means

that from the date of unpackaging, the sensors had aged

∼ 6.5 months by 23 November. The manufacturer quoted

lifetime for degradation of the signal to 50 % is 36 months for

the CO sensor and 24 months for the NO, NO2, and Ox sen-

sors. Given that these lifetimes are significantly longer than

the deployment timescale analyzed here, we did not include

a time-dependent sensitivity term in the input matrix of our

HDMR model runs. The results presented here therefore as-

sume that the sensitivity of each of the electrochemical sen-

sors did not appreciably drift over the 4.5-month deployment.

In subsequent studies we will analyze sensor response over

longer deployment timescales (18 to 24 months) to investi-

gate the importance of including a time-based parameter to

track and correct for drift in sensor response with time.

3 Results and discussion

3.1 ARISense meteorological and environmental data

Continuous 5 min average non-pollutant data acquired with

the ARISense system are shown in Fig. S2 in the Supple-

ment, tracking ambient variability in temperature, pressure,

humidity, solar intensity, ambient noise, wind speed, and

wind direction at the Roxbury DEP monitoring site. The

total sampling time span covers the transition from mid-

summer through late fall in the northeastern United States

(July through November), with meteorological conditions

changing from warmer and more humid to cooler and less

humid. The ARISense system ran continuously throughout

the sampling interval with the exception of a ∼ 1-week pe-

riod during which the node was physically removed from

the site for a separate experiment. The directionality of the

wind fields at this site is predominantly from the N to NW

(red-maroon) with occasional NE flow (blue-purple). Tem-

perature and humidity measurements shown reflect the con-

ditions within the gas sampling flow cell of the integrated

system, characterizing the environmental conditions at the

surface of the electrochemical sensors. Such environmental

measurements are critically important for reconciling the in-

terference effects of ambient conditions, especially humid-

Table 1. Performance metrics for raw sensor output versus refer-

ence measurements.

Sensor Ndata points Y intercept Slope r2

(mV ppb−1)

CO-B4 29 507 3.26 0.25 0.78

NO-B4 33 310 6.32 0.30 0.21

NO2-B43F 33 363 −27.4 0.29 0.18

Ox -B421 34 077 −131 −0.48 0.12

ity (water concentration) and temperature, on the raw signal

from each electrochemical cell.

3.2 ARISense electrochemical sensor data

Figure 3 shows the time series for a ∼ 72 h period for the

relative humidity; dew point temperature (panel a, solid and

dashed lines, respectively); temperature (grey shaded area);

and raw differential sensor output (dashed line), reference

measurement (thick red dashed line), and model output (thin

solid line) for the four electrochemical sensors (panels b–

e). The raw differential sensor output is displayed as a volt-

age (1mV) which is linearly proportional to the difference

in current generated within the electrochemical cell at each

electrode (WE and AUX). The correlation plots between the

raw EC-sensor output and the reference measurements are

shown in Fig. 4a to d, with each data point colored by flow-

cell temperature. The intercept, slope, and r2 for the linear

regression indicated with a red line in Fig. 4 are listed in Ta-

ble 1.

The raw differential signals obtained from the CO-B4 sen-

sor track reasonably well with the CO concentrations mea-

sured by the co-located DEP monitor (Figs. 3b and 4a),

demonstrating the relatively small influence of ambient tem-

perature, humidity, or other chemical species on this EC sen-

sor. The NO sensor raw output also tracks reasonably well

with the reference measurements (Figs. 3c and 4b) except at

temperatures over 25 ◦C when the EC sensor overestimates

NO by a factor of 2 to 3 compared to lower temperatures.

This demonstrates that the temperature dependences of the

working and auxiliary electrodes in this NO sensor do not

track one another at sample temperatures > 25 ◦C, and that

additional temperature correction is necessary to obtain rea-

sonable NO concentrations from the raw sensor outputs.

The NO2 and O3 raw sensor outputs do not track as well

with the reference measurements (r2 < 0.2 in Fig. 4c and d).

The differential NO2-B43F sensor response (Figs. 3d and 4c)

indicates a strong temperature dependence that is not com-

pensated for by the auxiliary electrode, suggesting that addi-

tional temperature compensation algorithms could improve

the result. The differential signal from the Ox-B421 elec-

trode shows poor correlation with the reference data over-

all (Fig. 4d). There is some temperature dependence, but the

additional variation suggests that other factors play an impor-
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Figure 3. (a) Relative humidity (dashed blue line) and dew point temperature (solid blue line), (b–e) raw differential sensor output (dashed

line), reference measurement (thick red line), and model output (thin line) for a 3-day period during the test part of the 4.5-month deployment.

Temperature is indicated with the grey shaded area.

tant role. The Ox-B421 sensor is comprised of the same cat-

alyst (working and auxiliary electrode material) as the NO2-

B43Fs and is therefore sensitive to NO2 in addition to O3.

The key difference between these two sensors is the presence

of an O3-scrubbing filter upstream of the working electrode

in the NO2-B43F sensor package. Laboratory results indicate

that the Ox-B421 sensor is ∼ 2 × more sensitive to NO2 than

to O3 molecules.

As Fig. 3 shows, the magnitude of the interference signal

due to temperature alone (for NO, NO2, and Ox) can easily

mask real variation in pollutant concentrations. The raw sig-

nal behavior observed for each sensor type is different, un-

derscoring the necessity of species-specific HDMR models

to reconcile each sensor type’s characteristic interferences.

In addition, substantial (∼ 2–3 ×) differences (in sensitivity

and baseline) exist for batches of nominally identical sensors

measuring the same concentration. Therefore, the HDMR

models built for a given integrated system are specific to a

given set of sensors and must be generated for each system

separately to achieve reliable concentration data. Within the

framework of an individual ARISense system, four distinct

HDMR models are built, one for each EC-derived pollutant

species of interest.

3.3 HDMR analysis

The training data for the HDMR model were chosen to pro-

vide comprehensive coverage of environmental variability

spanning the July–November sampling interval. It was im-

portant to include (1) sensor responses to the range of gas

concentrations encountered in ambient air (near-zero to high

concentration transient spikes), (2) the range of temperatures

and various rates of change in temperature, and (3) the range

of measured water content of the sample air in the flow cell.

The goal was to include a wide enough range of training data

to avoid extrapolation errors when applying the model to the

test dataset (all ambient co-location data not included in the

training dataset). Figure S3 shows the distributions of tem-

perature, reference measurement, dew point temperature, and

relative humidity for the training data for the CO-B4 HDMR

model, overlaid with corresponding distributions of the test

data. We did not attempt to minimize the amount of ambient

data used for training or vary the timing of the training data

with respect to the test data. Approximately 25 % of the full

time series was used to generate the model (Table 2 and indi-

cated with grey bars in Fig. 5). The exact fraction of data used

for training was slightly different for each sensor due to dif-

fering calibration schedules for the reference measurements

(which automatically excludes sensor data from the training

or test datasets). For each sensor, the set of inputs included in
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Figure 4. Correlation plots for all electrochemical sensors versus reference measurements for (a–d) raw sensor differential voltage sig-

nals, (e–h) model output concentrations for the training data (∼ 25 % of data), and (i–l) model output concentrations for test data (remaining

∼ 75 % of data). All data shown are 5 min average values with each data point colored by flow-cell temperature. The linear regression fit line

(solid red line) is shown in all panels, and a 1 : 1 line (dashed black line) is shown in panels (e)–(l).

Table 2. Performance metrics for model output versus reference measurements for training data.

Sensor Ndata points Y intercept Slope r2 RMSE MAE MBE f∗
train

(ppb) (ppb) (ppb) (ppb) (%)

CO-B4 7974 9.19 0.96 0.96 25.4 16.7 0.02 27.0 %

NO-B4 7974 0.46 0.94 0.94 3.37 2.17 −0.01 23.9 %

NO2-B43F 7874 0.80 0.94 0.94 2.29 1.73 −0.05 23.6 %

Ox -B421 9071 8.34 0.65 0.65 8.24 6.22 0.03 26.6 %

∗ ftrain = Ntraining/Ntotal × 100

the input data matrix was optimized as described in Sect. 2.5

and the Supplement.

Correlation plots of model-derived pollutant concentra-

tions and reference concentrations for the training data are

shown in the middle panels (e–h) of Fig. 4. The linear regres-

sion fit (solid red line) and a 1 : 1 line (dashed black line) are

shown for all species, and all data points are colored by flow-

cell temperature. The performance metrics are presented in

Table 2. The lack of a temperature-dependent rainbow in the

scatter plots shown in Fig. 4e–h (with the exception of O3, for

which ambient concentrations are expected to be temperature

dependent) indicates that the model has effectively compen-

sated for the variable temperature-dependent response of the

working and auxiliary electrodes within each cell. The re-

maining scatter in the correlation plots is random noise at-

tributed to the electrodes themselves and the ARISense elec-

tronics. The high correlation coefficients (r2 = 0.94–0.96)

for CO, NO, and NO2 indicate that, when trained appro-

priately, the HDMR model provides improved compensation

for the environmental interferences that complicate interpre-

tation of raw EC-sensor outputs. The much lower correlation

coefficient (r2 = 0.65) for Ox suggests that additional param-

eters may be needed to fully explain the behavior of this EC

sensor. The updated version of the Ox-B4 sensor (Ox-B431)

may also improve the ability of HDMR to effectively model

the Ox interferences.

The HDMR models were then used to analyze the remain-

ing ∼ 75 % of the data (the test set). The correlation plots
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Figure 5. Time series of 5 min averages of the model output (sensor) and reference gas concentrations. Grey shaded areas indicate time

periods over which the model was trained. A unique set of input parameters was used to train the HDMR model for each of the different

electrochemical cells. Approximately 25 % of the data were used for training and the remaining 75 % was used to test the models.

Table 3. Performance metrics for model output versus reference measurements for test data (5 min average temporal resolution).

Sensor Ndata points Y intercept Slope r2 RMSE MAE MBE

(ppb) (ppb) (ppb) (ppb)

CO-B4 21 533 3.98 0.94 0.88 39.2 24.8 −10.4

NO-B4 25 356 1.29 0.94 0.84 4.52 2.83 0.97

NO2-B43F 25 489 3.26 0.81 0.69 4.56 3.45 1.20

Ox -B421 25 006 13.1 0.47 0.39 9.71 7.34 0.78

for the model output versus the reference measurement for

the test data are shown in Fig. 4i–l and the performance met-

rics are presented in Table 3. Figure 5 shows the time series

for the 5 min averages of the modeled (sensor) and reference

gas concentrations, with the training data intervals indicated

with grey bars. The high correlation coefficient for CO and

NO (r2 > 0.8) and moderate correlation coefficient for NO2

(r2 = 0.69) indicate the strength of the model at capturing

the ambient variability in pollutant concentrations encoun-

tered at the site, despite wide variations in ambient tempera-

ture and humidity over the changing seasons.

The higher scatter in the O3 correlation plot, and corre-

spondingly low r2 = 0.39, might be due to the fact that O3

is obtained by training the Ox-B421 sensor output to refer-

ence O3 alone; the 2 : 1 sensitivity ratio for NO2 vs. O3 of

the Ox-B421 means that the variability in ambient NO2 con-

centrations adds considerable noise to the Ox-B421 sensor

signal. The input matrix for the Ox-B421 HDMR model in-

cludes the raw data captured with the NO2-B43F sensor, but

the inclusion of this additional information only marginally

improves the reduction of the Ox-B421 data to O3 concen-

tration. This may be due to a different time response of the

Ox sensor used in this study compared to the NO2 sensor.

It should be noted that the Ox-B421 sensor is not the lat-

est version released by Alphasense and improvements may

be realized with the design of their most recent model (Ox-

B431). The results of Zimmerman et al. (2017) for the Ox-

B431 sensor have a much better r2 = 0.86 (see Table 4),

while their results are comparable to ours for the CO and

NO2 sensors. These considerations highlight the iterative

and rapidly evolving nature of lower-cost AQ-sensor compo-

nents. Lower-cost air-quality-sensor quantification will likely

improve over the coming years through advances at both

the component manufacturer level (e.g., Alphasense Ltd. im-

proving materials chemistry and the catalyst and sensor de-

sign) and system integrator level (e.g., Aerodyne Research,

Inc., further developing ARISense HDMR interference mod-

eling through laboratory and field-based measurements).
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Table 4. Comparisons to published results utilizing integrated multi-pollutant systems comprised of Alphasense electrochemical sensors.

Studies Temporal Ndata points Slope r2 RMSE MAE MBE

resolution (min) (ppb) (ppb) (ppb)

CO sensor

Jiao et al. (2016)1 60 2640–2664# < 0.001 0.63–0.68 NR NR NR

Castell et al. (2017)2 15 6912# NR 0.36 170.99 NR −147.21

Zimmerman et al. (2017)3 15 3936# 0.86 0.91 NR 38 0.1

This work4 (CO-B4) 5 21 533 0.94 0.88 32.9 24.8 −10.4

NO sensor

Jiao et al. (2016) 60 2640–2664# 0.883–0.892 0.77–0.87 NR NR NR

Castell et al. (2017) 15 6912# NR 0.74 16.35 NR −0.54

This work (NO-B4) 5 25 356 0.94 0.84 4.52 2.83 0.97

NO2 sensor

Jiao et al. (2016) 60 2640–2664# NR 0.02–0.10 NR NR NR

Castell et al. (2017) 15 6912# NR 0.24 30.27 NR 13.30

Zimmerman et al. (2017) 15 2304# 0.64 0.67 NR 3.48 −0.4

This work (NO2-B43F) 5 25 489 0.81 0.69 4.56 3.45 1.20

Ox sensor

Jiao et al. (2016) 60 2640–2664# NR 0.15–0.20 NR NR NR

Castell et al. (2017) 15 6912# NR 0.29 22.20 NR 6.76

Zimmerman et al. (2017)∗ 15 3648# 0.82 0.86 NR 3.36 −0.14

This work (Ox-B421) 5 25 006 0.47 0.39 9.71 7.34 0.78

NR = not reported in paper. # N calculated assuming 100 % duty cycle over specified days of co-location for each study. 1 Results obtained from two AQMesh

integrated sensor systems (gen. 3) deployed in Decatur, Georgia, US. 2 Statistical metrics correspond to average of 24 co-located AQMesh systems deployed in

Kirkeveien, Norway. 3 Average test results from 19 Real-time Affordable Multi-Pollutant (RAMP) systems co-located in Pittsburgh, Pennsylvania, US. 4 Single

ARISense system deployed in Dorchester, Massachusetts, US. ∗ Ox-B431 sensor.

Examination of the model output for 72 h of the test data

in Fig. 3 gives additional clues for improving the model. In

Fig. 3d at ∼ 19:00 on 2 November 2016, the model NO2 ex-

ceeds the reference NO2 by a factor of ∼ 2 during a period

of rapidly decreasing temperature and increasing RH. This

underscores that the rate of change of input parameters may

be important in the model, in addition to the absolute val-

ues. Figure 3e also suggests that the HDMR model for Ox

struggles during times of rapidly changing temperature, par-

ticularly when the O3 concentration is low (< 3 ppb). Future

development of HDMR models to support ARISense quan-

tification will include derivatives of influential variables as

explicit inputs and model optimization for low concentra-

tions (< 5 ppb) for species such as NO2 and O3.

Table 4 presents a comparison of evaluation statistics

for this work and three other recent studies that evalu-

ated Alphasense electrochemical sensors through extended

co-located field measurements. One important distinction

among the papers summarized in the table is that our work

and the work of Zimmerman et al. (2017) are obtained from

an AQ system integrator perspective (building and evaluating

interference models), whereas the work of Jiao et al. (2016)

and Castell et al. (2017) are end-user evaluations, reliant on

the manufacturer’s calibrated outputs. The duration of each

co-location, temporal resolution of the reported sensor mea-

surements, and variability in pollutant concentrations (and

environmental conditions) at each site strongly influence the

performance metrics of the electrochemical sensors. Results

from the ARISense HDMR model at 5 min resolution show

significant improvement relative to Jiao et al. (2016) and

Castell et al. (2017) for all measured species and comparable

metrics to Zimmerman et al. (2017) for CO and NO2. As dis-

cussed previously, the HDMR model output for the Ox-B421

sensor underperforms the Zimmerman et al. (2017) Ox-B431

model.

While Figures 4 and 5 illustrate that the system is capable

of determining valid gas-phase concentrations across a wide

range of environmental variability in temperature, RH, and

absolute concentrations, it does not speak to the longer-term

stability of the sensors (e.g., how much does the baseline and

sensitivity of each electrochemical sensor change with time).

However, it should be noted that sensor aging cannot have

had a major impact on the data reported here or it would have

been impossible for the HDMR model to converge this well

without including electrode age as one of the input variables.

For the models developed in this work, each data point for
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each variable had equal weight, whether it was at the begin-

ning, middle, or end of the 4.5-month deployment. It is to be

expected that aging of EC sensors will change their sensitiv-

ities, due to electrolyte evaporation or dilution, entrapment

of contaminants, and repeated exposure to wide swings in T

or RH. It will be important to establish the time span over

which a given set of EC sensors (and the HDMR model of

that sensor set) can be expected to return reliable pollutant

concentration values, using a longer duration (18–24 months)

ambient dataset; such a study is in progress.

4 Conclusion

This study demonstrates that lower-cost air-quality-sensor

systems can adequately characterize ambient urban pollu-

tion concentrations on rapid (5 min) timescales, underscor-

ing the potential of integrated sensor systems to add a highly

resolved local AQ data layer to existing pollution monitor-

ing infrastructure. The ARISense system is a first step to-

ward understanding the extent to which quantification ef-

forts can yield useful results from such systems. Training

electrochemical sensor measurements of CO, NO, NO2, and

O3 with a high-dimensional model representation method

provided 5 min average RMSE values of 39.2, 4.52, 4.56,

and 9.71 ppb for CO, NO, NO2, and O3, respectively. Re-

sults indicate that HDMR can effectively model interfer-

ence effects derived from the variable ambient gas con-

centrations in an urban setting and changing environmental

conditions encountered over three seasons in the Northeast-

ern United States (temperature = 23.4 ± 8.5 ◦C, spanning 4.1

to 45.2 ◦C; and relative humidity = 50.1 ± 15.3 %, spanning

9.8–79.9 %).

Referring back to the map displayed in Fig. 2, it is striking

to consider that only four official monitoring stations exist

within the Boston metropolitan area (population ∼ 700 000).

With regard to the Roxbury DEP site 1 min average refer-

ence data, it is important to note that 1 min data files are

not typically reported or accessible from regional air quality

monitoring sites. Instead, pollutant concentrations are usu-

ally reported on 1, 8, or 24 h averages in accordance with the

operational constraints of the measurement device and rel-

evant air quality regulations being enforced. This sampling

paradigm is consistent with the regional focus of federal and

state monitoring goals, and financial constraints imposed due

to the expense of the instrumentation and operating costs of a

given AQ monitoring station. But as one considers the pollu-

tant sources that contribute to their local area, disproportion-

ate pollution impacts emerge in some neighborhoods more

than others. Across urban landscapes, air pollution is inher-

ently heterogeneous – subject to sharp concentration gradi-

ents over fast (sub-minute) and short (100s of meters) scales.

In order to establish a more rigorous assessment of such

disparate impacts, distributed sensor networks are needed

to achieve high enough spatial resolution to inform intra-

neighborhood differences in air quality. Through such ad-

vances, researchers, regulators, and community members can

improve their understanding of the pollutant sources that dic-

tate their local AQ. As sensor technologies (and calibration–

modeling efforts) continue to improve, the local AQ data

layer could play a key role toward empowering environmen-

tal justice advocates to initiate change and improve environ-

mental public health.

It cannot be overstated that EC-sensor systems such as

ARISense can return reliable data only if calibrated over the

full range of pollutant concentrations and meteorological pa-

rameters that will be encountered when they are deployed. In

the present study, co-location of the ARISense system with

the MassDEP reference monitors, coupled with variability of

natural processes and anthropogenic activities, supplied the

necessary range of conditions over the 4.5-month span of

the study. In the future, we expect to compress that training

period, using a controlled-environment laboratory chamber

and mixes of calibration gases representative of the pollu-

tants encountered under ambient conditions. This compres-

sion of the training period is especially important when ad-

dressing the challenges of sensor-to-sensor variability, finite

(< 24–36 months) sensor lifetime, and premature damage or

failures that will require rapid replacement and retraining of

integrated systems.
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