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Abstract

Background: Endogenous retroviral sequences (ERVs) are integral parts of most eukaryotic

genomes and vastly outnumber exogenous retroviruses (XRVs). ERVs with a relatively complete

structure were retrieved from the genetic archives of humans and chickens, diametrically opposite

representatives of vertebrate retroviruses (over 3300 proviruses), and analyzed, using a

bioinformatic program, RetroTector©, developed by us. This rich source of proviral information,

accumulated in a local database, and a collection of XRV sequences from the literature, allowed the

reconstruction of a Pol based phylogenetic tree, more extensive than previously possible. The aim

was to find traits useful for classification and evolutionary studies of retroviruses. Some of these

traits have been used by others, but they are here tested in a wider context than before.

Results: In the ERV collection we found sequences similar to the XRV-based genera: alpha-, beta-

, gamma-, epsilon- and spumaretroviruses. However, the occurrence of intermediates between

them indicated an evolutionary continuum and suggested that taxonomic changes eventually will be

necessary. No delta or lentivirus representatives were found among ERVs. Classification based on

Pol similarity is congruent with a number of structural traits. Acquisition of dUTPase occurred

three times in retroviral evolution. Loss of one or two NC zinc fingers appears to have occurred

several times during evolution. Nucleotide biases have been described earlier for lenti-, delta- and

betaretroviruses and were here confirmed in a larger context.

Conclusion: Pol similarities and other structural traits contribute to a better understanding of

retroviral phylogeny. "Global" genomic properties useful in phylogenies are i.) translational

strategy, ii.) number of Gag NC zinc finger motifs, iii.) presence of Pro N-terminal dUTPase

(dUTPasePro), iv.) presence of Pro C-terminal G-patch and v.) presence of a GPY/F motif in the

Pol integrase (IN) C-terminal domain. "Local" retroviral genomic properties useful for delineation

of lower level taxa are i.) host species range, ii.) nucleotide compositional bias and iii.) LTR

lengths.

Background
Retroviral and related endogenous retroviral sequences
(ERVs) are integral parts of most eukaryotic genomes,

sometimes constituting over 50% of them [1]. Their abil-
ity to transpose and transfer horizontally [2,3], confers
genetic flexibility to complex genomes like those of
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humans [4], chimpanzees [5], other primates and
vertebrates.

The origin of retroviruses is lost in a prebiotic mist.
Assuming a 0.2% neutral substitution rate per million
years [6] and a 50% divergence limit for nucleotide
sequence recognition, retroviral sequences >250 Million
years old cannot be found in current genomes. If any of
their genes are selected for, they may stay recognizable
longer. Thus, although the ERV record has limitations, the
reconstruction of retrovirus evolution differs fundamen-
tally from that of other viruses, due to the ERVs in the ever
richer archive of genomic assemblies. According to the
VIIth ICTV report [7], Retroviridae borders to Pararetroviri-
dae (e.g. Hepatitis B), Metaviridae (Gypsy-like) and Pseudo-
viridae (Copia-like). Together with the even more more
distant relatives Mal-R [8], DIRS [9] retrotransposons and
chromoviruses [10], not included here, they show that ret-
roviruses are parts of a vast retrotransposon sequence uni-
verse. In this work, we concentrated on retroviruses. An
ancestral retrovirus likely had structural traits which at
present are common denominators of the diverse related
sequences. Although some structural traits may be absent
in individual viruses, readily identifiable common
denominators are 5'LTR, PBS, Gag (MA, CA and NC), Pro,
Pol, Env, PPT and 3'LTR [11]. The most universal trait is
the pol gene, with its reverse transcriptase (RT), RNAse H
and integrase (IN). The use of other conserved but distin-
guishing traits in phylogenetic inference and retroviral
classification discussed here are: nucleotide bias, number
of zinc fingers, translational strategy, C-terminal Pro and
Pol motifs, presence of dUTPase and accessory genes and
LTR length. Env is an unreliable evolutionary marker,
exemplified by the hybrid betaretroviral MPMV [11], but
can be useful in narrow phylogenies to demarcate a spe-
cific group.

Retroviral taxonomy has traditionally been based on
observed phenotypic qualities of exogenous retroviruses
(XRVs) [7]. Classification using ERVs, with an almost
complete lack of phenotypic information, necessitates a
nucleotide sequence analytical approach. Seven retroviral
genera have been described (alpha-, beta-, gamma-, delta-
, epsilon-, lenti- and spuma-like retroviruses) using
sequence similarities, mainly in the Pol RT region.
Although much work remains before all ERVs are fully
characterized, ERVs have also been divided into loosely
defined classes, originally based on HERVs [12-14]. When
analyzing the RT region, the gammaretroviruses cluster as
class I and betaretroviruses as class II elements [12]. The
spuma- and spumalike elements group within the class III
[14]. Lenti- and deltaretroviruses have no known endog-
enous counterparts [15]. This was also the case in our
computerized genomewide screenings (see below).

ERV classification and grouping originally was based on
sequence similarity between the proviral PBS and the host
tRNA [11]. This classification has proved useful for some
ERVs, e.g. HERV-E [16] and mostly for HERV-H [17].
However, it is inconsistent for many other ERV groups
that have alternative PBSes [18] e.g. HERV-H/F [17], ERV3
[16], and ERV9/HERV-W [19]. We did not extend these
analyses here.

In several papers [[17,20] and Jern et al. submitted], we
have used Pol similarity for ERV classification. Pol is
highly conserved, and its large size (800–1100 aa) pro-
vides adequate information for a relatively detailed classi-
fication. This is facilitated by the program RetroTector©

[Sperber G.O. et al. in preparation], which reconstructs
probable Pol proteins ("puteins") from different reading
frames in the often damaged gene candidates. The puteins
are favored over nucleotide sequences since they are more
conserved, easier to align and therefore allow phyloge-
netic inference and taxonomy over greater evolutionary
distances. This is further discussed in the Methods and
Results sections of this paper. A number of reliable distin-
guishing features must be defined to enable a durable ret-
roviral taxonomy which can encompass the many new
ERVs and XRVs, and to trace their evolution. In this study,
we compared phylogenetic trees, based on Pol similarity,
with distinct structural features of possible use as taxo-
nomic and phylogenetic markers.

Results and Discussion
Genomic ERV collection

Using the program RetroTector© (see methods), we
screened the human hg16 [4] and chicken gg01 [21]
genomes for ERVs. We found them to encompass 3149
and 260 proviral sequences with a RetroTector© score of
more than 300, respectively. A detailed account will be
published separately [Blomberg J. et al. in preparation].
Based on experience from randomized data set scores
(data not shown), this threshold separated false from true
retroviral elements with a wide margin. We collected the
sequences into an ERV databank, from which we extracted
representative sequences for use in matching structural
traits against sequence similarity based phylogenetic
inference. Sequences scoring over 300 from the hg16 and
gg01 genomes were analyzed for the presence of Pol.
Those with a recognizable Pol were grouped into respec-
tive genera according to sequence similarity (Table 1).
ERVs were found in all retroviral genera, except lenti- and
deltaretroviruses. Our bioinformatic screening of a larger
dataset thus confirmed the results of Herniou et al. [15].
As genomic assemblies from more species become availa-
ble, analysis of upcoming retroviral sequences will
increase the precision of phylogenetic inference and retro-
viral taxonomy.
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Phylogenetic reconstruction based on Pol

Using the whole Pol proteins/puteins retrieved from the
genetic archive, we reconstructed an unrooted retroviral
neighbor joining (NJ) tree. We used the whole Pol and the
principle of pairwise deletions in the alignment and dis-
tance matrix analyses to avoid problems with missing por-
tions in RT as in e.g. the large HERV-H group [17]. To
reconstruct a comprehensible condensed phylogeny, we
chose to include only 12 representative ERVs from the
human hg16 [4], chimpanzee pt01 [5] (collected and ana-
lyzed earlier [Jern et al. submitted]) and chicken gg01 [21]
genome assemblies. The human and chicken sequences
were chosen because they are diametrically opposite rep-
resentatives of vertebrate retroviruses (including over
3300 proviruses). The representative ERVs from chimpan-
zee (one BaEV like and one PTERV1 like [3], not found in
humans [Jern et al. submitted]) were included to provide a
broad based phylogeny. The remaining representative
ERVs, all with high RetroTector© scores, were selected to
contribute with different aspects, e.g. intermediate posi-
tions in the tree, while still keeping the size of the Pol tree
manageable. Annotated exogenous retroviruses retrieved
from GenBank were added to form a tree backbone struc-
ture useful for taxonomic reference (Figure 1). The Pol NJ
(500 bootstrap consensus) tree structure was confirmed
using an array of maximum likelihood (ML) analyses
(data not shown). The wealth of mutated ERV sequences
sometimes makes delineation of genera and groups diffi-
cult. We have earlier used the Pol similarity (>80%) based
clustering as a primary criterion for retroviral groups
[16,17]. This corresponds to the finer branches of the gen-
era (Figure 1), which themselves tend to have internal Pol
similarities over 60% (Additional file 1). The phyloge-

netic Pol tree shows the seven retroviral genera, defined
from clustering of ERVs next to the earlier classified XRVs
(see bootstrap supports in NJ tree, additional file 1), and
the three loosely defined ERV classes [12-14] (Figure 1).
Further, the tree shows two major branches, ending in
gamma- and betaretroviruses, respectively. They consist-
ently have very high bootstrap supports (Additional file
1). The continuous influx of new data will eventually
necessitate a revision of the retroviral genera. This was out
of scope for the present study. An especially amorphous
part of the tree is its center. In numerous phylogenetic
analyses with a sequence set (not shown here), we found
that the spuma-like group referred to here, includes both
the exogenous spumaviruses and a diverse group of
related endogenous retroviral sequences (primarily ERV-
L). These and other centrally located elements often are
highly mutated and difficult to analyze. Further, the tree
(Figure 1) shows ERV and XRV sequences intermediate
between the major genera. In the left major branch (the
main "gamma" branch), Snakehead retrovirus (SnRV) is
intermediate between epsilon and spumalike retroviruses.
In the main "beta-branch", several chicken ERVs and the
reptilian Python RV [22] are intermediate between the
previously recognized delta, lenti, alpha and betaretrovi-
ruses, supporting a gradual evolution of betaretroviruses
from delta/lenti and alpharetrovirus-like ancestors.

Host species

Although host species is not a structural feature, it is an
easily definable trait, and is therefore discussed here. Ret-
roviral classification using host species is at first sight
appealing: Classical gammaretroviruses are murine, epsi-
lon piscine, alpha avian and beta mammalian. However,

Table 1: Detected ERV structural traits in the human and chicken genomes

Genome(s)1 Genus Class ERVs2 Gag-Pro f.s.3 Pro-Pol f.s.3 dUTPase4 C-term. motifs5

(ERV) -1 0 1 -1 0 1 (dUTPasePro) G-patch GPY/F

gg01 alpha 34 4 1 1 10 2 1 0 0 0

gg01 alpha-beta 67 5 2 0 5 3 1 21 0 0

gg01 and hg16 beta II 582 49 18 14 50 22 27 363 68 0

gg01 and hg16 gamma I 2069 14 55 13 32 64 43 0 0 264

gg01 and hg16 delta (-)6 (-) (-) (-) (-) (-) (-) (-) (-) (-)

gg01 and hg16 epsilon n.d.7 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

gg01 and hg16 lenti (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)

gg01 and hg16 spuma-like III 193 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

1 Human genome version 16 (hg16) and Chicken genome (gg01). Alpha and alpha-beta retroviruses were only detected in the chicken genome
2 Detected ERVs from the databank collection, with RetroTector© score >300 and recognized Pol puteins.
3 Predicted frameshift (f.s.) translation strategy between the respective putein ORFs in elements with score >1000, and no f.s. in the near 3'-end.
4 Detected dUTPase N-terminal of protease domain (dUTPasePro) in elements with score >300.
5 Detected C-terminal Pro (G-patch) and Pol (GPY/F) motifs elements with score >300.
6 (-): no delta or lentiviral ERVs were detected in the genomes.
7 (n.d.): not determined. The scarcity of epsilon like elements [19] and the highly mutated nature of both epsilon and spuma-like elements, in the 
human genome did not provide sufficient information to conduct a thorough analysis.
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Representative unrooted Pol neighbor joining (NJ) dendrogramFigure 1
Representative unrooted Pol neighbor joining (NJ) dendrogram. Unrooted Pol neighbor joining (NJ) dendrogram 
(500 bootstraps consensus) of the seven retroviral genera: alpha-, beta-, gamma-, delta-, epsilon-, lenti- and spuma-like retrovi-
ruses. The somewhat more loosely defined (endogenous) retroviral classes are indicated in the periphery. The various host 
species are indicated with symbols next to each taxonomic unit. The novel sequences are named according to their chromo-
somal positions within respective genomes. (hg15 and 16: Human genome; gg01: Chicken genome and pt01: chimpanzee 
genome). The two pt01 sequences were unique to chimpanzee and not found in humans [Jern et al. submitted].
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as seen in figure 1, this order is not maintained when
additional XRVs and ERVs are included. It has been shown
that some avian retroviruses share similarity with human
gammaretroviral (class I) HERV-I elements [23], and
probably are the results of horizontal transfers [15]. In our
screening, we confirmed these avian HERV-I like elements
and also show a novel avian sequence extracted from the
chicken genome that is similar to HERV-E (Figure 1). Fur-
ther, it has been shown that piscine elements grouped
together with some human elements [15]. In a recent bio-
informatic study, we found human epsilon-like proviral
elements [19]. One of them was included into the phylog-
eny (Figure 1). Transspecies transfers between vertebrates
have been discussed repeatedly [15,22,23]. Indeed, the
genomes of the two vertebrate species used here encom-
pass ERVs clustering with five retroviral genera, indicating
widespread cross-species transmissions (Figure 1). Several
such horizontal transmission events have been described
for gammaretroviruses [[3] and Jern et al. submitted] and
lentiviruses [2]. Although co-evolution with the host (ver-
tical transmission) is the dominant mode of retroviral
transmission, occasional horizontal transmissions make
the host species an often unreliable taxonomic marker.

Gag zinc fingers

In addition to Pol, the Gag is also suitable for structural
analysis. It is relatively conserved and has well docu-
mented functional domains for retroviral RNA packaging,
assembly and budding [24-30]. Analysis of the nucleocap-
sid (NC) from the different genera showed a difference in
number of zinc finger motifs, involved in the retroviral
RNA interaction [26,28]. Two zinc fingers were detectable
in lenti-, alpha-, beta-, epsilon- and some gammaretrovi-
ruses (the HERV-H group), whereas the remaining gam-
maretroviruses had only one, and the spuma-like HERV-L
and spumaviruses themselves had none (Figure 2A). The
gammaretroviral MLV has a charged amino acid segment
upstream of the zinc finger. Recently, we demonstrated
that this feature appears to gradually have replaced the
loss of the second NC zinc finger in the MLV like group
[31]. In the extended data set used here, we could also see
that the intermediate SnRV has only one zinc finger (Addi-
tional file 2), an indication of several zinc finger loss
events. Spumaretroviruses and their related sequences,
present in vertebrates and reptiles [15], stand out as struc-
turally different. They have no zinc fingers. They have a
separately spliced pro ORF and a relatively low Pol similar-
ity (47.1–61.8%) to other retroviruses. Because most
other retroviruses and related viruses (Gypsy and Copia)
have NC zinc fingers, it is likely that the spuma-like ele-
ments lost theirs. The sequences of the main "beta"
branch all have two NC zinc fingers. Aside from this "glo-
bal" aspect, the uneven distribution and various numbers
of NC zinc fingers in the comprehensive sequence collec-

tion (Figure 2A), makes the zinc finger trait useful for
group delineation rather than for general taxonomy.

Translational strategy

In order to produce differing amounts of the different ret-
roviral proteins, the retrovirus may either use i.) ribos-
omal frameshifting, ii.) nonsense codon readthrough or
iii.) splicing, as translational strategies. Well studied
gamma and epsilonretroviruses have a distinct genomic
structure where a gag-pol transcript with one ORF is pro-
duced [32]. The env transcript is a result of splicing activ-
ity, a general strategy for all retroviruses. However, the
distantly related Errantivirus Cer1, which has all genes in a
single ORF (Additional file 2), may possibly represent an
original retroelement translational strategy without splic-
ing. A single large polyprotein is also used by some other,
even more, distantly related RNA viruses e.g. Picornavi-
ruses. The difference in degree of Gag and Pol expression
is regulated by a stop codon suppression readthrough
after gag [11]. This genomic structure is shared with the
closest related epsilon and even the intermediate epsilon-
like SnRV. Mining in our collected ERV databank, we
selected sequences with high RetroTector© scores and ana-
lyzed their "putein" reading frames. However, definition
of the original proviral ORFs is difficult because of the
gradual accumulation of postintegrational indel muta-
tions. To minimize such errors, we excluded sequences
with predicted frameshifts near the 3'-end of the respec-
tive gene and only included ERVs with RetroTector© scores
over 1000, thus ensuring a relatively intact provirus.
Results from the remaining 436 elements are shown in
table 1. In the gammaretroviral genus (RetroTector©

defined using motif similarities to known exogenous, and
endogenous, gammaretroviral counterparts), we could
detect ERVs with not only the predicted lack of
frameshifts, "0 f.s.", but also "-1 f.s.", and "+1 f.s." in the
Gag-Pro, and Pro-Pol boundaries (Table 1). However, "0
f.s." between Gag and Pro was detected in 67%, while "+1
f.s." and "-1 f.s." were detected in 16% and 17%, respec-
tively. In the Pro-Pol boundary there were 46%, 31% and
23% for "0 f.s.", "+1 f.s." and "-1 f.s." respectively (Table
1).

Thus there is a propensity, however weaker in Pro-Pol, for
gammaretroviral ERVs to enclose their Gag, Pro and Pol in
the same reading frame. As a comparison, the analyses of
exogenous gammaretroviral FLV and MLV genomic struc-
tures are also shown (Additional file 2 and [11]). They are
known to use the stop codon suppression mechanism in
a single gag/pro/pol ("0/0") frame. Although this analysis
could not be performed for the few rather damaged epsi-
lon-like HERVs [19], the epsilon retrovirus, WDSV, and
the epsilon/spumalike intermediate also shared the single
gag-pro-pol frame translational strategy with gammaret-
roviruses (Additional file 2 and [11]).
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Structural traits projected onto the Pol dendrogramFigure 2
Structural traits projected onto the Pol dendrogram. The pol dendrograms in panels A to D are all derived from figure 
1. A. The number of recognized Gag NC zinc finger motifs within respective genera. Detections of two NC zinc fingers are 
marked in light grey for all genera to the right from deltaretroviruses to betaretroviruses, and also for the gammaretroviral 
HERV-H. The remaining gammaretroviral elements (dark grey) had one NC zinc finger B. Presence of dUTPase is highlighted 
in grey. The non-primate lentiviral dUTPasePolA (dark grey) is found within Pol and the dUTPasePro (light grey) are found N-ter-
minal of Pro. The dUTPasePro appears to occasionally have been lost, indicated by the two uncolored intermediate chicken and 
python ERVs. dUTPasePolB. of foamy viruses is not indicated. C. Nucleotide biases may be useful in demarcating retroviral 
groups locally and the most obvious found are here highlighted. For more detail see refs [31, 40]. D. Genera with detected Pol 
C-terminal GPY/F motifs are marked light grey and Pro C-terminal G-patch marked in dark grey (exclusively in betaretrovi-
ruses). Some betaretroviruses missed a G-Patch and are therefore unmarked.
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The betaretroviral ERVs have been described to have a dif-
ferent translational strategy [11]. There were 60% (-1 fs),
22% (0 fs) and 17% (+1 fs) in the Gag-Pro boundary.
Between Pro and Pol there were 51% (-1 fs), 22% (0 fs)
and 27% (+1 fs) (Table 1). Thus the betaretroviral ERV
frame shift propensities, however weaker between Pro
and Pol, agree with the predictions according to the
related exogenous MMTV and JSRV (Additional file 2)
with the Gag, Pro and Pol in different reading frames sep-
arated by "-1" frameshifts, a "-1/-1" pattern. This transla-
tional strategy is also recognized in the new intermediate
betalike group of chicken and reptiles. We also found that
the results ("-1/-1") for chicken alpha ERVs (Table 1) devi-
ated somewhat from the expected "0/-1" pattern (see
exogenous RSV in additional file 2 and [11]). The compu-
ter aided analysis of the exogenous delta and lentiretrovi-
ruses conformed with previous descriptions [11]. HIV had
"-1/0", whereas HTLV had "-1/+1" in the Gag-Pro and
Pro-Pol boundaries, respectively (Additional file 2). To
summarize, we find support for similar translational strat-
egies among ERVs and XRVs, although ERV sequences are
harder to analyze due to postintegrational frameshifts.
Further, two major directions in the Pol phylogeny could
be noted (Figure 1). The viral sequences in the left main
branch, the "gamma" branch, often have their gag, pro and
pol within the same reading frame. Genera in the right
main "beta-branch" (Figure 1), with gag, pro and pol sepa-
rated in different ORFs, may use different forms of ribos-
omal frameshifting [11]. Despite the imprecision of
reading frame predictions in ERVs (Table 1), we judge
inferred translational strategy to be a "global" marker. It is
especially suitable for distinction between the extremes of
the major gamma and betaretroviral branches in figure 1.

Presence of dUTPase

A dUTPase that prevents incorporation of uracil into the
retroviral DNA by dUTP degradation, can be advanta-
geous for some retroviruses. A dUTPase was, in compli-
ance with earlier results [33,34], detected by RetroTector©

in both betaretroviruses and non-primate lentiviruses
(Figure 2B). However, the localization of the dUTPase dif-
fers between the genera. Non-primate lentiviral dUTPase
is located within the pol gene (here dubbed dUTPasePolA)
[11], whereas the betaretroviral dUTPase is located N-ter-
minal of Pro (here dubbed dUTPasePro). A third dUTPase
acquisition event (Additional file 3. Here dubbed dUT-
PasePolB) in MuERV-L [35,36], is located C-terminal of IN.
In the ERV dataset, dUTPasePro was detected in 363
betaretroviral ERVs and 21 intermediate beta-like(alpha-
beta) chicken ERVs (Table 1). Thus, many of the chicken
intermediate beta-like ERVs lacked detectable dUTPase.
Neither could it be found in the intermediate Python ERV
(Figure 2B). dUTPasePolB was not tested for.

To investigate the different retroviral acquisitions of dUT-
Pases, we conducted a minimum evolution (ME) analysis,
using 389 dUTPase sequences (Additional file 3). The ME
tree shows that human betaretroviral dUTPasePro (HML1-
10; [20,37] and Blikstad et al, in preparation) and chicken
alphabetaretroviral dUTPasePro (GGERVAB1-14; Blomb-
erg et al, in preparation) form one branch together with the
more studied mammalian betaretroviral MMTV and
MPMV dUTPasePro sequences. This indicates that dUT-
PasePro has a monophyletic origin and was acquired by an
alpha-like retrovirus, earlier in evolution than previously
suggested (see [38]), just before or during the formation
of betaretroviruses, see figure 2B. The absence of dUTPase
from the betaretrovirus like non-mammalian Python ret-
roviruses [22] is in approximate accord with this interpre-
tation. Judging from the ME tree, acquisition of
dUTPasePolA (by non-primate lentiviruses) and dUTPase-
PolB (by the spumalike ERV-L) may also have been single
events (Additional file 3). The validity of the detected
dUTPases is illustrated by the consensus sequences of the
conserved motifs, DSDYxGEIQ, IAQLilD and GGFGST
(Additional file 4).

Nucleotide frequency bias

RNA editing, dependent on encapsidation of a host RNA
editing enzyme, creates a combination of phenotypic and
genotypic traits. In lentiviruses, the host enzyme
APOBEC3G is responsible for G to A hypermutation, thus
generating an A bias [39]. Although manifested in the ret-
roviral genotype, the nucleotide bias can thus be the result
of a phenotypic trait. Nucleotide biases were previously
also demonstrated in delta- and betaretroviruses [40].
Using the ERV dataset and the additional XRVs, we con-
firmed this for lentiviruses, delta- and a subset of gamma-
retroviruses (Figure 2C), while the spuma-like genus did
not show obvious biases [31,40]. Recently we described a
group of human gammaretroviral ERVs, the HERV-H-like
and adjacent HERV-H- like branching together close to the
gammaretroviral root (Figure 2C), to have a uniquely
strong G/C bias [31]. In analogy with the lentiviral bias, it
is reasonable to assume that HERV-H-like sequences also
met an innate antiretroviral defense involving a host RNA
editing enzyme. However, the mechanism is unknown
and must be different from the cytidine deamination
caused by APOBEC3G. Mutational bias caused by the
error-prone reverse transcriptase (for a review, see [41])
can also not be ruled out. Reverse transcriptase of different
retroviruses has in vitro shown different mutational biases
[42]. It has been discussed as a contributing factor for the
observed skewed nucleotide composition [43].

C-terminal Protease G-patch domain

Several RNA-binding proteins include a glycine rich
domain of about 48 amino acids called "G-patch". This
was also present in a betaretroviral MPMV protease C-ter-
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minal domain [44]. In self-processing, this domain has
been reported to be cleaved from the Pro as a separate pro-
tein [45]. The role of this small protein is not determined,
but participation in the transport of unspliced retroviral
mRNA (see [46]), was suggested [44]. Recently, G-patch
was indeed shown to bind single stranded RNA [47]. Fur-
ther, this G-patch has proved useful in phylogenetic stud-
ies, but has shown some inconsistency [48]. In order to
extend the phylogenetic investigations and to determine if
G-patches are present in other retroviral genera than the
described mammalian betaretroviruses, we analyzed the
ERV collection for detectable G-patch in the Pro C-termi-
nal domains (Additional file 4). We found 68 positive
ERVs (table 1), exclusively within the betaretroviral genus
(Figure 2D). Irregularities [48] were also apparent in our
Pol phylogeny (Figure 2D), where a G-patch was either
degenerated or missing in three of the betaretroviruses,
hence uncolored. The validity of the detected G-patch
motifs is evident from the consensus sequence,
GYx2GxGLGx4GxnG (Additional file 4). An interesting
observation was that dUTPasePro occurs in avian beta-like
intermediate ERVs (Figure 2B), but without the G-patch
(Figure 2D). In fact, no chicken betaretrovirus had a
detectable G-patch, while dUTPasePro was often readily
detectable. From these data, and those of others [48], we
conclude that G-patch entered the genus betaretrovirus
after dUTPasePro and that presence of G-patch may be a
useful marker for mammalian betaretroviruses, independ-
ent of dUTPasePro.

C-terminal polymerase IN motif

The C-terminal end of retroviral Pol integrases (IN) has
interesting features. Its terminal position allows for addi-
tion of functional modules without disturbing the basic
integrase functions, represented by the HHCC zinc finger
and the DD35E catalytic domains. Alterations in this C-
terminal IN domain may alter the specificity of the inte-
gration [49]. The C-terminal domain sometimes contains
the motif GPY/F (Additional file 4 and [50]). To this
domain, another "chromo" (chromatin-binding) -
domain is sometimes appended [50], which interacts with
chromatin via DNA-binding proteins [49,51]. Recently,
we showed that HERV-H and ERV3 have GPY/F-domains
[16,31]. Here we used our ERV collection to extend the
analysis. We found 264 ERVs with GPY/F motifs (Table 1).
A larger portion had a similar mutated, but still detecta-
ble, C-terminal IN region (data not shown). An extended
consensus GPY/F motif of the ERVs was computed, WxnG-
PyxV (Additional file 4). Its typical sequence demon-
strates the validity of the detected GPY/F motifs. All these
ERVs were gammaretroviral. No betaretroviral element
was detected with this domain (Figure 2D). Further, GPY/
F motifs were found in epsilon, delta, lenti and errantivi-
ruses (Figure 2D). Thus, in figure 2D, we can demarcate a
line where GPY/F, or mutated remnant motifs, can be

detected to the left, from the lentiviral branch towards
gammaretroviruses, in analogy to how the translational
strategies (see above) separated the Pol tree into two
major branches.

Accessory genes

The presence of accessory genes in complex retroviruses
can also be used for evolutionary inference (Figure 3).
Recognition of unknown accessory genes is a difficult bio-
informatic problem and absence of accessory genes is
hard to ascertain. The analysis therefore rests on demon-
strable ones. The delta and lenti genera have several acces-
sory genes with similar functions as integral parts of their
replication strategy. They can to some extent replace each
other; rex and rev, tax and tat [11]. The sometimes drastic
influences of these trans-activating gene products on cellu-
lar functions may have kept these viruses out of the germ-
line. Recently, the betaretroviral HERV-K(HML2) was
shown to have the accessory genes, rec and/or np9 [52,53],
and is thus a complex retrovirus. rec is at least functionally
related to rev and rex [54]. Also the epsilon (WDSV) and
spumaretroviruses have accessory ORFs, Orf1, 2 and 3,
and Bel etc., respectively [11]. The phylogeny of accessory
genes (see [55]) is a separate issue, which we do not study
further here. From the available information, the acces-
sory genes mainly contribute to rather local properties in
the retroviral tree.

LTR lengths

As a final point in the conceptual use of structural traits in
phylogenies, a brief exploration of LTR lengths showed a
significant difference between the most distantly related
gamma and beta genera, where gammaretroviral LTRs are
short and betaretroviral LTRs significantly longer (Figure
3). LTR length is therefore a useful additional property for
the distinction of these genera.

Conclusion
Inferring phenotypic traits and phylogenies from inter-
preted genotypic (sequence) ERV properties is similar to
the use of fossilized remains for similar purposes in pale-
ontology. The analysis will gather strength with increasing
numbers of analyzed host genomes. Pol similarities and
structural traits like the ones discussed here, contribute to
a better understanding of the retroviral phylogeny. There
are at least two major retroviral branches. One contains
the gammaretroviruses (including class I ERVs) together
with the epsilonretroviruses, and another which includes
betaretroviruses (including class II ERVs) together with
delta, lenti and alpharetroviruses with their respective
intermediate groups. In between, closer to an imaginary
root of the retroviral evolutionary tree, we find the older
spuma and spuma-like (class III ERVs) retroviruses. The
two major branches, schematized in figure 3, differ in
"global" genomic properties as i.) translational strategy,
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ii.) number of Gag NC zinc finger motifs, iii.) presence of
dUTPase, iv.) presence of Pro C-terminal G-patch and v.)
presence of GPY/F motifs in the IN C-terminal domain.
"Local" retroviral properties useful for more narrow delin-
eation of taxa are i.) host species, ii.) nucleotide compo-
sitional bias and iii.) LTR lengths.

Methods
Data collection

Genomic data were downloaded from the UCSC genome
browser http://genome.ucsc.edu/, and annotated retrovi-
ral reference sequences included in the phylogenies were
extracted from GenBank http://www.ncbi.nlm.nih.gov/.

GenBank accession numbers or chromosomal positions
in Homo sapiens (version hg16 and 15) for reference
sequences in the main phylogenetic tree were as follows:
ALV [NC001408], RSV [NC001407], MMTV [NC001503],
MPMV [NC001550], JSRV [M80216], HML1 (Chr19-
21849393), HML2 (Chr11-101600013), HML3 (Chr1-
48344461), HML4 (Chr8-75679221), HML5
[AC004536], HML6 (consensus), HML7 (Chr6-
121300220), HML8 (Chr3-131452286), HML9 (Chr9-

62700428), HML10 (Chr6-32017925), HERV-H (consen-
sus), HERV-H/RGH2 [D11078], HERV-H/RTVLH2
[M18048], HERV-Fc1 [AL354685], HERV-Fc2
[AC019088], HERV-W (Chr7-9105739), ERV9
[AC073410], ERV3 (Chr7-63865366), HERV-E
[M10976], MLV [NC001501], MoLV [AF033811], BaEV
[D10032], GaLV [M26927], HERV-ADP [AC005741],
HERV-FRD [AC004022], HERV-I (Chr16-72821350),
HERV-T (Chr14-104635791), HERV-S [AC004385], FLV
[NC001940], PERV [AJ293656], WDSV [NC001867],
Xen1 [AJ506107], SnRV [NC001724], BLV [NC001414],
HTLV-1 [NC001436], and HTLV-2 [NC001488], Gypsy
[AJ000387], HERV-L (RepBase), HSRV [AF033816], HFV
[NC001736], MER4like (Chr13-54208300), HERV-L66
(RepBase), HERV-L74 (RepBase), HERV-L40 (RepBase)
and Python molurus [AAN77283].

Endogenous retroviral sequences

We used the bioinformatic program RetroTector©, devel-
oped by us, to screen the downloaded genomic sequences
for proviral integrations. Briefly, the program recognizes
conserved retroviral consensus motifs and constructs
putative proteins ("puteins") from the different reading

Structural traits summaryFigure 3
Structural traits summary. Simplified view of the different genotypic traits suggested for retroviral phylogeny inference. 
The branch for Gypsy and Copia represent an imagined midpoint reference in the tree. The number of NC zinc fingers, pres-
ence of dUTPase (dUTPasePolB is not indicated), known accessory genes, C-terminal Pro (G-patch) and Pol (GPY/F) motifs are 
shown. Nucleotide bias was defined to 25 ± 5 %. (↑) shifted upwards; (↓) shifted downwards; (≈) uncertain bias. Exploration of 
the LTR lengths of the different groups as detected by RetroTector© are shown as boxplots. In addition, the translational strat-
egy may be used in the phylogeny to separate the gammaretroviruses (including class I ERVs) from spuma-like elements (class 
III ERVs), deltaretroviruses, lentiviruses, alpharetroviruses and the betaretroviruses (class II ERVs) with respective intermediate 
groups. The Gypsy and Copia are not included in the translational strategy analysis.
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frames in the gene candidates. Codon statistics, frequency
of stop codons and alignment to known retroviral pro-
teins are used to approximate an original ORF. Finally the
puteins are validated and classified using alignments of
earlier described proteins from the literature. The validity
of the puteins used for alignment and phylogenetic infer-
ence, can be confirmed by inspection of excised parts of
RT and IN from the full Pol alignment (Additional file 5).
The program yields a preliminary genus classification
based on motif usage. In several papers, the computerized
motif based preliminary retroviral classification was
shown to be consistent and robust with reference to other
means of classification [16,17,19]. Using a RetroTector©

cutoff score of more than 300, we found 3149 proviral
sequences in the human genome version hg16 [4] and
260 proviral sequences in the chicken gg01 [21], which
were included into our ERV databank. From this data-
bank, we could extract representative proviral sequences
for later analyses. The extracted representative sequences
had high RetroTector© scores and were selected for their
contribution to phylogenetic reconstruction, with prefer-
ence for intermediates between previously recognized ret-
roviral genera (see figure. 1)

Data analysis

Multiple alignments were conducted using ClustalX
(1.83) [56]. A consensus NJ was produced in MEGA2.1
[57] using the pairwise deletion option, Poisson amino
acid correction and 500 bootstraps. A set of maximum
likelihood analyses using the PHYLIP program package
[58] were used to verify the tree topologies. Consensus
analysis of C-terminal Pro (G-patch) and Pol (GPY/F)
motifs were conducted using WebLogo at http://webl
ogo.berkeley.edu/, with default settings

Statistics were extracted from the ERV databank collected
through the RetroTector© analysis of the different
genomes.

The Pol FASTA sequences are included into the additional
files (Additional file 6).

List of Abbreviations used
aa amino acids

CA Capsid

dUTPase deoxyuridine triphosphatase

Env Envelope

ERVs Endogenous retroviral sequences

Gag Group specific antigen

HERVs Human endogenous retroviral sequences

IN Integrase

LTR Long terminal repeat

MA Matrix

NC Nucleocapsid

PBS Primer binding site

Pol Polymerase

PPT Polypurine tract

Pro Protease

RNAse H Ribonuclease H enzyme

RT Reverse transcriptase

XRV Exogenous retrovirus
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