
G&I Genomics & Informatics

eISSN 2234-0742

Genomics Inform 2017;15(1):19-27

https://doi.org/10.5808/GI.2017.15.1.19

ORIGINAL ARTICLE

Received November 29, 2016; Revised February 2, 2017; Accepted February 2, 2017

*Corresponding author: Tel: +82-42-879-8116, Fax: +82-42-879-8119, E-mail: kimsy@kribb.re.kr

Copyright © 2017 by the Korea Genome Organization
CC It is identical to the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/).

Use of Graph Database for the Integration of
Heterogeneous Biological Data

Byoung-Ha Yoon1,2, Seon-Kyu Kim1, Seon-Young Kim1,2*

1Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB),
Daejeon 34141, Korea, 2Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34113, Korea

Understanding complex relationships among heterogeneous biological data is one of the fundamental goals in biology. In

most cases, diverse biological data are stored in relational databases, such as MySQL and Oracle, which store data in multiple

tables and then infer relationships by multiple-join statements. Recently, a new type of database, called the graph-based

database, was developed to natively represent various kinds of complex relationships, and it is widely used among computer

science communities and IT industries. Here, we demonstrate the feasibility of using a graph-based database for complex

biological relationships by comparing the performance between MySQL and Neo4j, one of the most widely used graph

databases. We collected various biological data (protein-protein interaction, drug-target, gene-disease, etc.) from several

existing sources, removed duplicate and redundant data, and finally constructed a graph database containing 114,550

nodes and 82,674,321 relationships. When we tested the query execution performance of MySQL versus Neo4j, we found

that Neo4j outperformed MySQL in all cases. While Neo4j exhibited a very fast response for various queries, MySQL exhibited

latent or unfinished responses for complex queries with multiple-join statements. These results show that using graph-based

databases, such as Neo4j, is an efficient way to store complex biological relationships. Moreover, querying a graph database

in diverse ways has the potential to reveal novel relationships among heterogeneous biological data.

Keywords: biological network, data mining, graph database, heterogeneous biological data, Neo4j, query performance

Introduction

The rapid development of experimental and analytical
techniques has provided various kinds of information on
biological components (cell, tissue, disease, gene, protein,
drug response, and pathway, etc.) and their functions.
Although information on individual biological components
has important meaning, biological characteristics result
mainly from complex interactions among various biological
components [1-6]. So, one of the fundamental aims in
biology is to understand complex relationships among
heterogeneous biological data that contribute to the
functions of a living cell. However, finding these interactions
among heterogeneous biological data is very difficult due to
the complex relationships between them. For example,
many disorders are caused by multiple genetic variants,
which may affect pleiotropic genes, and are influenced by

various environmental factors.
To overcome this hurdle, various approaches have been

developed to reveal the fundamental mechanisms that
control dynamic cell organization by analyzing biological
networks [7-9]. However, for efficient biological network
analyses, traditional relational database systems, such as
MySQL and Oracle, may be limited, because traditional
relational databases store data in multiple tables and then
infer relationships by applying multiple-join statements.
Although biological network data can be stored in a
traditional relational database, join queries, which connect
tables linked by various relationships, become too com-
putationally expensive and complex to design as more
complex join operations are performed [10].

A graph database is a database that uses a graph structure.
This database uses nodes (biological entities) and edges
(relationships) to represent and store data. Each node
represents an entity (such as a biological entity), and each

20 www.genominfo.org

BH Yoon, et al. Use of Graph Database for Network Data

Table 1. List of parameters for optimization [16]

Type Parameter Description

OS memory sizing dbms.memory.pagecache.size The amount of memory to use for mapping the store files

Unsupported dbms.report_configuration Current configuration settings written to the default system

dbms.memory.heap.initial_size Initial heap size (in MB)

dbms.memory.heap.max_size Maximum heap size (in MB)

dbms.jvm.additional Additional literal JVM parameter

Transaction logs dbms.tx_log.rotation.size Specifies at which file size the logical log will auto-rotate

dbms.tx_log.rotation.retention_policy Keeps logical transaction logs for backup of the database

dbms.transaction.timeout The maximum time interval of a transaction

OS, operating system.

edge represents a connection or relationship between two
nodes. The key concept of this system is a graph structure
(organized by nodes and edges) for connections among the
stored data. The graph database is more expressive and
significantly simpler than traditional relational databases
and other NoSQL databases and is very useful for situations
with heavily interconnected data [11]. Especially, the graph
database is specialized to represent all of the relationships
among large-scale data and is useful for managing deeply
linked data. Nowadays, graph databases are widely used in
many fields, including computer science and social and
technological network analyses.

In the biological community, several researchers have
begun to adopt the graph database for biological network
analyses. For example, Lysenko et al. [10] showed that the
graph database can effectively store and represent disease
networks and is a suitable structure to establish for various
hypotheses. Henkel et al. [12] showed that the graph
database is a useful tool for effectively storing heterogeneous
data and establishing various models. Mullen et al. [13]
showed that the graph database can find novel usage (that is,
drug repositioning) through the traversing of various
relationships between a gene and disease. Balaur et al. [14]
showed that the graph database is effective in investigating
correlation between genetic and epigenetic factors in genetic
and epigenetic data of colon cancer.

In this work, we set up a graph database and tested its
performance in storing and retrieving heterogeneous and
complex biological networks. We used Neo4j (http://neo4j.
com/), one of the most frequently used graph databases, and
compared its performance with MySQL (https://www.
mysql.com/) in diverse situations. We found that Neo4j is
superior to MySQL in querying complex relationships
among heterogeneous data.

Methods

Selection of graph database engine

Among the many graph databases available, we chose
Neo4j, an open-source graph database based on Java, for our
primary graph database, owing to several advantages. Its
major advantages include (1) the use of a graph model of
relationships for intuitive information searches; (2) stability
by providing full ACID (Access, Create, Insert, Delete)
transaction; (3) flexible extension above billions of nodes,
relationships, and properties; (4) use of Java, which is easy to
maintain and is applicable to diverse operating systems
(OSs); and (5) easy-to-use API based on the REST interface
and Java API [15].

Hardware setup and optimization of the Neo4j

graph DB

We set up a high-performance computer server (80 CPUs
and 1 TB RAM) for the graph database to support the storage
and analysis of billions of different biological networks and
relationships. Also, we optimized the server by performance
tuning of the installed Neo4j (Table 1) following the Neo4j
operations manual [16]. The performance tuning included
the following three steps (Fig. 1).

Memory configuration

The performance of Neo4j for a data search depends on
the available memory to hold the entire graph database [17].
If less memory is used than what the constructed graph
database requires, a swap between the memory and hard
disk should occur, but frequent swaps between memory and
hard disk inevitably slow down the search speed. Thus, large
memory is needed and should also be set up for Neo4j for full
usage of the system memory. The memory configuration
includes three steps: (1) OS memory sizing, (2) page cache
memory sizing, and (3) heap memory sizing.

www.genominfo.org 21

Genomics & Informatics Vol. 15, No. 1, 2017

Fig. 1. Diagram for optimization of the performance of the Neo4j
graph database. Bottom layer: file open limit optimization; Neo4j
often produces many small and random reads when querying data.
Middle layer: page cache sizing; if all, or at least most, of the graph
data files from a hard disk are cached into memory, it will reduce
disk access and result in optimal performance. Top layer: heap
sizing; it is beneficial to set a large heap space to support various
query operations. OS, operating system; JVM, Java Virtual Machine.

OS memory sizing

The OS memory size is as follows:
OS memory = 1 GB + (Size of graph.db/index) + (Size of

graph.db/schema).
Thus, we allocated 768 GB of memory to page cache

memory and heap memory according to the DB file size.
According to the Neo4j document:

Actual OS allocation = Available RAM − (Page cache +
Heap size).

We allocated 100 GB for system memory and the rest to
page cache and heap size.

Page cache sizing

Page cache is used when accessing Neo4j data stored on a
hard disk. When the size of the entire data is larger than the
page cache memory, a swap occurs, frequently resulting in
high disk access cost and reduced performance. A basic
option is to allocate 4 GB of memory based on the size of the
graph DB data directory size (NEO4J_HOME/data/graph.
db/neostore.*.db). However, as our current data are larger
than 10 GB, we resized the dbms.memory.pagecache.size
parameter to above 200 GB.

Heap sizing

Based on Java, Neo4j can use more memory as heap
memory in a Java Virtual Machine (JVM) is increased.

Because more heap memory increases the performance
greatly, we allocated 300 GB of memory to heap sizing. Thus,
we set the dbms.memory.heap.initial_size parameter from 8
GB to 300 GB and the dbms.memory.heap.max_size para-
meter from 8 GB to 300 GB.

Disk access configuration

Logical transaction logs can occur in system and data
recovery after an unexpected system shutdown. They are
also used for backup at online status. These transaction log
files are renewed when their size exceeds a pre-defined size
(default 25 MB). Because these processes also affect system
performance, we optimized the parameters. The open file
limit of most LINUX servers is 1,024. However, because
Neo4j stores data as numerous index files, it frequently
accesses many files. Thus, we changed the open file limit to
400,000.

Hardware setup and optimization of the MySQL DB

We optimized the server through performance tuning of
the installed MySQL following the MySQL operations
manual. The performance tuning included the following two
steps: (1) storage engine and (2) parameters of the MySQL
environment.

Storage engine

MySQL has a variety of storage engines, each with its own
characteristics. We chose InnoDB among them. MyISAM, a
simple and fast feature, was a strong candidate, but MyISAM
does not guarantee data integrity. In addition, table locking
occurs frequently when more than 5 million data are
processed in the indexed state, thereby deteriorating the
retrieval performance. Although InnoDB is slightly slower
than MyISAM, InnoDB guarantees data integrity by
supporting transactions. InnoDB loads indexes and data into
memory for retrieval processing, so allocating more memory
improves performance.

Parameters of MySQL server

Optimization of Disk I/O

Disk searching is a huge performance bottleneck. This
problem becomes more apparent when the amount of data
becomes too large to effectively cache it. To overcome this
problem, use disks with low seek times. Table data are
cached in the InnoDB buffer pool, and we optimized the
innodb_buffer_pool_size parameter from default to 800 Gb
(50% to 75% of system memory). To optimize the maximum
size of internal in-memory temporary tables, we set the
tmp_table_size and max_heap_ table_size parameter from
default to 64 Gb. To avoid degradation in the performance of
InnoDB, use direct I/O for InnoDB-related files (innodb_

22 www.genominfo.org

BH Yoon, et al. Use of Graph Database for Network Data

Table 2. A list of collected public databases for building graph databases

Name Description URL Reference

BeFree Relations between genes and diseases from text and
large-scale data analysis

http://ibi.imim.es/befree [18]

BioGRID An interaction repository with data compiled through
comprehensive curation efforts

https://thebiogrid.org/ [19]

CGD Clinical-genomic database https://research.nhgri.nih.gov/CGD/ [20]

ChEMBL Drug-protein interaction database https://www.ebi.ac.uk/chembl/ [21]

CTD Comparative Toxico-Genomics Database, drug-disease,
drug-gene interactions

http://ctdbase.org/ [22]

Disease
Connect

Disease-disease connections http://disease-connect.org/ [23]

DrugBank Drug-protein interaction database https://www.drugbank.ca [24]

GWAS
Catalogue

A curated collection of published genomewide association
studies

https://www.ebi.ac.uk/gwas/ [25]

MeSH Medical Subject Headings https://www.nlm.nih.gov/mesh [26]

MGD The Mouse Genomics Database http://www.informatics.jax.org/ [27]

MINT The Molecular Interaction Database http://mint.bio.uniroma2.it/ [28]

NDFRT Drug interactions https://rxnav.nlm.nih.gov/NdfrtAPIs.html# [29]

OMIM Online Mendelian Inheritance in Man https://www.omim.org/ [30]

ORDO Orphanet Rare Disease Ontology http://www.orphadata.org/cgi-bin/inc/ordo_orp
hanet.inc.php

[31]

Orphanet Focuses primarily on rare diseases and orphan drugs http://www.orpha.net/consor/cgi-bin/index.php [32]

PREDICT A method for inferring novel drug interactions with
applications to personalized medicine

- [33]

RGD The Rat Genomics Database http://rgd.mcw.edu/ [34]

SemRep Associations extracted directly from the literature, using
text-mining approaches

https://semrep.nlm.nih.gov/ [35]

SIDER A side effect resource to capture phenotypic effects of drugs http://sideeffects.embl.de/about/ [36]

TTD Drug target database http://bidd.nus.edu.sg/group/cjttd/ [37]

UniProtKB Collection of functional information on proteins http://www.uniprot.org/ [38]

Table 3. A layer to distinguish the relationships among various
biological data

Layer Description

Layer I Genetic variation-gene interaction

Layer II Gene-protein interaction (molecular mechanisms)

Layer III Molecule (gene, protein)-GO, pathway interaction

Layer IV Drug-protein, drug-disease interaction

Layer V Meta database, network, and pathway interaction

GO, gene ontology.

flush_method = O_DIRECT). To optimize the log file I/O,
we set the innodb_log_file_size parameter from default to
120 Gb (15% of innodb_b uffer_pool_size).

Optimization of memory use

MySQL allocates buffers and cache to improve the
performance of database operations. The default setting is
designed to start the MySQL server on a virtual machine with
approximately 512 MB of RAM. So, we improved the
performance of MySQL by optimizing the values of certain
cache- and buffer-related system variables. To optimize the
size of the buffer used for index blocks, we set the
key_buffer_size parameter from default to 250 Gb (25% of
system memory). The table_open_cache parameter is the
number of open tables for all threads. We set this parameter
from default to 524,288 (maximum allowed value). The
join_buffer_size and sort_buffer_size parameters were set
from default to 4 Gb. The read_buffer_size, max_heap_
table_size, and thread cache parameters were set from
default to the maximum allowed value.

Collection of diverse information for graph DB

We collected diverse biological network information
(genetic variation-gene, protein-protein, drug-gene, drug-
disease, gene-disease, transcription factor-target genes) from
the web and classified them into five layers (Tables 2 and 3).

Data processing and modeling

After data collection, we first classified each data into
nodes (i.e., gene, protein, disease, drug, etc.) and relation-
ships (i.e., gene-disease, disease-drug, or SNP-gene) and

www.genominfo.org 23

Genomics & Informatics Vol. 15, No. 1, 2017

Fig. 3. Construction of graph model
of biological relationships. Each node
represents a biological element, and
nodes are connected by various types
of relationships. Each node can define
various properties. Relationships can
be defined by various types, and each
relationship has various properties.
This allows a detailed search through
the property when retrieving nodes
and relationships.

Fig. 2. Preprocessing for data structure modeling of graph database:
(1) data set download using CSV or TSV format; (2) standardized
representation of each node: gene, protein, disease, etc; (3) integra-
tion of node-node (e.g., gene-protein, gene-disease, drug-disease,
etc.) associations from multiple data sources; and (4) filtering of
unconnected and redundant entities. The final graph database
contains 114,550 nodes and 82,674,321 relationships.

Fig. 4. Schematic of an integrated graph model, showing the node
types and the relationship types used in the integrated biological
dataset and how nodes interact with one another. GO, gene
ontology; SNP, single nucleotide polymorphism; CNV, copy number
variant.

removed redundant and ambiguous nodes and relationships
(Fig. 2). Then, we integrated and expanded all nodes and
relationships (Fig. 3). Next, we created data models for each
type of node and relationship (Figs. 4 and 5).

Results

Comparison of Neo4j after optimization

We tested how the optimization of the Neo4j system
improved its performance. We compared two servers:
optimized versus non-optimized servers. The non-optimized
servers had default settings for OS memory and environment.
The optimized server had several modified settings in (1)
page cache sizing, (2) OS memory, (3) heap memory of the
JVM, and (4) the number of open file limits.

We performed the same query on each server to compare
the query performance of non-optimized and optimized
servers. We measured the time to return results by perform-

24 www.genominfo.org

BH Yoon, et al. Use of Graph Database for Network Data

Fig. 5. Procedure for importing integrated relationship data into a
graph database. ‘DataManager.java’ defines the relationship between
each raw data to be input and performs preprocessing steps, such
as removing duplicates. ‘Parsers.java’ reads raw data from a text
file and stores them in the graph database. ‘Mapping.java’ classifies
nodes and relationships from the parsed raw data. ‘Filter.java’
removes duplicate or ambiguous nodes and relationships among
created nodes and relationships. ‘BuildManager.java’ structures the
filtered nodes and relationships information according to the
previously defined graph database model structure. ‘DataStructure.
java’ and ‘Integrate.java’ build a graph database by allocating nodes
and relationships according to the modeled database structure.

Fig. 6. Comparison of the performance of query execution between
optimized and non-optimized servers. Two servers were queried
using the same search operation; the optimized server took 138
ms, whereas the non-optimized server took 316 ms.

Fig. 7. Comparison of the performance of query execution between
relational and graph databases. MySQL and Neo4j were compared
by searching relationships on 3 and 4 layers. The search for 3 layers
is a search for gene-disease-drugs associated with a particular
disease. The search for 4 layers is a search for gene-protein-drug-
pathway associated with a particular protein.

ing a query to retrieve all data that traverse the relationships
among genes, drugs, and diseases that increased the
expression of the BRCA1 gene (Supplementary Fig. 1).
When the two servers were queried using the same search
term, the optimized server returned results in 138 ms, while
the non-optimized server returned results in 316 ms for the
same query (Fig. 6).

Comparison of search speed between two databases

Traditionally, most biological data have been stored in
relational database systems. While relational database
systems are useful for hierarchical and structural storage and
search of various data, they may be less well suited for the
storage and search of data with heavy relationships. While
relational database systems can use multiple ‘joins’ to infer
relationships among different tables, multiple-join opera-
tions lead to significant execution times for a query. When
we compared MySQL, one of the most famous relational
database systems, with Neo4j for the same kinds of data, we
found that Neo4j outperformed MySQL in all tested cases.
We performed a query in MySQL and Neo4j to retrieve all
data belonging to a particular gene-related path in a gene,
disease, and drug relationship through a 3-layer search. For

the same task, we performed a MySQL query to search for
the relationship between proteins that are homologous to a
particular protein in a gene, protein, drug, and pathway
relationship and the various nodes that traverse that protein
(Supplementary Fig. 2). When the two databases (MySQL
and Neo4j) were queried using the same search term, Neo4j
took 2.128 s, while MySQL took 58.325 sec for a 3-layer
search. For the 4-layer search, Neo4j took 20.128 s, while
MySQL was unable to return a result (Fig. 7).

www.genominfo.org 25

Genomics & Informatics Vol. 15, No. 1, 2017

Fig. 8. Examples of using a graph database to find biologically meaningful information. Comparison of the nodes in the shortest path
and the nodes in the other path (A) and flexible extension of the existing graph database with a new type of information (B).

Examples of graph database usage

The graph database provides a flexible search for complex
relationships, as well as a fast search for relationships among
multiple nodes. We show here two examples of using a graph
database. The first is a search for the shortest paths travers-
ing various relationships among connected nodes. For

example, exploring the relationship between biological
entities that are involved in two biological mechanisms can
identify new potential targets for disease treatment and
provide better insights into drug administration. The first
example is a graph that identifies the shortest path among
protein interactions or homologous proteins within three
levels of the protein subsets associated with a nuclear

26 www.genominfo.org

BH Yoon, et al. Use of Graph Database for Network Data

receptor (Fig. 8A). It can be seen that the two distinct
subsets of proteins belong to a common pathway.

The second example includes flexible extensions and
searches of the constructed graph database. When adding a
new relationship in the constructed graph database, it is
possible to flexibly define and add the relationship, regard-
less of the structure of the existing graph database. Fig. 8B
shows an example of adding a result of a new genetic analysis
to the existing graph database and using it for a search. The
added information can be easily defined and added without
restrictions from the existing graph database structure. In
this example, the added information is a node, named
‘classifier,’ which is related to the existing graph database. In
contrast, the relational database system is quite inflexible in
adding new types of information, because it sometimes
requires the redesign of existing tables.

Discussion

Most biological databases have used relational database
systems for data storage, retrieval, and searches. The
relational database system is a useful system for the storage
of well-structured data with pre-defined columns. However,
even though it is termed relational, the relational database
system does not store relationships among heterogeneous
data by themselves. Rather, it infers relationships among
different data during a query by using the ‘join’ operation.
Thus, paradoxically, the relational database system itself is
not relational and is inefficient in the storage and retrieval of
diverse relationships among data. As more and more
biological data accumulate, it is becoming evident that the
relational database system is limited in dealing with multi-
tudes of complex networks and relationships among various
kinds of biological data.

To overcome the current limits of the relational database
system in dealing with complex biological networks and
relationships, we employed and tested the graph database
system, one of the NoSQL databases that are actively being
developed to deal with various kinds of large data. We used
Neo4j, one of the most actively developed, open-source
graph databases with property graph models. We first
optimized various parameters of a graph database server for
maximum performance, as suggested by the Neo4j com-
munity, and achieved more than 40% improvement in
performance. During the optimization, we found that Neo4j
creates many index files for the storage of many relationships
and depends heavily on system memory to read and write
those index files. Thus, as the size of data increases and as
more complex queries are executed, the performance of a
graph database depends more on memory than the CPU.
Thus, to achieve better performance from a given hardware

system, the system memory should first be optimized.
When we compared the performance of Neo4j with

MySQL for several queries on diverse relationships, we
found that Neo4j always outperformed MySQL in terms of
execution time−the more complex the relationships that
were queried, the larger the difference in time between the
two systems. For very complex relationships−for example,
tens of millions of relationships or relationships with more
than five steps (or five join operations)−MySQL was unable
to finish the query. In this regard, we found that for the study
of complex relationships among heterogeneous biological
data, the graph database is more promising than the
relational database system.

In real life, various kinds of graph databases have changed
our lives in many ways. Facebook, LinkedIn, and online
airplane booking service companies are examples of com-
panies that utilize graph databases extensively. In the field of
biological research, the graph database also has enough
potential to find various unknown novel relationships
among various heterogeneous biological data.

Supplementary materials

Supplementary data including two figures can be found
with this article online at http://www.genominfo.org/src/
sm/gni-15-19-s001.pdf.

Acknowledgments

This work was supported by grants from the genomics
(NRF-2012M3A9D1054670 and NRF- 2014M3C9A3068554)
programs of the National Research Foundation of Korea,
which is funded by the Ministry of Science, ICT, and Future
Planning and the KRIBB Research Initiative.

References

1. Hartwell LH, Hopfield JJ, Leibler S, Murray AW. From molec-
ular to modular cell biology. Nature 1999;402(6761 Suppl):
C47-C52.

2. Kitano H. Computational systems biology. Nature 2002;420:
206-210.

3. Koonin EV, Wolf YI, Karev GP. The structure of the protein
universe and genome evolution. Nature 2002;420:218-223.

4. Alon U. Biological networks: the tinkerer as an engineer.
Science 2003;301:1866-1867.

5. Bray D. Molecular networks: the top-down view. Science
2003;301:1864-1865.

6. Barabási AL, Oltvai ZN. Network biology: understanding the
cell's functional organization. Nat Rev Genet 2004;5:101-113.

7. Li J, Zhao PX. Mining functional modules in heterogeneous bi-
ological networks using multiplex PageRank approach. Front

www.genominfo.org 27

Genomics & Informatics Vol. 15, No. 1, 2017

Plant Sci 2016;7:903.
8. Pavlopoulos GA, Secrier M, Moschopoulos CN, Soldatos TG,

Kossida S, Aerts J, et al. Using graph theory to analyze bio-
logical networks. BioData Min 2011;4:10.

9. Sharan R, Ideker T. Modeling cellular machinery through bio-
logical network comparison. Nat Biotechnol 2006;24:427-433.

10. Lysenko A, Roznovăţ IA, Saqi M, Mazein A, Rawlings CJ,
Auffray C. Representing and querying disease networks using
graph databases. BioData Min 2016;9:23.

11. Angles R, Gutierrez C. Survey of graph database models. ACM

Comput Surv 2008;40:1.
12. Henkel R, Wolkenhauer O, Waltemath D. Combining computa-

tional models, semantic annotations and simulation experi-
ments in a graph database. Database (Oxford) 2015;2015:bau130.

13. Mullen J, Cockell SJ, Woollard P, Wipat A. An integrated data
driven approach to drug repositioning using gene-disease
associations. PLoS One 2016;11:e0155811.

14. Balaur I, Saqi M, Barat A, Lysenko A, Mazein A, Rawlings CJ,
et al. EpiGeNet: a graph database of interdependencies be-
tween genetic and epigenetic events in colorectal cancer. J

Comput Biol 2016 Sep 14 [Epub]. https://doi.org/10.1089/
cmb.2016.0095.

15. Robinson I, Webber J, Eifrem E. Graph Databases: New

Opportunities for Connected Data. 2nd ed. Sebastopol: O'Reilly
Media, Inc., 2015.

16. Neo Technology Inc. The Neo4j Operations Manual v3.0,
Performance [Internet]. Baltimore: Neo Technology, Inc., 2016
[cited 2016 Jan 10]. Available from: https://neo4j.com/docs/
operations-manual/current.

17. Van Bruggen R. Learning Neo4j. Birmingham: Packt Publishing
Ltd., 2014.

18. Bravo À, Cases M, Queralt-Rosinach N, Sanz F, Furlong LI. A
knowledge-driven approach to extract disease-related bio-
markers from the literature. Biomed Res Int 2014;2014:253128.

19. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A,
Tyers M. BioGRID: a general repository for interaction
datasets. Nucleic Acids Res 2006;34:D535-D539.

20. Solomon BD, Nguyen AD, Bear KA, Wolfsberg TG. Clinical ge-
nomic database. Proc Natl Acad Sci U S A 2013;110:9851-9855.

21. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey
A, et al. ChEMBL: a large-scale bioactivity database for drug
discovery. Nucleic Acids Res 2012;40:D1100-D1107.

22. Mattingly CJ, Colby GT, Forrest JN, Boyer JL. The Comparative
Toxicogenomics Database (CTD). Environ Health Perspect
2003;111:793-795.

23. Liu CC, Tseng YT, Li W, Wu CY, Mayzus I, Rzhetsky A, et al.
DiseaseConnect: a comprehensive web server for mechanism-

based disease-disease connections. Nucleic Acids Res 2014;42:
W137-W146.

24. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M,
Stothard P, et al. DrugBank: a comprehensive resource for in
silico drug discovery and exploration. Nucleic Acids Res
2006;34:D668-D672.

25. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H,
et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait
associations. Nucleic Acids Res 2014;42:D1001-D1006.

26. Lipscomb CE. Medical Subject Headings (MeSH). Bull Med

Libr Assoc 2000;88:265-266.
27. Bult CJ, Eppig JT, Kadin JA, Richardson JE, Blake JA; Mouse

Genome Database Group. The Mouse Genome Database
(MGD): mouse biology and model systems. Nucleic Acids Res
2008;36:D724-D728.

28. Chatr-aryamontri A, Ceol A, Palazzi LM, Nardelli G, Schneider
MV, Castagnoli L, et al. MINT: the Molecular INTeraction
database. Nucleic Acids Res 2007;35:D572-D574.

29. Peters LB, Bahr N, Bodenreider O. Evaluating drug-drug inter-
action information in NDF-RT and DrugBank. J Biomed

Semantics 2015;6:19.
30. Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick

VA. Online Mendelian Inheritance in Man (OMIM), a knowl-
edgebase of human genes and genetic disorders. Nucleic Acids

Res 2005;33:D514-D517.
31. Schriml LM, Arze C, Nadendla S, Chang YW, Mazaitis M, Felix

V, et al. Disease Ontology: a backbone for disease semantic
integration. Nucleic Acids Res 2012;40:D940-D946.

32. Rohde DD. The Orphan Drug Act: an engine of innovation? At
what cost? Food Drug Law J 2000;55:125-143.

33. Gottlieb A, Stein GY, Ruppin E, Sharan R. PREDICT: a method
for inferring novel drug indications with application to per-
sonalized medicine. Mol Syst Biol 2011;7:496.

34. Twigger SN, Shimoyama M, Bromberg S, Kwitek AE, Jacob HJ;
RGD Team. The Rat Genome Database, update 2007: easing
the path from disease to data and back again. Nucleic Acids Res

2007;35:D658-D662.
35. Krallinger M, Valencia A, Hirschman L. Linking genes to liter-

ature: text mining, information extraction, and retrieval appli-
cations for biology. Genome Biol 2008;9 Suppl 2:S8.

36. Kuhn M, Campillos M, Letunic I, Jensen LJ, Bork P. A side ef-
fect resource to capture phenotypic effects of drugs. Mol Syst

Biol 2010;6:343.
37. Chen X, Ji ZL, Chen YZ. TTD: Therapeutic Target Database.

Nucleic Acids Res 2002;30:412-415.
38. UniProt Consortium. Activities at the Universal Protein

Resource (UniProt). Nucleic Acids Res 2014;42:D191-D198.

SUPPLEMENTARY INFORMATION

Use of Graph Database for the Integration of Heterogeneous Biological Data

Byoung-Ha Yoon
1,2

, Seon-Kyu Kim
1
, Seon-Young Kim

1,2
*

1
Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and

Biotechnology (KRIBB), Daejeon 34141, Korea,
2
Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34113, Korea

http://www.genominfo.org/src/sm/gni-15-19-s001.pdf.

Supplementary Fig. 1

Supplementary Figure 1. Cypher query to retrieve the relationships among genes, drugs, and diseases that increased the

expression of the BRCA1 gene.

Supplementary Fig. 2

Supplementary Figure 2. Cypher queries and MySQL queries to compare the search speed of Graph database and MySQL database.

