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ABSTRACT 
The importance of partial discharge (PD) measurements for di- 
agnosis of defects in insulation systems is well known. The im- 
age patterns obtained in these measurements contain features 
whose analysis leads to  identification of the PD cause. These 
features are the phase position and amplitudes of PD pulses 
appearing on the image pattern (usually displayed on elliptic 
time base on conventional detectors). There is a close similari- 
t y  between PD signals and speech. Both are time-varying and 
similar in behavior. Hidden Markov models (HMM) have been 
very successful in modeling and recognizing speech. Hence, an 
attempt was made to  employ them to classify PD image pat- 
terns. Basis for selection of model and training parameters and 
the obtained results are discussed. It is shown that successful 
recognition of PD image patterns using HMM is possible. The 
ability of HMM to classify some actual PD image patterns has 
also been ascertained. 

1. INTRODUCTION 

ARTIAL discharge (PD) measurement has gained wide P acceptance as a diagnostic tool t o  assess the adequacy 
of insulation systems in power apparatus during and after 
manufacture. In this measurement, the P D  pulses are dis- 
played in relation to  the electrical phase angles a t  which 
they occur; an elliptic time base is often used for this 
purpose. Useful features available from these P D  image 
patterns are the number of pulse groups, relative phase 
positions and spreads, behavior with change in voltage, 
duration of voltage application, etc. These features are 
used by experts for P D  interpretation. Over the years, 
systematic collections of various P D  image patterns have 
been made. These and annotations on them are available 
in CIGRE WG 21.03 [l] and in [2]. However, specific clas- 

sification of any image pattern obtained in a P D  test to 
one from the listed types still needs human expertise be- 
cause of inherent randomness. Codifying these random- 
ly varying feature information into rules is very difficult, 
if not impossible. Therefore, a need arises to  automate 
the interpretation by a n  approach possessing abilities for 
learning from examples. 

Consider, the time domain waveform Figure l(a) of one 
cycle of a P D  signal. P D  is a stochastic process in which 
phase position, number and amplitude of pulses vary ran- 
domly with time, duration of applied voltage and insula- 
tion aging. These variations are within certain lower and 
upper bounds, which primarily depend on the P D  cause. 
These signal variations translate on to  the image pattern 
as changes in phase position, phase spread of pulse groups 
and amplitudes. Thus, the P D  process can be described 
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Figure 1. 
(a) One cycle of a PD signal. (b)  Speech signal 
due to utterance, “Collect from Tom (silence)”. 
Adapted from [3], Figure 5(a). 

mathematically as a time-varying phenomenon. Figure 
l (b )  gives the time domain speech signal due to  an utter- 
ance, “Collect from Tom (silence)” [3]. 

It is well recognized in speech understanding that it is 
the temporal order of speech signals (analogous to  phase 
information in PD)  which conveys information. It varies 
with individuals, accent, context, emotion, and environ- 
ment (similar to  variations with time, duration of applied 
voltage, aging etc. in PD). Thus these two processes are 
similar in this respect. 

In the speech domain, hidden Markov models (HMM) 
have been exceptionally successful for tasks such as recog- 
nition of isolated and connected words (speaker depen- 
dent and independent), and, to  some extent, continuous 
speech. Some of the important advantages of using HMM 
are: 

1. The ability to  learn from examples. The model param- 
eters are automatically tuned to  represent the inputs. 

2. The temporal characteristic of the input signal (left- 
right model) is modeled inherently. 

3. The tolerance to  randomness observed in the input sig- 
nal due to  probabilistic formulation is implicit. 

4. It does not need a priori distribution of inputs for es- 
timating the parameters, which is usually not the case 
in other statistical approaches. 

Close similarity between speech and P D  signals sug- 
gested exploration of HMM use for P D  pattern classifica- 
tion. 

This paper presents results of this approach to mod- 
el and automatically classify P D  image patterns using 
HMM. After an introduction to  HMM, the methodolo- 
gy and algorithms for evolving them are explained. Re- 
sults obtained are then discussed and the utility of this 
approach has been evaluated. A brief account of the ap- 
proach’s ability when fed with five types of actual PD im- 
age patterns is given. This approach has been compared 
with that of neural networks which has gained promi- 
nence in recent years. 

2. BRIEF INTRODUCTION TO 
HMM 

2.1 DESCRIPTION OF HMM 

LTHOUGH the basic theory of Markov chains is well A known from the beginning of this century, it is only 
in the last decade that  it has been explicitly and success- 
fully applied for different speech recognition tasks. La.ck 
of an optimization algorithm for estimating the model pa- 
rameters from example da t a  delayed its implementation. 
These advances were reported in a series of classic papers 
by Baum and his colleagues in the late 1960’s (a principal 
reference being [4]). Thereafter, it was applied for speech 
recognition by Baker [5] and,  from then on, numerous 
attempts have been made and are still continuing on var- 
ious tasks/versions of automatic speech recognition. The 
results obtained so far are very encouraging. 

An HMM is defined by Rabiner [6,7] as a doubly sto- 
chastic process comprising an underlying stochastic pro- 
cess that is not directly observable but can only be vi- 
sualized through another set of stochastic processes that 
produce the sequence of observations. In simpler terms, 
it is a collection of states connected by transitions and 
emitting an output during each transition. The model 
is named ‘hidden’ since the state of the model a t  a time 
instant t is not observable directly. 

There are basically two types of HMM. The ergodic, 
or fully connected HMM, is one in which every state can 
be reached (in a single or finite number of steps) from 
every other state of the model. The other type is the non- 
ergodic or left-right model in which, as time increases, the 
state index also may increase i.e., the states proceed from 
left to  right (Figure 2(a)). All other HMM are merely a 
combination of these two types. 
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Obviously for the left-right model, x1 = 1.0, x; = 0.0, 
2 < i < N .  

Possible discrete symbols in respective states 

STATE 1-b STATE 2-+ STATE 3-+ STATE 4-b STATE 5 

Generated Observation sequence 
(states observabl e indirectly) 

Figure 2. 
(a) A five state left-right HMM. (b) Schematic 
of generation of observation sequence given the 
model. 

The left-right model best describes the speech and PD 
processes because it inherently incorporates temporal or- 
dering, a must for modeling time-varying signals. Fig- 
ure 2(a) shows a left-right model which starts from the 
left in state q1 a t  time t and sequentially proceeds to the 
right and stops a t  time T (probably in state q N ,  if T is 
large). 

2.2 ELEMENTS OF HMM 

The main elements of an HMM are [6,7] the following. 
N is the number of states in the model. Individual sta.tes 
are denoted as ( e l ,  q 2 ,  . . ., q N ) .  Usually some physical 
significance is attached to  these states. 

M is the number of distinct observable symbols per 
state. It corresponds to  the actual output of the system 
being modeled. Individual symbols are 
v = (V*, v2,. . . VM). 

The initia.1 state distribution is given by the matrix 
II = x;, xi = Pr (q ;  a t  t = l), i = 1 . . .  N .  xi is the 
probability of starting the process in state q; a t  t = 1 

The state transition probability distribution is the ma- 
trix A = a l J ,  ulJ = Pr (qJ a t  t + l lq ,  a t  t ) ,  l < il j < N .  
ulJ is the probability of making a transition from state qI 
a t  time t to  state qJ a t  time t + 1, and this depends on 
the state qt (Markovian property). The transition may 
be such that the process remains in state qr a t  t + 1 or 
moves to state q J .  

For the left-right model of Figure 2(a),  U;, = 0.0, j < i 
and for j > i+ 1. Choice of values of the other matrix ele- 
ments will be discussed in Section 3.3. The symbol proba- 
bility distribution is the matrix B = b, (k ) ,  b j ( k )  = P?‘(v,, 
a t  t l q j  a t  t ) ,  j = 1 to N ;  IC = 1 to M .  b j ( k )  is the proba- 
bility of emitting the symbol v k  from state q, a t  time t ,  
from among the discrete set of symbol observations. 

In short, the model is denoted by 0 = (A ,  B, n). The 
model starts in a particular state q; a t  t = 1 depending 
on the initial state distribution, and produces an output 
symbol Ot = Vk, according to  b ; ( k ) .  It moves to  state 
q, or remains in state q; according to aiJ .  This process 
of outputing a symbol and transition to  the next state 
repeats until a goal (such as completing a fixed number 
of time steps) is reached. In the left-right model, it starts 
in state q1 a t  t = 1 and stops after T steps i.e. a t  t = T 
(probably in sta.te q N 1  if T is large). Thus, one can even 
generate an observation sequence 0 = 01, 0 2 ,  0 3 , .  . . , OT,  
given the model, as depicted pictorially in Figure 2(b). 

IRAINING PHASE 
i -  

Known 
C1 ass method 

PD Inage- 
Pattern 

of 
Unknown 

C1 ass 

RECOGN I I ION PHASE 

-1 I 

Choose 
Maxi mum 

output 
corres- 
ponding 

Figure 3.  
Block diagrams of training and recognition phases. 
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2.3 ISSUES IN HMM 
I M P LE M EN TAT10 N 

The actual application of HMM essentially involves first 
a training phase during which the model is built. This at-  
tempts to  optimize the model parameters A, B, ll. so as 
to  best describe the observation sequences. Then comes 
the recognition phase which involves classification of new 
sequences (also referred to  as the ‘evaluation’ or ‘scor- 
ing’ problem by speech analysts), where computation of 
Pr(Ol8); the probability that the observed sequence 0 = 
0 1 , 0 2 , 0 3 , .  . . , OT, was produced by the model 8, is per- 
formed. Figure 3 gives block diagrams of these two phas- 
es. A computationally efficient solution to  the recogni- 
tion problem has been reported in [6,7], and is named 
‘forward-backward’ procedure. With the ‘Forward’ vari- 
able a,(i) and ‘Backward’ variable Pt(i) defined as: 

a t ( { )  = P r ( O l , 0 2 , .  . . , Ot,  qi a t  tie) 
Pt ( i )  = Pr(Ot+i, Ot+2,. . . , (1) 

OTlqi a t  t ,  8) 
the equations involving its computation are initialization 
Equation (2)  and (4) and induction Equations (3)  and (5) 

al(i) xibi(O1) l < i < N  (2) 

for t = 1 . .  .T - 1, 1 < j < N 

N 

a t+ l ( j )  = [ C a t ( i ) a i j l b j ( o t + l )  

(3) 
i = l  

N 

Pr(Ol8) = aT(i)  
i=l 

P T ( i )  1.0 l < i < N  (4) 

for t = T - 1 . . . 1, 1 < i < N 
N 

~ t ( i >  = Cai jb j (Ot+ i )P t+ l ( j )  (5) 
j=1 

There is as yet no analytical procedure to  re-estimate 
the model parameters A, B and II which maximizes 
Pr(Ol8), given any finite observation sequence as train- 
ing data.  Therefore an iterative method (due to  Baum 
and Welch [SI) is employed to  choose 8 such that Pr(Ol8) 
is only locally maximized. Baum and his colleagues [4] 
showed that the re-estimated model e = (A, B, n) is bet- 
ter than or equal to  the previous model estimate 8, in 
the sense that  P r ( 0 l e )  2 Pr(Ol8). Thus, if iteratively e 
can be used in place of 8 t o  repeat the re-estimation pro- 
cess, the probability of 0 being observed from the model 
improves until some limiting point is reached. The final 
result or estimate is called maximum likelihood estimate 
of HMM. 

The re-estimation formulae are evaluated as follows 
(details can be found in [6-81). The value ai, is the ratio 
of the expected number of transitions from qi to  qj to the 
expected number of transitions from qi. 

The value 6 j ( E c )  is the ratio of the expected number 
of transitions from q, and observing symbol Vj to the 
expected number of times in state q,, and iii is not esti- 
mated in the left-right model since any HMM parameter 
set to zero initially will remain zero throughout the re- 
estimation procedure. 

A major problem with left-right models is that  a single 
observation sequence cannot be used to  train the model 
using the above principle. This is because the transient 
nature of the states within the model only allow a small 
number of observations for any state. Thus reliable es- 
timates are possible only with multiple observation se- 
quences. It is assumed that  each observation sequence 
is independent of the other and individual frequencies of 
occurrence for each of the sequences are added [7,8]. 

Computation of at ( i )  and Pt(i) as per Equations (2)  
to (5) involve probabilities (< 1.0) and quickly lead to 
mathematical underflow on any machine. A reasonable 
solution is to  perform scaling of at ( ; )  and &(i) when 
necessary, or a t  every time step t .  These scaled values 
are used in the re-estimation formulae and yield unscaled 
estimates [7,8].  

3. CHOICE OF HMM 
PARAMETERS FOR PD 

PATT E R N S 

RAINING an HMM involves firstly the choice of a T number of quantities NI M ,  initializations of x ,  ail 
and bj (k)  etc.. It has been observed by many speech re- 
searchers that  a proper choice of initial estimates is very 
essential and 1ea.ds to  better results [7-91. But, unfor- 
tunately, no simple rules exist to aid such a choice and 
moreover the choice depends on t,he type of signal being 
modeled. Therefore a justification for any chosen model 
parameter becomes very essential. 

3.1 INPUT SIGNAL PATTERNS 

The image pattern displayed on conventional PD de- 
tector screen can be transferred to  a computer with the 
help of a CCD camera, from which the P D  signal pattern 
is extracted. The  details of extraction from the displayed 
image pattern are given in the Appendix. If the digitized 
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P D  signal is available (as is possible with modern instru- 
mentation), the signal pattern can be obtained directly 
(Figure 10). Here, these signal patterns are 36 points 
long and scaled in the range 0 to  1.0. Thirty such signal 
patterns form the training set. Only the positive excur- 
sions of the P D  pulses in the image pattern have been 
considered in line with conventional PD measurements. 

state (a i j ) .  In practice, uniform estimates of ai, have 
been considered quite adequate [7,8]. This leads to the 
selection of a;; a.nd a;;+l = 0.5, for 1 < i < N - 1 and 
a” = 1.0, for all the models chosen. 

3.4 INITIALIZATION OF b j ( k )  

Initial estimates of b, ( I C )  have a very high influence on 
the final estimates. Various methods such as hand tuning 
of the initial estimates, maximum likelihood segmenta- 
tion of observations with averaging, segmental K-means 
segmentation with clustering, etc. are used to  obtain bet- 
ter initial estimates in speech recognition [7,9]. All these 
involve much preprocessing. Therefore, all the symbols in 
the states are assumed to  be ‘equally probable’ and b , ( k )  
is initialized to  1 / M  for all j ,  k, for simplicity. 

360’ 

I PLt w1 W U z k U  L I  

I 

0 -Background EEED -PD Zone 

Figure 4. 
Basis for choosing N by segmentation of signal 
record. Two possible types (a)  and (b)  are shown. 

(b) 

3.2 NUMBER OF STATES N 

All the P D  image patterns can, as a first approxima- 
tion, be considered to  consist essentially of two zones; 
‘PD’ and ‘Background’, analogous to  ‘Signal’ and ‘Si- 
lence’ in speech. The relative durations and positions 
of these zones vary depending on the type of PD. In Fig- 
ure 4, the two variations shown cover all these possibilities 
and the P D  input patterns can be accounted for by this 
approach. As can be seen, there are in all 5 zones and 
hence, N was chosen to  be 5.  In speech domain, values of 
N from 5 to  7 have been considered and found to give low 
word recognition error rates [7-91. Therefore, the choice 
of N = 5 can be considered as reasonable. 

3.3 INITIALIZATION OF a,, 

The state transition probability distribution basically 
models the duration for which a process resides in a par- 
ticular state (ai i ) ,  before making a transition to  the next 

3.5 OBSERVATION SEQUENCE AND 
SYMBOLS 

The P D  signals are ‘pulsive’ in nature and do not con- 
tain any predominant sinusoidal component, as is con- 
tained in speech. In the present case, only relative time 
information is available. Therefore, linear predictive cod- 
ing analysis (used in speech domain to  obtain observation 
vectors), cannot be adopted here. So, as a first step, only 
quantized amplitudes were considered. The signal pat- 
tern (scaled from 0 to  1.0) containing the averaged am- 
plitudes are quantized in steps of 0.05 to  yield the obser- 
vation sequence. Therefore, the corresponding symbols 
are V = 0.0,0.05,0.10,. . . , 1.0 and M = 21. 

3.6 CONSTRAINTS ON b j ( k )  DURING 
TRAIN IN G 

Serious recognition errors will result [7-91 if any ele- 
ment of b , ( k )  is allowed to  attain a zero value during the 
training phase. This is because, the recognition phase 
involves the computation of Pr(Ol6) from at(i)  (Equa- 
tion (2) and (3)) for each of the models and assigning the 
input to the most probable model (i.e. the model with the 
maximum Pr(Ole).  This problem is avoided by clamping 
the defaulting elements to  a small value, E .  Thereafter, 
b j ( k )  is rescaled such that  X I ,  b j ( k )  = 1.0. This means 
that the probability of none of the symbols in any state 
is allowed a zero value, however remote its chance of oc- 
currence may be. Such a constraint check is done each 
time the model parameters are updated. Values of E be- 
tween l op3  to  used in speech have resulted in low 
word recognition errors. Hence, a value was used 
throughout this work unless otherwise stated. 
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4. RESULTS AND 
DISCUSSIONS 

4.1 STUDY OF SIGNAL PATTERNS 

study of the pa.tterns in [1,2] resulted in the identi- A fication of 21 distinct patterns; of them, 7 are due 
to  interferences. As the latter patterns are not related 
to  the insulation system under study, present with 'zero' 
applied voltage, and often found to  rotate due to rela- 
tive asynchronism with the time base, no definite phase 
position can be assigned to  these patterns. Hence, pat- 
tern stationarity or otherwise cannot be conveyed simply 
through a single image and they have to  be considered 
separately. Image patterns due t o  interferences have a 
finer structure when compared to  the rest. Hence, cau- 
tion is to  be exercised while forming the signal patterns so 
a.s to reta.in as many discriminating features as possible. 
This is achieved with longer observation sequences, and 
hence results in increased training time. These results 
will be reported later. 

A study of the phase angle characteristics of the first 
set of patterns (14, herein after called classes) led to  the 
following subgroupings: 
Group A (3) - 2 pulse groups in first and third quadrants. 
Group B (6) - 1 or 2 pulse groups near voltage peaks. 
Group C (5) - 2 pulse groups near voltage zero. 

After preliminary processing of each of the image pat- 
terns 6 signal patterns were extracted by choosing its 
starting positions randomly, within a phase interval of - 20". This simulates the random variation of phase an- 
gle a t  which the pulses appear on the image pattern. 30 
signal patterns are obtained by repeating the process 5 
times for a good statistical representation in the training 
set. Figure 5 shows this process. 

4.2 TRAINING O F  H M M  

H M M  are built for each of the 14 classes by the training 
procedure outlined in the flow chart shown in Figure 6. 
This method is a supervised learning approach and, as 
only a local minimum is reachable, no absolute error val- 
ue can be fixed a priori for indicating convergence. So, 
the training is stopped when the change in probability of 
observing a sequence conditioned on the model, Pr(Ol8) ,  

0 
I 

Figure 5. 
Procedure for extraction of signal patterns. (a )  
Processed camera output .  (b) Extracted image 
pattern. (c) Signal pattern before averaging. (d)  
Scaled signal pa.ttern 36 points long. 

is reasonably small or when the number of iterations ex- 
ceeds a preset limit [8]. To prevent underflow in compu- 
tation of P T ( O ~ O ) ,  the mean logarithmic probability M P  
is computed as 

' U  n 
i = l  r 

where Oi is the i th observation sequence from training 
set, 8' the updated HMM after j t h  iteration, and p is the 
number of training set patterns. 

In this work, the latter convergence condition was cho- 
sen for simplicitv. Results showed that - 25 to  50 itera- 
tions are sufficient to  reach these local minima for all the 
models. 

4.3 H M M  PERFORMANCE 

HMM corresponding to  each of the 14 classes were 
trained independently assuming them to be distinct. As 
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Figure 6. 
Flow chart for the training procedure. 

I 

I 1 

No. of iterations 

No, of iterations 
Figure 7. 

Sample HMM learning curves for Cases 1 and 2. 
(a)  Case 1 ,  (b)  Case 2. 

Table 1. 
Value of 6 a.nd number of inputs N before updat- 
ing the HMM. 

set. Initializations were done as already explained. The 
resulting learning curves were observed to  be oscillatory 
for most of the models. Figure 7(a) gives sample learning 
curves. Tests for recognition capability were run using - - 

an H M M  is required to  recognize any given input Pat- 
tern correctly, tests were run to evaluate this capability 
by using inputs drawn from the training set itself. 

inputs drawn from the training set and results indicated 
need for further improvement. It was conjectured that 
these oscillations are due to  premature model updating. 
Hence, the number of inputs fed in before updating was 
increased from 10 to  20 (the other parameters being un- 
changed) and a new set of models were trained. These 
resulted in smoother learning curves as shown in Figure 

Initially, models were updated after 10 randomly cho- 
sen observation sequences were drawn from the training 
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Group HMM (No.) 
1 

A 2 

7(b) and better recognition ability. To evaluate the effect 
of E on recognition errors, a new set of models were also 
trained using E = Table 1 gives all the parameters 
used during training. Table 2 shows these results. It can 
be seen that only marginal improvement was obtained for 
Case 3 when compared to  Case 2. 

Case 1 Case 2 Case 3 
22 28 29 
28 29 28 

- 40 
9 

3 
4 
5 

B 6 
7 
8 
9 
10 
11 

C 12 
13 
14 

- HMM1 - H M M 7  

26 26 27 
20 24 29 
27 30 27 
27 30 28 
29 25 30 
17 16 21 
25 30 30 
22 29 26 
21 30 30 
18 30 30 
24 23 24 
26 29 30 

- HMM14 
I .  1 

-1201 - 4 b Ib 12 14 
HMM number 

Figure 8. 
Discrimination ability of HMM (Case 3) .  

Table 2. 
Number of correct classifications when tested 
with training set itself (30  patterns each). 

Generalization capability of HMM also was tested by 
using additionally extracted signal patterns. These re- 
sults are summarized in Table 3. Recognition rates ob- 
tained for these new inputs were equally good for both E 

values of l o p 4  and The ability of HMM to classify 
correctly any single input if it belongs to its class and 
discriminate it from others is shown in Figure 8. 

4.4 DISSIMILARITY MEASURE FOR 
HMM 

All along, the models have been trained on the assump- 
tion that the individual classes they represent are distinct. 
But it may so happen that two classes assumed to  be 
distinct may in fact be very similar in a statistical sense 
even though the estimated model parameters may appear 
different. Such circumstances lead to  random misclassi- 
fication within the two classes (assumed distinct) during 
the recognition phase. This necessitates a dissimilarity 
check to be performed on the trained models. 

In speech domain, such a model distance or statisti- 
cal equivalence check is generally done [7,10]. Following 
this approach, a dissimilarity measure in terms of model 
distance has been calculated. The model distance indi- 
cates how well HMM 611 matches observations generated 
by HMM 612, relative to  how well HMM 612 matches ob- 
servations generated by itself [7, lo]. The model distance 
between HMM 611 and HMM 612 is defined as 

where 0(2) = 0 1 , 0 2 ,  03,. . . , OT is a T length sequence 
generated by model 612. 

This distance measure being asymmetrical, a symmetrized 
version is defined as: 

The larger the distance, the greater the dissimilarity. The 
distances aid in locating those models which are statisti- 
cally similar, but very different in appearance. 

These distances were calculated for models within a 
group. Separate sequences were generated to  compute 
the distance each time. The model distances for HMM 
belonging to Group C are given in Table 4.below. These 
were obtained as averages of 100 such distances. 

5. EXPERIMENTS WITH 
ACTUAL PD PATTERNS 

The HMM which were trained using synthetic patterns 
had performed well in generalization tests. Even then, 
their performance when fed with actual PD patterns had 
to be ascertained because, in practice, noise and inter- 
ference levels are usually higher. So, some five typical 
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No. 
nputs 

97 
73 
75 
77 
75 
70 
70 
69 
71 
76 
80 
71 
55 
60 
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% correct 
Case 2 Case 3 

82 78 
93 92 
85 84 
78 91 
88 83 
90 94 
76 100 
81 72 
92 97 
91 87 
93 91 
100 98 
82 91 
98 98 

Table 3.  
Recognition results with new inputs (Check of 
generalization ability). 

HMM 
Group No. 

1 
A 2 

3 
4 
5 

B 6 
7 
8 
9 
10 
11 

c 12 
13 
14 

Figure 9. 
Sample of processed camera output and extracted 
pattern for actual PD due to surface discharge 
on a cable. Two large and symmetrical pulsive 
interferences present have also been captured. 

(both complex and simple patterns) P D  from among the 

Table 4. 
Model distances for HMM classes 10 . . . 14 

0.000 0.922 0.461 
0.000 0.507 

0.000 

14 sets considered, were generated and displayed on the 
P D  detector screen using an HV test system. An overall 
recognition rate of - 84% was obtained. Further details 
can be found in [13]. An example of such a P D  (due 
to surface discharge on a cable specimen) along with the 
extracted pattern is shown in Figure 9. The small reduc- 
tion in overall performance of the HMM when fed with 
actual P D  patterns may be attributable to  higher levels 
of noise and pulsive interference present, as is evident in 
Figure 9. Details regarding training HMM to recognize 
both synthetic and actual interference patterns have also 
been reported in [13]. 

Table 5. Comparison of HMM and NN 

Criteria HMM NN 
Type of classifi- Statistical Non-parametric 
er (implements 

input-output 
mapping.) 

Training Trained inde- Exact imple- 
pendently as- mentation of 
suming each is training set en- 
distinct, verified sured: 1 a t  
later. output node, 0 

a t  other output 
nodes. 

Convergence Only local max- Global maxi- 
ima attainable. ma  reachable, 
Hence conver- almost always. 
gence limit = So convergence 
iteration limit limit can be 
or when change fixed easily. 
in Pr(Ol6) is 
small. 

Programming Relatively dif- Easier to  pro- 
ficult and in- gram. 
volves periodic 
scaling and con- 
straint checks 
on b j ( b ) .  
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5.1 COMPARATIVE PERFORMANCE 
O F  NEURAL NETWORKS AND H M M  

Neural networks (NN) offer another approach incor- 
porating ability to  learn from examples, thereby match- 
ing the needs of this problem domain. Its suitability has 
been examined by the authors in a recent paper [ll]. A 
comparison of basic features of HMM and N N  is given 
in Table 5. NN's inherent drawback is its inability t o  
handle time-varying sequences such as PD,  speech, etc. 
[12]. As HMM is known to model them better, it has 
an edge over N N .  In this work, it was also observed that 
HMM demonstrated greater tolerance to  realistic changes 
in phase and amplitudes during the generaliza.tion tests 
compared to  NN for the same inputs. In these tests, the 
time-varying property of P D  signals has been adequately 
simulated by choosing different starting positions (with- 

of HMM for P D  recognition is established. Tests with 
actual P D  image patterns (5 types) yielded an overall 
recognition rate of 84%, thus demonstrating its practical 
utility. With easy availability of fast and cheap A/D con- 
verter boards and a variety of computer platforms, on-line 
training and recognition of PD signals, using HMM, can 
be visualized. 
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7. APPENDIX 

7.1 GENERATION AND DISPLAY OF 
P D  IMAGE PATTERNS 

in 20 t o  30") for generating additional test inputs. This 
typically corresponds to  variations in PD signals due to  
changes in voltage, duration of voltage application, aging 
etc. A more recent trend in continuous speech recogni- 
tion has been to  combine N N  and HMM; N N  being used 
for its discriminating and interpolative capabilities and 
HMM to capture the dynamics of speech and to  segment 
continuous speech to successive words [12]. Perhaps, this 
approach may be useful in the P D  domain as well. 

6. CONCLUSIONS 

P D  and speech signals are time varying processes which 
are behaviorally very similar. This observation and the 
success of HMM in many speech recognition tasks led to 
studies on HMM for modeling and classification of P D  
signals. The  P D  image patterns were synthetically gen- 
erated and the da t a  for the training set was extracted 
from them. 

Before the training phase is started, structural assump- 
tions of the model have to  be made; these are similar to 
those in the speech domain but with appropriate mod- 
ifications to  suit this problem. The training phase it- 
eratively optimizes the models. The recognition phase 
relates the input to  that model which yields the highest 
likelihood of reproducing it. The HMM are trained as- 
suming them t o  be distinct which should be ascertained 
by computing the model distances. 

Tests carried out on synthetic P D  ima.ge patterns have 
yielded overall recognition rates of > 88% with inputs dif- 
ferent from those used for training. This generalization 
can be improved further by using larger training sets, con- 
tinuous densities for b j ( k ) ,  etc. Therefore the capability 

simple and effective, though synthetic, method to dis- A play any complicated P D  image pattern on the oscil- 
loscope has been developed. This avoids use of HV trans- 
formers and components and the need for specimens with 
specific defects for generating required patterns. The idea 
is to use a real-time digitizer in the reverse way i.e., the 
required signals are computed and transferred to its mem- 
ory; these are then used to create the pattern on an os- 
cilloscope. To generate any pattern, the X and Y axis 
signals corresponding to  one 50 Hz cycle (20 ms) have to 
be computed. The X signal (sine wave) is computed and 
stored while the Y signal (cosine wave plus P D  pulses) is 
computed each time depending on the type of pattern to 
be displayed. The two signals are transferred via a GPIB 
bus to the digitizer as 2048 points a t  10 ps sampling rate 
and 10 bit resolution. 

7.2 EXTRACTION O F  INPUT SIGNAL 

A digitizing camera is used to capture the displayed 
image. The compressed raw video file is then unpacked 
and displayed on the P C  screen after normalization and 
thresholding. A spot on the oscilloscope as seen by the eye 
does not correspond to  a single pixel on the CCD array, 
but to  as many as 8 to  10 pixels, depending on its inten- 
sity. Therefore, all displayed traces have to  be corrected 
for this dispersion. First, a reference ellipse is captured 
and displayed on the P C  screen from which a single pixel 
wide reference ellipse is extracted in the following man- 
ner. A boundary tracing algorithm was developed and 
used to trace the inner and outer contours, from which 
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the reference ellipse is computed and stored. Movable 
zero voltage markers on the elliptic trace are provided 
on the P D  detectors for clarity in viewing patterns and 
hence made software selectable. The reference ellipse is 
then moved, if necessary, to  coincide with the center of the 
displayed pattern. This is to  correct for any misalignment 
due to  camera sha.ke, shift of oscilloscope trace, etc. Then 
the pattern is scanned vertically on either side along the 
reference ellipse, starting from the selected zero marker, 
in a clockwise direction to  extract the P D  pulses. The 
positive and negative portions are stored separately and 
averaged every 10” to  obtain 36 sample points. The av- 
eraged version of the positive portion forms the training 
set. Figure 5 illustrates these steps. 

d t t e c t o r  4 process i nq 4-J 
PD s i 4  1 /I/D i, 

o u t p u t  con we r t er 

Bath  are in nunrrical Tom and 
correspond t o  Fig. 5 ( c ) .  

Figure IO. 
Schematic illustrating the two possible approach- 
es for obtaining signal patterns. 

In this context of obtaining signal patterns, as men- 
tioned in Section 3.1, the approach using the A/D con- 
verter can also be taken to  obtain signal patterns. Figure 
10 illustrates the two approaches schematically. As is ev- 
ident, both of them lead to  the same information. 
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