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Abstract Geospatial data base creation for landslide-
hazard mapping is often an almost inhibitive activity. This
has been the reason that for quite some time landslide-
hazard analysis was modeled on the basis of spatially
related factors. This paper presents the use of fuzzy logic to
landslide-hazard analysis in the Penang Island, Malaysia,
using remote sensing data and a geographic information
system (GIS). To achieve the goal, a data-derived model
(frequency ratio) and a knowledge-derived model (fuzzy
operator) were combined for landslide-hazard analysis.
Landslide locations within the study areas were identified
by interpreting aerial photographs, satellite images and field
surveys. The nine factors that influence landslide occur-
rence were extracted from the database and the frequency
ratio coefficient for each factor was computed. Using the
factors and the identified landslide, the fuzzy membership
values were calculated. Then fuzzy algebraic operators
were applied to the fuzzy membership values for landslide-
hazard mapping. Finally, the produced map was verified by
comparing with existing landslide locations for calculating
prediction accuracy. Among the fuzzy operators, in the case
in which the gamma operator (λ=0.8) showed the best

accuracy (80%) while the case in which the fuzzy or
operator was applied showed the worst accuracy (56%).

Keywords Landslide . Hazard . GIS . Fuzzy operator .

Fuzzy membership . Frequency ratio . Malaysia

Introduction

Landslides are major natural geological hazards and, each
year, is responsible for enormous property damage and both
direct and indirect costs. Malaysia experiences frequent
landslides, with the most recent occurring in 2000, 2001,
2004, 2007, and 2008. They often result in significant
damage to people and property. In Penang Island, much
damage was caused by the torrential rainfall causing
landslides and mudslides, and, because there was little
effort to assess or predict the event, damage was extensive.
Through scientific analysis of landslides, we can assess and
predict landslide-hazardous areas and, by allowing proper
preparation, decrease landslide damage. In order to achieve
this, landslide-hazard analysis techniques were cross-
applied and verified using a fuzzy membership model.

There have been many studies carried out on landslide-
hazard evaluation using GIS; for example, Guzzetti et al.
(1999) summarized many landslide-hazard evaluation
studies. Recently, there have been studies on landslide-
hazard evaluation using GIS, and many of these studies
have applied probabilistic models (Akgun et al. 2007; Dahal
et al. 2007; Clerici et al. 2006; Cevik and Topal 2003;
Rowbotham and Dudycha 1998; Jibson et al. 2000; Luzi et
al. 2000; Parise and Jibson 2000; Baeza and Corominas
2001; Clerici et al. 2002; Donati and Turrini 2002; Zhou et
al. 2002; Lee et al. 2004b). One of the statistical models
available, the logistic regression models, has also been
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applied to landslide-hazard mapping (Tunusluoglu et al.
2007; Lamelas et al. 2008; Wang and Sassa 2005; Süzen and
Doyuran 2004; Dai and Lee 2002; Ohlmacher and Davis
2003; Mansor et al. 2007; Pradhan et al. 2006, 2008), as has
the geotechnical model and the safety factor model (Gok-
ceoglu et al. 2000; Romeo 2000; Refice and Capolongo
2002; Carro et al. 2003; Shou and Wang 2003; Zhou et al.
2003, Lee 2007, Lee and Pradhan 2007). As a new approach
to landslide-hazard evaluation using GIS, data mining, safety
factor, fuzzy logic and artificial neural network models have
been applied (Gomez and Kavzoglu, 2005; Xie et al. 2004;
Ercanoglu and Gokceoglu 2002; Pistocchi et al. 2002; Lee et

al. 2003a, b, 2004a; Tangestani 2004; Lee and Pradhan 2006;
Pradhan and Lee 2007, 2008 ; Catani et al. 2005).

Study area

Penang Island, which has suffered much landslide damage
following heavy rains, was selected as a suitable pilot area
to evaluate landslide-hazard analysis using the fuzzy
operator model (Fig. 1). Penang is one of the 13 states of
the Federal Territory of Malaysia and is located on the
Northwest coast of the Malaysia peninsula. It is bounded to

Study area 

Fig. 1 The study area with
landslide locations
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north and east by the state of Kedah, to south by the state of
Perak, and to west by the Straits of Malacca and Sumatra
(Indonesia). Penang consists of the island of Penang, and a
coastal strip on the mainland, known as Province Wellesley.
The island covers an area of 285 km2, and is separated from
the mainland by a channel. The study area is located
approximately between latitudes 5°15′ N to 5°30′ N and
longitudes 100°10′E to 100°20′E. The land-use in the study
area is mainly peat swamp forest, plantation forest, inland
forest, scrub, grassland, and ex-mining area. The slope of
the area ranges from 25° to as much as 87°. The relief of
the study area varies from 0–420 m above mean sea level.
Based on the Malaysian Meteorological Department, the
temperature of the northern part of Penang ranges between
29°C and 32°C and mean relative humidity varies between
65% and 70%. The highest temperature is during April to
June while the relative humidity is lowest in June, July and
September. The rainfall of about 58.6 mm to 240 mm per
month is recorded in the study area (at the Bayan Lepas
weather station provided by the Malaysian Meteorological
Services Department). GPS data for landslide locations has
been collected for various parts of Penang Island in the
month of July and October 2006. There were about 21
active landslides recorded from the field survey and these
were used to verify the model output.

Spatial database creation

To apply the fuzzy approach model, a spatial database
that considers landslide-related factors was designed and
constructed. These data are available in Malaysia either

as paper or as digital maps. The spatial database
constructed is listed in Table 1. Landslide occurrence
areas were detected in the Penang area, Malaysia by
interpretation of aerial photographs and field surveys. A
landslide map was prepared from aerial photographs, in
combination with the GIS, and this was used to evaluate
the frequency and distribution of shallow landslides in the
area. These landslides were detected from aerial photo-
graphs by interpreting breaks in the forest canopy, bare
soil, and other typical geomorphic characteristics of
landslide scars. A total of 463 landslides were mapped
within 285 km2 to assemble a database to assess the
number of landslides in the study area. The inventory map
was prepared by a structural geologist with a profound
knowledge on aerial photo interpretation. These landslides
were vectorized from the aerial photographs and the
location of the scar extent was transformed into a grid
database with 10×10-m cell size. Topography and
lithology databases were constructed and lineament, land
cover and vegetation index value extracted from Landsat
TM satellite image for the analysis. Then, the calculated
and extracted factors were converted to a 10 m×10 m
grid (ARC/INFO GRID type). The lineament and land
cover were detected from satellite images such as
Landsat TM (Thematic Mapper) images. There were ten
landslide-inducing factors considered in calculating the
fuzzy membership function. These factors were trans-
formed into a vector-type spatial database using the GIS.
For the DEM creation, 10-m interval contours and survey
base points showing the elevation values were extracted
from the 1:25,000-scale topographic maps and triangu-
lated irregular network (TIN) was made using the

Table 1 Thematic data layer of study area

Classification GIS data type Scale or resolution

Spatial database Factor Spatial database Factor Spatial database Factor

Landslide Landslide ARC/INFO ARC/INFOGRID 1:25,000 10 m×10 m
Polygon coverage

Topographic Map Slope ARC/INFO 1:25,000
Aspect Line and Point

Curvature Coverage

Drainage Map Distance from drainage ARC/INFO
Line Coverage

Soil Map Types ARC/INFO 1:100,000
Polygon coverage

Geology Map Litho types ARC/INFO 1:63,300
Distance from lineaments Polygon, Line coverage

Land Cover Land Cover ARC/INFO GRID 30 m×30 m

NDVI NDVI ARC/INFO GRID 10 m×10 m

Precipitation Precipitation GRID 10 m×10 m
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elevation value. A DEM (digital elevation model) was
made using the inverse distance weighting (IDW)
interpolation method with 10 m resolution. Using this
DEM, slope angle, slope aspect, and slope curvature
were calculated. In the present study, substantial attention
has been given for slope conditions. Slope configuration
and steepness plays an important role in conjunction with
lithology. Maps have been produced showing slope
steepness; the slope varies from 0 to 45° in plain areas
to near-vertical cliffs to greater than 45° in the steep
areas. In the case of the aspect map, there are eight
directions shown for the different direction of slope. In
the case of the curvature, negative curvatures represent
concave, zero curvature represent flat and positive
curvatures represents convex. The curvature map was
prepared using the avenue routine in ArcView 3.2. In
addition, the distance from drainage was calculated using
the topographic database. The drainage buffer was
calculated at 100-m intervals and classified into ten
equal area classes. The lithology map is prepared from a
1:63,300-scale geological map. A structural geologist
interpreted the Spot 5 image by photo interpretation and
detected the lineaments and the distance from lineament
is calculated based on the Euclidean distance method in
ArcView 3.2. The lineament buffer was calculated in
100-m intervals and classified into ten equal area classes.
Land-use map was prepared using Landsat TM image
(30 m spatial resolution) using unsupervised classifica-
tion (ISODATA) method and field survey. There were 11
land-use classes identified, such as urban, water, forest,
agriculture, and barren area. Finally, the normalized
difference vegetation index (NDVI) map was generated
from SPOT 5 (2.5 m spatial resolution) satellite images.
The NDVI value was calculated using the formula
NDVI ¼ IR� Rð Þ= IRþ Rð Þ, where IR is the energy
reflected in the infrared portion of the electromagnetic
spectrum, and R is the energy reflected in the red portion
of the electromagnetic spectrum. The NDVI is useful in
delineating vegetation. The soil map was obtained from
existing hard copy soil map (1:100,000) from Department
of Soil, Malaysia and is the only existing soil map for the
study area. There are about 14 types of different soil series
identified and used in the analysis. The precipitation map
was prepared using the last 20 years of historical rainfall
data. In the study area, there are only two rain-gauge
stations located. So, data used in this study is collected
from these stations and a statistical distribution of the
accumulated average precipitation was prepared in GIS.

Using the factors and the detected landslide, the relation-
ships were calculated using the frequency ratio, one of the
probabilistic models. Then, the fuzzy membership values
were also calculated using the frequency ratio. The fuzzy
membership values were combined using the fuzzy and, fuzzy

or, fuzzy algebraic product, fuzzy algebraic sum, and fuzzy
gamma operators (13 cases) for landslide-hazard mapping.
Finally, the map was verified by comparing with existing
landslide locations for calculating prediction accuracy.

Fuzzy operator model was applied using the database
and landslide-hazard map was created. Finally, the map was
verified and compared using known landslide locations for
quantitative verification. In the study, Geographic Informa-
tion System (GIS) software, ArcView 3.2, and ArcGIS 9.0
version software packages were used as the basic analysis
tools for spatial management and data manipulation.
Overall, the Penang data set comprised 2,493 rows by
1,887 columns, for a total cell number of 4,704,291.
Landslides had occurred in 463 of these cells.

Methodology

The fuzzy set theory introduced by Zadeh (1965) is one of
the tools used to handle the complex problems. Therefore,
the fuzzy set theory has been commonly used for many
scientific studies in different disciplines. The idea of fuzzy
logic is to consider the spatial objects on a map as members
of a set. In the classical set theory, an object is a member of
a set if it has a membership value of 1, or is not a member if
it has a membership value of 0. In the fuzzy set theory,
membership can take on any value between 0 and 1
reflecting the degree of certainty of membership. The fuzzy
set theory employs the idea of a membership function that
expresses the degree of membership with respect to some
attribute of interest.

With maps, generally, the attribute of interest is measured
over discrete intervals, and the membership function can be
expressed as a table relating map classes to membership
values. Fuzzy logic is attractive because it is straightforward
to understand and implement. It can be used with data from
any measurement scale and the weighing of evidence is
controlled entirely by the expert. The fuzzy logic method
allows for more flexible combinations of weighted maps,
and could be readily implemented with a GIS modeling
language. This is different from data-driven approaches such
as weights of evidence or logistic regression, which use the
locations of known objects such as landslides to estimate
weights or coefficients. The idea of using fuzzy logic in
landslide-hazard mapping is to consider the spatial objects
on a map as members of a set. For example, the spatial
objects could be areas on an evidence map and the set
defined as ‘areas hazardous to landslide’. Fuzzy membership
values must lie in the range (0, 1), but there are no practical
constraints on the choice of the fuzzy membership values.
Values are chosen to reflect the degree of membership of a
set, based on subjective judgment. Given two or more maps
with fuzzy membership functions for the same set, a variety
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of operators can be employed to combine the membership
values.

Zimmerman (1996) discussed a variety of combination
rules. Bonham-Carter (1994) discussed five operators,
namely the fuzzy and, fuzzy or, fuzzy algebraic product,
fuzzy algebraic sum, and fuzzy gamma operator. This study
uses the five fuzzy operators for combining the fuzzy
membership functions.

The fuzzy and is equivalent to a Boolean AND (logical
intersection) operation on classical set values of (1). It is
defined as:

mcombination¼ MIN mA;mB;mC;...

� �
; ð1Þ

where μcombination is the calculated fuzzy membership
function, μA is the membership value for map A at a
particular location and μB is the value for map B, and so on.

The fuzzy or is like the Boolean OR (logical union in
that the output membership values are controlled by the
maximum values of any of the input maps. The fuzzy or is
defined as:

mcombination ¼ MAX mA;mB;mC;...

� �
: ð2Þ

The fuzzy algebraic product is defined as:

mcombination ¼
Yn

i¼1

mI ; ð3Þ

where μi is the fuzzy membership function for the i-th map,
and i=1, 2, …, n maps are to be combined.

The fuzzy algebraic sum is complementary to the fuzzy
algebraic product, being defined as:

mcombination ¼ 1�
Yn

i¼1

1� mið Þ: ð4Þ

The gamma operation is defined in terms of the fuzzy
algebraic product and the fuzzy algebraic sum by:

mcombination ¼ Fuzzy algebraic sumð Þl* Fuzzy algebraic productð Þ1�l;

ð5Þ
where λ is a parameter chosen in the range (0,1), and the
fuzzy algebraic sum and fuzzy algebraic product are
calculated using Eqs. 3 and 4, respectively. In the fuzzy
gamma operation, when λ is 1, the combination is the same
as the fuzzy algebraic sum, and when λ is 0 the
combination equals the fuzzy algebraic product. Judicious
choice of λ produces output values that ensure a flexible
compromise between the ‘increase’ tendencies of the fuzzy
algebraic sum and the ‘decrease’ effects of the fuzzy
algebraic product.

Like the membership function, the frequency ratio was
calculated. The frequency ratio is shown in Table 2 for
all factors. The spatial relationships between the land-

slide location and each landslide-related factor were
analyzed by using the probability model–frequency ratio.
The frequency ratio, a ratio between the occurrence and
absence of landslides in each cell, was calculated for
each factor’s type or range that had been identified as
significant with respect to causing landslides. An area
ratio for each factor’s type or range to the total area was
calculated. Finally, frequency ratios for each factor’s type
or range were calculated by dividing the landslide
occurrence ratio by the area ratio. If the ratio is greater
than 1, the relationship between landslides and the
factors is higher and, if the ratio is less than 1, the
relationship between landslide and each factor’s type or
range is lower. Then, the frequency ratio was normalized
between 0.00 and 1.00 to create the fuzzy membership
value.

Application of fuzzy logic to landslide-hazard mapping

The input factors were combined for assigning member-
ship functions. Nine landslide causal factors (slope,
aspect, curvature, distance from drainage, soil, distance
from lineament, NDVI, precipitation, and land cover)
were combined to generate the final hazard map using
fuzzy operators such as fuzzy and, fuzzy or, fuzzy
algebraic product, fuzzy algebraic sum, and fuzzy
gamma operator. In the case of fuzzy gamma operator,
the value of λ was set to 0.025, 0.05, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9, 0.95, and 0.975 to detect its effect
on the landslide-hazard map.

Using the fuzzy membership function (Table 2) and
the fuzzy operator (from Eqs. 1 to 5), the landslide-hazard
index (LHI) values were computed for the 17 cases
including the 13 cases in which the gamma operator was
used. The computed LHI values were mapped to allow
interpretation such as that illustrated for example in Fig. 2.
The values were classified into equal areas and grouped
into five classes for visual interpretation. For example, in
the case of applying the fuzzy and product, the
minimum, mean, maximum and standard deviation
values of each LHI are 0.00, 0112, 0.3281, and 0.0254,
respectively. In the case of applying the fuzzy algebraic
sum, the minimum, mean, maximum, and standard
deviation values of each LHI are 0.0042, 0.0277,
0.0513, and 0.0078, respectively. In the case of applying
the gamma operator (λ=0.975), the minimum, mean,
maximum, and standard deviation values of each LHI are
0.000, 0.3003, 1.7448, and 0.5046, respectively. Also, in
the case of applying the gamma operator (λ=0.8), the
minimum, mean, maximum, and standard deviation values
of each LHI are 0.000, 0.0061, 0.00092, and 0.00117,
respectively.
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Table 2 Spatial relationships between each factor and landslide and fuzzy membership values

Factor Class Landslide
occurrence Points

Landslide occurrence
Points %

Pixels in
domain

Pixel
%

Frequency
ratio

Fuzzy membership
function

Slope 0~5° 981098 33.20 0 0.00 0.00 0.00

6~10° 276054 9.34 0 0.00 0.00 0.00

11~15° 234326 7.93 21 4.54 0.57 0.11

16~20° 218322 7.39 32 6.91 0.94 0.18

21~25° 266234 9.01 43 9.29 1.03 0.19

26~30° 221465 7.50 50 10.80 1.44 0.27

31~35° 212850 7.20 30 6.48 0.90 0.17

36~40° 230109 7.79 83 17.93 2.30 0.44

41~45° 173227 5.86 87 18.79 3.21 0.61

46~90° 141097 4.78 117 25.27 5.29 1.00

Aspect Flat 1199400 40.59 13 2.80 0.07 0.00

North 206629 6.99 41 8.85 1.27 0.56

Northeast 207860 7.03 51 11.01 1.57 0.70

East 228674 7.74 60 12.95 1.67 0.75

Southeast 236988 8.02 82 17.71 2.21 1.00

South 205108 6.94 58 12.53 1.80 0.81

Southwest 206970 7.01 52 11.23 1.60 0.72

West 228117 7.72 54 11.66 1.51 0.67

Northwest 235036 7.95 52 11.23 1.41 0.63

Curvature Concave 770757 26.09 50 10.80 0.41 0.07

Flat 1419529 48.04 45 9.72 0.20 0.00

Convex 764496 25.87 368 79.48 3.07 1.00

Distance from
drainage

0~14 m 325460 11.01 21 4.54 0.41 0.00

20~36 m 347537 11.76 43 9.29 0.79 0.42

40~56 m 298382 10.10 61 13.17 1.30 1.00

58~76 m 285453 9.66 58 12.53 1.30 0.99

78~100 m 310971 10.52 48 10.37 0.99 0.64

101~130 m 296818 10.05 52 11.23 1.12 0.79

131~169 m 273396 9.25 48 10.37 1.12 0.79

170~222 m 275609 9.33 49 10.58 1.13 0.81

223~331 m 272270 9.21 55 11.88 1.29 0.98

332~2,064 m 268886 9.10 28 6.05 0.66 0.28

Geology Micro granite 43801 1.52 7 1.512 0.98 0.75

Alluvium 668834 23.34 2 0.432 0.01 0.00

Granite 2151905 75.12 454 98.056 1.305 1.00

Soil Rengam-bukit temiang
association

289450 10.03 96 20.73 2.07 1.00

Selangor-kangkong
association

34197 1.18 0 0.00 0.00 0.00

Local alluvium-
colluvium associ.

373655 12.94 13 2.81 0.22 0.10

Serong series 80436 2.79 0 0.00 0.00 0.00

Steep land 1506818 52.20 341 73.65 1.41 0.68

Kuala kedah -
permatang associ.

187057 6.48 0 0.00 0.00 0.00

Urban land 413813 14.33 13 2.81 0.20 0.09

Rengam 1329 0.05 0 0.00 0.00 0.00

Distance from
lineament

0~89 m 297410 10.07 45 9.72 0.97 0.60

90~180 m 307232 10.40 48 10.37 1.00 0.62

181~275 m 293932 9.95 62 13.39 1.35 0.84
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Table 2 (continued)

Factor Class Landslide
occurrence Points

Landslide occurrence
Points %

Pixels in
domain

Pixel
%

Frequency
ratio

Fuzzy membership
function

276~377 m 294078 9.95 63 13.61 1.37 0.85

378~494 m 294927 9.98 54 11.66 1.17 0.73

495~640 m 294365 9.96 54 11.66 1.17 0.73

641~841 m 294059 9.95 74 15.98 1.61 1.00

842~1,150 m 292980 9.92 50 10.80 1.09 0.68

1,151~1,777 m 293193 9.92 13 2.81 0.28 0.18

1,778~5,317 m 292606 9.90 0 0.00 0.00 0.00

Land cover Rubber 674705 22.05 53 11.50 0.52 0.03

Clear land 75814 2.48 4 0.87 0.35 0.02

Grass 256259 8.37 14 3.04 0.36 0.02

Wood_BR 27618 0.90 4 0.87 0.96 0.05

Coconut 88328 2.89 2 0.43 0.15 0.01

Cultivated 774 0.03 1 0.22 8.58 0.48

Wet padi 92852 3.03 0 0.00 0.00 0.00

Belukar 12822 0.42 1 0.22 0.52 0.03

Mangrove 144562 4.72 13 2.82 0.60 0.03

Pri_forest 1067028 34.87 347 75.27 2.16 0.12

Sand 22055 0.72 0 0.00 0.00 0.00

Rock 10256 0.34 0 0.00 0.00 0.00

Mud 83740 2.74 0 0.00 0.00 0.00

Forest 498411 16.29 17 3.69 0.23 0.01

Tin mine 1876 0.06 5 1.08 17.69 1.00

Nipah 2960 0.10 0 0.00 0.00 0.00

Tin_mine 292 0.01 0 0.00 0.00 0.00

Lake 63 0.00 0 0.00 0.00 0.00

NDVI −73 to −18 291092 10.05 33 7.13 0.71 0.06

−17~1 300254 10.37 31 6.70 0.65 0.00

2~21 297248 10.26 47 10.15 0.99 0.36

22~32 315879 10.91 48 10.37 0.95 0.32

33~37 358384 12.37 44 9.50 0.77 0.12

38~40 322673 11.14 61 13.17 1.18 0.56

41~43 373180 12.89 57 12.31 0.96 0.32

44~45 226395 7.82 54 11.66 1.49 0.89

46~48 242836 8.38 45 9.72 1.16 0.54

49~61 168249 5.81 43 9.29 1.60 1.00

Precipitation 2,613~2,651 mm 297147 10.06 40 8.64 0.86 0.40

2,652~1,676 mm 297745 10.08 45 9.72 0.96 0.47

2,677~2,695 mm 301761 10.21 30 6.48 0.63 0.27

2,696~2,707 mm 296883 10.05 40 8.64 0.86 0.40

2,708~2,718 mm 293589 9.94 76 16.41 1.65 0.86

2,719~2,730 mm 297716 10.08 40 8.64 0.86 0.40

2,731~2,742 mm 313761 10.62 93 20.09 1.89 1.00

2,743~2,753 mm 290201 9.82 63 13.61 1.39 0.71

2,754~2,763 mm 283131 9.58 29 6.26 0.65 0.29

2,764~2,772 mm 282848 9.57 7 1.51 0.16 0.00

Domain pixels in study area, Domain (%) (domain/total pixels in study area)×100, landslide number of landslide occurrences, Landslide (%)
(landslide/total number of landslide occurrences)×100, Frequency ratio landslide (%)/domain (%), fuzzy membership values normalized value of
the frequency ratio
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(a) Application of fuzzy algebraic “sum” operator 

(b) Application of fuzzy algebraic “and” operator 

Fig. 2 Landslide susceptibility
maps using various fuzzy
operators. a Application of
fuzzy algebraic “sum” operator.
b Application of fuzzy algebraic
“and” operator. c Application of
fuzzy gamma (λ=0.8) operator.
d Application of fuzzy gamma
(λ=0.9) operator. e Application
of fuzzy gamma (λ=0.975)
operator

10 Appl Geomat (2009) 1:3–15



(c) Application of fuzzy gamma (  = 0.8) operator 

(d) Application of fuzzy gamma (  = 0.9) operator 

λ

λ

Fig. 2 (continued)
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Verification of the fuzzy logic model and hazard maps

The landslide-hazard analysis results were verified using
the existing landslide locations in the study area. The
verification method was performed by comparison of
existing landslide data and newly recorded landslide
location data collected from field of the study area. The
comparison results are shown in Fig. 3 as a line graph,

which illustrates how well the landslide-hazard maps of
nine cases match with respect to the landslides used in
constructing those landslide-hazard maps. To obtain the
data for Fig. 3, relative ranks of landslide-hazard map and
landslide occurrence were compared for each case. For
this aim, the probabilities were divided into classes of
accumulated area ratio % (X-axis) according to the
landslide-hazard index value (Y-axis).

(e) Application of fuzzy gamma ( λ = 0.975) operator

Fig. 2 (continued)
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Fig. 3 Illustration of cumulative
frequency diagram showing
landslide susceptibility index
rank (X-axis) occurring in
cumulative percent of landslide
occurrence (Y-axis)
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For example, when applying fuzzy algebraic sum, the
90–100% (10%) class with the highest probability of a
landslide contains 54% and the 80%–100% class (20%)
contains 45% of the landslides of study area. In the
case of applying the fuzzy and product, the 90%–100%
(10%) class with the highest probability of a landslide
contains 45% and the 80%–100% class (20%) contains
64% of the landslides of study area. In the case of the
gamma operator (λ=0.975), the 90%–100% (10%) class
with the highest possibility of a landslide contains 58%
and the 80–100% class (20%) contains 68% of the
landslides of study area. In the case of applying the
gamma operator (λ=0.8), the 90–100% (10%) class with
the highest possibility of a landslide contains 53% and 80–
100% class (20%) contains 65% of the landslides of study
area.

To compare the results quantitatively, the areas under the
curve were recalculated taking the total area as 1, which
means perfect prediction accuracy. So, the area under a
curve can be used to assess the prediction accuracy
qualitatively for landslide-hazard mapping. The area
under the curve is shown in Table 3. For example, in
the case of applying fuzzy algebraic and, the area ratio
was 0.7949 and we could say that the prediction accuracy
is 79.49%. In the case of applying fuzzy algebraic sum,
the area ratio was 0.6477 and we could say that the
prediction accuracy is 64.77%. In the case of applying the
gamma operator (λ=0.975), the area ratio was 0.7914 and
the prediction accuracy is 79.14%.

Discussion and conclusions

Different fuzzy operators and different λ values for the
gamma operation were tested on the input fuzzy member-
ship functions to generate the most reliable landslide-
hazard map. The membership values assigned to each
evidence map also play an important role in the final
results. The fuzzy operators used in the first or further
steps of analyses also affect the possibilities obtained in
the final hazard map.

After verification, among the 17 cases, the case of
applying the gamma operator (λ=0.8), showed the best
accuracy (80.26%), whereas the fuzzy algebraic sum
(64.77%) and fuzzy or (56.86%) operators showed the
worst accuracy. In the case of applying the gamma operator
with different λ value, the prediction accuracy had a similar
value, between 79.14% and 80.26%. Generally, the verifi-
cation results showed satisfactory agreement between the
hazard map and the existing data from landslide locations.
The effect of choosing different values of gamma (between
0 and 1) is not large. Because the landslide-hazard maps
using different values of gamma (Fig. 2) are very similar
and the prediction accuracy after verification is also very
similar.

In the study, the data-derived model (frequency ratio)
and the knowledge-derived model (fuzzy logic) were
combined. As a result, the combined data- and
knowledge-derived model is useful for landslide-hazard
mapping considering the prediction accuracy. Decision-
making under uncertainty is closely related to hazard
analysis. Landslide-hazard map will help for decision-
making for planners. These decisions are usually in the
form of technical countermeasures, regulatory manage-
ment or combinations of the two. Classic examples of
regulatory management are zoning maps which, for
instance, exclude some areas from habitation. Regulatory
management is often quite intricate in prescribing
different permit procedures which may include detailed
evaluations and additional exploration or even go so far
to prescribing particular slope designs (e.g., slope
grades). The latter is actually a combination of regulatory
and technical management. Technical mitigating meas-
ures range from a variety of stabilizing measures to
protective measures such as rock-fall galleries to warning
devices. One of the most important steps of developing a
hazard-mitigation plan is assessing risks, or estimating
potential losses to the people and properties within the
landslide prone area.
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Table 3 Verification results using area under curve (AUC)

Fuzzy operator Prediction accuracy (%)

Fuzzy and 79.49

Fuzzy or 56.86

Fuzzy algebraic sum 64.77

Fuzzy algebraic product 77.51

Gamma (λ)=0.025 79.34

Gamma (λ)=0.05 79.73

Gamma (λ)=0.1 79.73

Gamma (λ)=0.2 79.73

Gamma (λ)=0.3 79.73

Gamma (λ)=0.4 79.73

Gamma (λ)=0.5 79.73

Gamma (λ)=0.6 79.73

Gamma (λ)=0.7 79.73

Gamma (λ)=0.8 80.26

Gamma (λ)=0.9 79.49

Gamma (λ)=0.95 79.32

Gamma (λ)=0.975 79.14
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