
Journal of Electrical Engineering & Technology Vol. 5, No. 3, pp. 363~370, 2010 363

Use of High-performance Graphics Processing Units for  

Power System Demand Forecasting 
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Abstract – Load forecasting has always been essential to the operation and planning of power systems 

in deregulated electricity markets. Various methods have been proposed for load forecasting, and the 

neural network is one of the most widely accepted and used techniques. However, to obtain more accu-

rate results, more information is needed as input variables, resulting in huge computational costs in the 

learning process. In this paper, to reduce training time in multi-layer perceptron-based short-term load 

forecasting, a graphics processing unit (GPU)-based computing method is introduced. The proposed 

approach is tested using the Korea electricity market historical demand data set. Results show that 

GPU-based computing greatly reduces computational costs. 
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1. Introduction 

 

 Load forecasting is one of the important requirements in 

the operation and planning of modern power systems. It is 

the basis of many significant tasks necessary to ensure 

power system stability and reliability [1]. For transmission 

network service providers (TNSPs), load forecasting is of 

great importance. Long-term increments in the demand for 

electricity trigger transmission line expansion planning, 

and short-term variations in demand determine daily opera-

tional strategies. For generators, an accurate future demand 

prediction is a key factor in setting up market strategies to 

secure the best bidding and bilateral contract positions in 

the competitive electricity market. For distribution network 

service providers, a reliable demand forecast is one of the 

most important factors in forming planning options, which 

are often made in conjunction with related TNSPs. 

In terms of prediction period, load forecasting can be di-

vided into long-term, mid-term, and short-term forecasting. 

Generally speaking, long-term forecasting is longer than 

one year, mid-term forecasting is from one week to one 

year, and short-term forecasting is from one hour to one 

week or a little longer. This paper deals with short-term 

load forecasting analysis. Given the importance of demand 

forecasts, various methods and tools have been developed 

and reported. These include the time series model [2], grey 

theory, regression analysis, neural network model [3]-[6], 

econometric demand forecasting, and composite model [7], 

[8]. Among these methods, the neural network model is 

well known for its powerful non-linear mapping and gen-

eralization abilities [9]-[12]. It has been widely imple-

mented in electricity market demand forecasting, and it has 

been presented as an essential element of subsequent me-

thod developments. 

To produce better demand forecasting results, aside from 

historical load data, other variables, such as weather or 

seasonal variations and holiday activities, should be con-

sidered as inputs in the neural network model. Large 

amounts of input variables not only complicate the neural 

network structure, but also increase the corresponding 

learning time. However, in scenarios where fast or even 

real-time load forecasting is required, the learning time of 

the neural network model is critical [13]. To overcome this 

time-consuming characteristic, most previous works on 

neural network optimization focused on the algorithmic 

level. In [14], the parallel dynamic learning concept was 

introduced as a different training methodology to achieve 

speedups. The primary advantage of this method is its 

transparency to architectural constraints; however, poor 

implementations may diminish speedups. The parallelism 

of neural networks using clusters and message-passing 

interface(MPI) also suffers from communication overheads 

and contention delays [15]. With the introduction of pro-

grammability, graphics processing units (GPU) have 

gained enough flexibility for use in non-graphic applica-

tions [16]. In this paper, the GPU-based parallel computing 

frame is introduced to accelerate hourly-ahead load fore-

casting with multi-layer perceptron (MLP). 

The paper is organized as follows. After the introduction, 

MLP and GPU computing techniques are reviewed for 

completeness, followed by the specific steps of the pro-

posed learning algorithm. The methodology is then tested 

with a demand series from the Korean electricity market. 

Conclusions and further developments are discussed in the 

last section. 
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2. Multi-Layer Perceptron 

 

As a computing system, an artificial neural network 

(ANN) is made up of a number of simple and highly inter-

connected processing units, which process information 

through dynamic state responses to external inputs. The 

basic unit of ANN is the artificial neuron, which receives 

information through a number of input nodes, processes 

them internally, and then produces associated responses 

through output nodes. 

The neurons are organized in a way that defines the net-

work architecture. The one we are most concerned with is 

MLP, in which the neurons are organized in layers. The 

architecture of typical MLPs is feed-forward; that is, the 

outputs of one layer are used as inputs to the following 

layer. The layers between the input layer and the output 

layer are called hidden layers. 

 

2.1 Network Structure 

 

The architecture of a multi-input and multi-output 

(MIMO) MLP with one hidden layer is presented in Fig. 1. 

The above figure shows the configuration of a typical 

MIMO MLP. In MLP, each neuron is connected to other 

neurons in the next layer. The MLP output is described as 
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where 
H

ijw  is the input-hidden layer connecting weights; 

O

jpw  is the hidden-output layer connecting weights; 

Hϕ  is the activation function of the hidden layer; and 

Oϕ  is the activation function of the output layer. 

The objective of the learning method is to minimize 

MLP output error. To evaluate MLP performance, the root 

mean squared error (RMSE) is introduced. 
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Fig. 1. Structure of a Typical MIMO MLP. 

where 

 

 py  is the true value; and 

 py  is the predicted value. 

 

2.2 Learning Methods 

 

Demand forecasting with MLP involves training and 

testing. It is assumed that a training set is available; in this 

case, a historical data set, which contains inputs and corre-

sponding desired outputs, is available. In the learning process, 

an MLP constructs an input-output mapping, adjusting the 

weights and biases at each iteration based on the minimiza-

tion of error measurements between produced and desired 

outputs. Thus, learning entails an optimization process. The 

minimization process is repeated until an acceptable crite-

rion is reached. 

One of the most common learning methods is the Leven-

berg-Marquardt (LM) approach [17], a blend of gradient 

descent and Gauss-Newton iteration. The learning proce-

dures can be summarized as follows: 
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To minimize the cost function, 

 

( ). 0Min E w∇ →               (4) 

 

We then expand the gradient of E  using the Taylor series 

around the current state: 
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The update rule of the LM method can be written as follows: 
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2.3 Input Variables 

 

The primary aim of this paper is to determine the extent 

to which the GPU can reduce MLP training computational 

costs. Hence, to simplify the problem, only historical load 

data are considered for forecasting. The hourly load data of 

one year in the Korean market (1 Dec., 2007–30 Nov. 

2008), including a total of 8784 observations, are used in 

the case studies. Four data sets, each containing three 

months of data are constructed. They represent the four 

different seasons and variations in demand over one year in 

Korea. The load data of one year are represented in Figs. 2-

3 and Table 1. 
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Fig. 2. Historical Load Data vs. Month. 

 

Table 1. Load Data Analysis Results (MW) 

Seasons Mean Max Min 

Winter (Dec. - Feb.) 51431.59 60947 30472 

Spring (Mar. - May) 45972.07 56791 33884 

Summer (Jun. - Aug.) 47413.35 62794 33880 

Autumn (Sep. - Nov.) 46209.65 58510 29167 
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Fig. 3. Minimum, Mean, and Maximum Historical Load 

Data vs. Daily Hour. 

 

As shown in the figures and table, significant differences 

exist among the different seasons. The highest load occurs 

in summer and the second highest occurs in winter. The 

loads in spring and autumn slight differ because tempera-

ture also changes with every season; summer has the high-

est temperature and winter has the lowest temperature. 

Hence, special attention should be given to differences 

among seasons using different neural networks. In this way, 

the training process becomes easier and the chances of ob-

taining better results are increased. We consider the four 

neural network models for the four seasons independently. 

3. GPU Computing with CUDA 

 

Recent computer graphics hardware have many vector 

processing units, as well as high memory bandwidths; 

hence, GPUs have evolved into powerful programmable 

processors, faster than CPUs in terms of the execution of 

parallel algorithms. Current trends in GPU design and con-

figuration have given GPUs larger dedicated memories, 

higher bandwidth to graphics memories, and increased 

internal parallelism. The instructions of the program in 

shaders are close to assembly language because each has a 

direct hardware implementation. The new flexibility intro-

duced by vertex shaders allows not only the naturalistic 

rendering of surfaces, but also brings GPUs closer to a 

general purpose parallel processor. In addition, current 

GPUs are designed with ever-increasing degrees of pro-

grammability, known as CUDA API [18]. Furthermore, for 

computationally-intensive applications, the data-parallel 

architecture of GPUs delivers dramatic performance gains 

compared to CPUs. In a number of instances, extensions to 

alternative graphics algorithms and scientific computing 

problems have been explored. It is the latter aspect that is 

exploited for better performance in MLP neural networks. 

The idea of running neural networks on GPUs is to de-

termine whether shader programs can run on parallel data 

processing systems. The proposed computing scheme is 

implemented on an Nvidia Tesla C1060 GPU with 240 1.3 

GHz processor cores and 4 GB of GDDR3 memory at a 

bandwidth of 102 GB/s. The theoretical peak processing 

performance is up to 933 GFLOPS. Neural network algo-

rithms generally apply primitives, such as inner products, 

outer products, linear algebra to vectors or matrices, non-

linearities (e.g., sigmoid and thresholding) applied to vec-

tors or matrices, and matrix transposition. 

As shown in Fig. 4, the hardware architecture of GPUs 

has high parallelism in terms of individual processor and 

memory allocation, favoring efficient streaming computa-

tion. Each grid computing unit also has an independent 

data bus to access global memory, an efficient way for op-

erating large data sets synchronically. The benefits to linear 

algebraic calculations in particular have been demonstrated 

in many fields [19], [20]. Based on efficient matrix/vector 

calculation performance, neural networks are particularly 

well-suited for GPU implementation, provided that the 

weights reside on the GPU. Therefore, MLP neural net-

works can be implemented on the GPU to compute activa-

tion levels for neurons. 

The flowchart is illustrated in Fig. 5. First, the CPU side 

workloads prepare initial training parameters and weights, 

and transmit the data set to the GPU via the graphics port 

bus. The data structures are then allocated in the GPU 

shared memory. After the vertex shader programs are de-

fined in the GPU, the learning process can be activated. 

During the training process, the learning parameters can be 

transferred back to the CPU at long regular intervals to 

verify the learning progress without introducing overheads. 

Finally, when the training session is completed, after a 

fixed number of iterations, or when a desired error threshold  
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Fig. 4. GPU Structure with a Single Block. 

 

 

Fig. 5. Data Flow Diagram for MLP Training Algorithms 

on the GPU Structure. 

 

has been achieved, the training process is terminated and 

the learning parameters are downloaded to the CPU and 

saved. However, GPUs have been observed to underper-

form either when significant overheads in calculations are 

incurred or when algorithms are not sufficiently parallel. 

 

 

4. Demand Forecasting Case Study 

 

In this section, the proposed forecasting method is tested 

using the Korean electricity market historical load demand 

series. The proposed method is used on the data series to 

illustrate its ability to handle demand data series. Our esti-

mated sample loads consist of one year of daily observa-

tions. In one day, a total of 24 load demand data points 

must be predicted. As presented above, demand data are 

grouped into four seasons. 

 

4.1 Preprocessing 

 

Before data are used as input vectors to MLP, they may 

be subjected to some form of pre-processing, usually in-

tended to make forecasting more accurate and manageable. 

Pre-processing of data is needed to remove outliers, missing 

values, or any irregularities because neural networks are 

sensitive to such defective data [21]. We use “standard de-

mand” as input variables, which are represented as follows: 

 

' min

max min

x x
x

x x

−
=

−
               (7) 

 

The load forecast from the neural forecaster is compared 

to the actual load data and the error is calculated. Two 

common criteria are used to evaluate forecast accuracy: 

mean absolute error (MAE) and mean absolute percentage 

error (MAPE) [11]. 
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where py  is the actual load; py  is the forecasted load; 

hN  is the sample number; and h  is the hour index. 

In the following section, the demand is forecasted ac-

cording to four seasons. 

 

Table 2. Load Data for Training and Forecasting (MW) 

Seasons Training Forecasting Total 

Winter 1576 (1600-24) 560 (584-24) 2184 

Spring 1576 (1600-24) 584 (608-24) 2208 

Summer 1576 (1600-24) 584 (608-24) 2208 

Autumn 1576 (1600-24) 560 (584-24) 2184 

 

4.2 Forecasting Results 

 

The results are based on data obtained from ten trials; 

only results from one case study are shown in the following 

figures and tables. Figs. 6a and 6b show load forecasting 

results in winter. The accuracy of the forecasted load 

curves is evident. The results give a MAPE value of 1.17%. 

As shown in Figs. 7a and 7b, the forecasted and actual load 

curves are also close to each other. Compared with the 

power demand in winter, the demand is reduced in spring.  
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Fig. 6a. Demand Forecasting Results in Winter. 
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Fig. 6b. Demand Forecasting Error in Winter. 
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Fig. 7a. Demand Forecasting Results in Spring. 
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Fig. 7b. Demand Forecasting Error in Spring. 
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Fig. 8a. Demand Forecasting Results in Summer. 
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Fig. 8b. Demand Forecasting Error in Summer. 
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The spring MAPE value is 0.89%, which is compara-

tively lower than that of winter. As shown in Figs. 8a and 

8b, the forecasted load curve almost coincides with the 

actual load curve during the summer period. In the three 

summer months, the temperature reaches the maximum, 

causing the increase in power demand. The forecasting 

errors are, however, fairly small and the value of MAPE is 

only 0.83%. As shown in Figs. 9a and 9b, the autumn fore-

cast is quite accurate compared with the actual demand in 

autumn. The autumn power demand almost reaches 6000 

MW, a little higher than in spring. With the proposed tech-

nique, the MAPE value is 1.15%. 
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Fig. 9a. Demand Forecasting Results in Autumn. 
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Fig. 9b. Demand Forecasting Error in Autumn. 

 

4.3 Results Analysis 

The average computational costs of the two methods are 

given in the following tables. All the CPU programs are 

run on a 2.66 GHz Intel Core 2 PC with 2 GB RAM. 

Table 3. Comparison of results : CPU- and GPU-based 

MLP 

Average Computational Cost (s) 
Seasons 

CPU GPU CPU/GPU 

Winter 14.64 4.01 3.65 

Spring 13.35 3.95 3.38 

Summer 11.53 3.81 3.02 

Autumn 16.32 4.57 3.57 

Overall 13.96 4.09 3.41 

 

Table 4. Load Data Forecasting Results 

Seasons MAE MAPE 

Winter 549.99 1.17% 

Spring 396.76 0.89% 

Summer 405.26 0.83% 

Autumn 558.26 1.15% 

Overall 477.57 1.01% 

 

As shown in Tables 3 and 4, the GPU-based MLP 

greatly reduces the learning time compared with the CPU-

based MLP. To simplify the problem, only historical power 

demand is considered as input variable. In practical appli-

cations however, other variables that influence the loads 

must be considered as input vectors. The GPU version is 

about 9–11 seconds faster than the CPU version (Table III). 

Through other experiments, we also find that if the code is 

optimized and simplified, the CPU to GPU speed ratio can 

reach 4. 

The strength of GPUs is in streaming computation and 

synchronous processing. This is the basis of significant 

improvements in computational efficiency provided by 

GPUs. If the code is strictly programmed according to the 

instructions and we do not frequently access data between 

CPUs and GPUs, the advantage of GPUs can be very obvi-

ous. If more input variables are used, the overall efficiency 

is increased. 

 

 

5. Conclusion 

 

The acceleration of the neural network learning task in-

volving numerous data-parallel computations is promising. 

The evaluation results demonstrate the great potential of 

our prototype for massive neural network learning tasks. 

The graphics hardware can efficiently work, especially if 

the task is implemented using data-parallel instructions 

supported by hardware. The simulation results show that 

this approach is much faster than CPU-based parallel com-

puting. The computational cost of GPU-based computing is 

only one-third that of CPU-based computing, demonstrat-

ing the great potential of the GPU-based demand forecast 

process. It also opens new possibilities for much higher 

computational efficiency for other real-time power system 

data analyses. 
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