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Abstract

Clinical trials rarely, if ever, occur in a vacuum. Generally, large amounts of clinical data are
available prior to the start of a study, particularly on the current study’s control arm. There is
obvious appeal in using (i.e., ‘borrowing’) this information. With historical data providing
information on the control arm, more trial resources can be devoted to the novel treatment while
retaining accurate estimates of the current control arm parameters. This can result in more accurate
point estimates, increased power, and reduced type I error in clinical trials, provided the historical
information is sufficiently similar to the current control data. If this assumption of similarity is not
satisfied, however, one can acquire increased mean square error of point estimates due to bias and
either reduced power or increased type I error depending on the direction of the bias. In this
manuscript, we review several methods for historical borrowing, illustrating how key parameters
in each method affect borrowing behavior, and then, we compare these methods on the basis of
mean square error, power and type I error. We emphasize two main themes. First, we discuss the
idea of ‘dynamic’ (versus ‘static’) borrowing. Second, we emphasize the decision process
involved in determining whether or not to include historical borrowing in terms of the perceived
likelihood that the current control arm is sufficiently similar to the historical data. Our goal is to
provide a clear review of the key issues involved in historical borrowing and provide a comparison
of several methods useful for practitioners.

Keywords

priors; borrowing; historical data; Bayesian

1. INTRODUCTION

A large proportion of clinical trials involves the comparison of a novel treatment to an
existing control arm, either a placebo or a standard of care. While often the control arm
stands on its own within a trial, with parameter estimates for the control group depending
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only on the data within the current trial, interest has been growing over the past few decades
in leveraging historical clinical trial data on the control arm [1–6]. Often, one or more
clinical trials have been conducted involving the control arm (perhaps the current control
arm was the novel treatment in the historical trial). In theory, bringing this existing
information into the current trial holds the promise of more efficient trial design. Such trials
may be smaller, and/or unequal randomization may be used to place proportionately more
subjects on the experimental treatment arm in a study, potentially increasing the relative
amount of information both on the efficacy and safety of the current novel treatment, as well
as on secondary endpoints. In clinical practice, expected results are based on the current set
of historical studies, and it makes statistical sense to capitalize on this historical data
whenever possible.

In practice, methods for borrowing historical information, and the ramifications of these
methods, are less well understood in terms of benefits, effects, and regulatory ramifications.
Potentially, the incorporation of quality external information allows for reduced mean
square error (MSE), increased power, and reduced type I error within the current trial. In
contrast, should the historical data be inconsistent with current trial control arm data, there is
a potential for bias and inflated type I error. The relative weights of these risks depend on
the phase of development. For example, smaller sample sizes in early phase studies
combined with less rigorous control of type I error make the possibility of reduced MSE and
increased power very appealing, while in a phase III trial, any possibility of inflated type I
error may be controversial. In early phase, development point and interval estimates may
carry more weight, but power and type I error remain important as decisions must constantly
be made whether or not to continue a development program. Thus, it is important to
understand type I error and power in terms of ‘how many phase II trials would result in
correct go/no-go decisions for phase III’.

Authors of this article are members of the DIA Bayesian Scientific Working Group
(BSWG), which was formed in 2011 and includes representatives from industry, regulatory
agencies, and academia, with the vision to ensure that Bayesian methods are well
understood, accepted more broadly, and appropriately utilized to improve decision making
and enhance patient outcomes. Our goal in this article is to illustrate and compare several
methods (a test-then-pool approach, power priors, single arm trials, and hierarchical
modeling) in a concrete example, showing the amount of weight each method places on the
historical data, and the potential MSE, power, and type I error implications.

We specifically emphasize the idea of ‘dynamic borrowing’ in the approaches considered. It
is important that any method for historical borrowing recognizes when the current data
appear to be inconsistent with the historical data. We expect variation in the actual
parameters from study to study. These may be due to slightly differing patient populations,
site locations, improvements in secondary aspects of treatment in the time between the
historical and control data, and so forth. A method that incorporates dynamic borrowing
borrows most when the current data are consistent with historical data and borrows least
when the current data are inconsistent.

To see these issues, we begin with an extreme analogy. Suppose your friend is watching a
basketball game and wants to estimate the current (today) free throw shooting percentage of
his favorite player (for those unfamiliar with basketball, the key point here is that the player
takes a series of ‘shots’, and each one is either successful or not). Suppose we know that
going into the game this season the player has made 130 of 200 free shots (65%). Typically,
professional players are fairly consistent over the course of a season, so you argue that this
historical data indicates his current true free throw percentage (the parameter) is probably
around 65%. There might be some discrepancy today (sampling variability in the historical
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data, issues today with the particular arena the game is played in, etc.), but you argue you
would be surprised if his true shooting percentage is much different than 65%. If you see
him shoot five times and hit all five, for example, you might believe his current true
shooting percentage is slightly higher than 65%, but you are unlikely to believe he is
suddenly a near perfect free throw shooter. Your friend argues ‘No! you are going to take
the observed results from today and then estimate today’s shooting rate as somewhere
between the observed data and 65%. That is biased! Suppose my favorite player has
corrected his form and now has a true shooting rate of 90%. You will likely reduce the
observed rate closer to 65% and thus underestimate my favorite player’s true shooting rate
for today’. This argument is correct, point estimates constructed in this way are biased if you
use the historical data. Your counterargument here is that the data collected in the past has
value and that it is quite unlikely for a player to correct their form to this degree, particularly
midseason. So do we use what seems like very valuable historical information, or should we
be concerned about the possible biases that will result from using it?

While the basketball analogy is not serious, there are several parallels in clinical trials.
Typically, an agent is explored in many clinical trials over the course of several years, in
situations analogous to the study we want to undertake. We expect there to be some
variation in the response rates for our drug across these studies. In the basketball analogy,
issues like where today’s game is played, and others, may be similar to differing inclusion/
exclusion rules and so forth in the clinical trial. We want to estimate the parameter for our
drug for the current study (‘today’ in the basketball analogy) and need to know how much to
incorporate the available historical data. Statistically, incorporating the historical study will
produce biases in the presence of ‘drift’ (if the current study parameters differ from the
observed historical rate, we will see biases). For later phase trials involving hypothesis tests,
these biases result in inflated type I error depending on the direction and magnitude of the
drift. However, if the historical data is on point, we can acquire dramatically better estimates
incorporating the historical data, in terms of MSE (we see a variance reduction that more
than compensates for the bias) and simultaneous improvements in type I error and power.

Thus, fundamentally the historical data can either help or hurt depending on the relationship
between the past data and the current parameter. Our goal in this manuscript is to illustrate
these trade-offs in a practical simple analysis. Some methods are more robust to drift than
others, and we try to illustrate which methods are the most robust. After assessing the
possible benefits and risks, the user must assess whether the benefits exceed the risks, an
assessment that should include the likelihood of their occurrence. Returning to the basketball
analogy, it may be clear that if the player has corrected their form and now shoots 90%, then
borrowing the historical information is detrimental. However, this assumes a change to 90%
that may not be plausible. If such changes are unlikely, borrowing from historical data may
produce substantial gains over utilizing the limited amount of information in the current day
(basketball) or current study (clinical trials).

We describe our example trial in Section 2 as well as the methods we consider for historical
borrowing. For each method, we identify parameters the user may control and show how
they affect the borrowing behavior, MSE, type I error, and power. While our intent is
illustrative rather than a comprehensive review article, we do provide a minimal amount of
detail particular to the example and references for more technical details behind the
methods. In Section 3, we compare the methods in terms of their borrowing behavior as well
as operating characteristics such as MSE, type I error, and power. In Section 4, we provide a
‘where to go from here’ review of extensions from the current literature to complement the
simpler structure of the example, and finally in Section 5, we provide a discussion.
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2. METHODS

Suppose we are about to conduct a trial with a dichotomous endpoint where higher rates are
preferred. We will enroll 400 subjects. Generally, we will consider designs with equal
randomization (200 to control and 200 to treatment).

Looking at the available research on the control arm (this deserves a paper of its own,
generally one must be careful in any literature review to identify studies that are ‘on point’
with similar patient populations, dosing, and so forth to the currently envisioned control
arm), we have a historical study that observed 65 responses in 100 subjects on the current
control arm. Our goal is to incorporate this information into the current trial. See Section 4
for a description of more complicated scenarios (multiple historical studies, covariates, etc.)

Here, our primary goal will be to maintain our current sample size, using the historical
information to increase the power of the trial. Alternatively, we could consider using the
historical information and changing to unbalanced randomization (e.g., 2:1 randomization
preferential to the treatment arm). In the extreme, single arm trials might be conducted using
the historical 0.65 rate as a performance criteria, where the primary analysis indicates that
one must beat 0.65 to achieve a trial success. Our goal here is, as much as possible, to
perform an ‘apples to apples’ comparisons of the methods, particularly with respect to a trial
that does not borrow any information.

2.1. Methods of borrowing

We consider six methods for incorporating the historical data, the first two acting as
‘fenceposts’ for understanding our three main historical borrowing methods. We also
consider single arm trials, as these are also a form of historical borrowing in that typically
the threshold for success (e.g., a null hypothesis response probability) is determined after
looking at historical data.

In all examples except for single arm trials, our primary analysis is a hypothesis test of H0 :
p0 = pT against H1 : p0 < pT, where p0 is the true rate for the current control arm and pT is
the true rate for the treatment arm. The six methods are as follows:

1. Separate—we ignore the historical data. This would be viewed as a ‘standard
analysis’. Here, we would continue with equal randomization on the current
treatment and control, with no incorporation of the historical information. We
perform a Fisher exact test.

2. Pooling—suppose we perform equal randomization in the current trial (n = 200 in
each arm), but we pool the historical subjects with the current control subjects
(thus, if we observe 140/200 = 0.70 in the control arm of the current study, with our
65/100 historical dataset, our actual control estimate would be (140 + 65)/(200 +
100) = 0.683). One could combine pooling with unequal randomization, but we are
attempting to maintain an equal number of treatment subjects for all methods. We
perform a Fisher exact test but here pool the historical information as if they had
been control observations in the current trial.

3. Single arm trial—while somewhat unusual for these sample sizes, many single arm
trials are conducted that look at historical data (often with sample sizes less than
our 100 historical subjects) to create a performance criterion that must be beaten in
the current study. This performance criterion may be either a point estimate or
some upper quantile of a CI based on historical data. Single arm trials may be used
in situations where accrual is particularly difficult (thus the goal is to obtain
reasonable power from smaller sample sizes) or where it is viewed as unethical to
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include a control arm. In our example, suppose we eliminated the control arm and
placed 200 subjects on the treatment arm, with a primary analysis testing H0 : p =
0.65 against H1 : p > 0.65, where the 0.65 is acquired from the observed historical
rate. We perform an exact binomial test.

4. Test-then-pool—pooling presents an obvious difficulty in that a priori we may not
be sure our historical data are sufficiently similar to our current control arm (our
efforts in reviewing the literature notwithstanding). We would like a way to avoid
pooling in situations where the current control arm appears to be different from the
historical data. In ‘test-then-pool’, we make a choice between the ‘separate’ and
‘pooling’ options by first performing a test of H0 : p0 = pH against H1 : p0 ≠ pH,
where p0 is the current control response rate and pH is the historical control
response rate. If the null hypothesis of equality is not rejected, one uses the pooling
approach. If the hypothesis of equality is rejected, then one completely ignores the
historical data and performs the separate analysis. This is a basic form of dynamic
borrowing, as the amount of weight assigned to the historical data depends on the
data in the current trial.

5. Power priors—the power prior ([4], described in more detail in Section 2.4) assigns
a ‘weight’ to the historical data some-where in between the pooling (weight=1) and
separate analyses (weight=0). Thus, the historical data are incorporated to a degree
into the current analysis.

6. Hierarchical modeling—in a hierarchical model [1, 2, 5, 6], described in more
detail in Section 2.5), we assume a distribution across studies (here the current and
historical controls) with an explicit parameter τ measuring the variation across
studies. A prior distribution is placed on τ that is then updated using the current
data. A discrepancy between the historical and current data would put more weight
toward larger τ values in the posterior distribution than would an agreement
between the current and historical data. As with power priors, the borrowing
depends on the parameter τ and incorporates its uncertainty, producing dynamic
borrowing.

Generally, these methods move from the simplest to implement to more complicated.
Separate, pooling, or single arm trials can be quickly implemented from scratch or have
standard implementation in statistical software packages. Test-then-pool requires some basic
coding to connect the two hypothesis tests (one for whether to pool, the other to perform the
final analysis). Power priors, depending on the likelihood, may be performed in a statistical
package or may require MCMC, while hierarchical modeling almost always requires some
MCMC implementation, although some commercially available clinical trial simulation
software will perform these calculations automatically. In general, none of these methods
require excessive computation that would be an obstacle to implementation.

2.2. Comparison of pooling, separate, and single arm trials

We tend to think of the separate and ‘pooled’ analyses as fence-posts in that they represent
the extremes of borrowing. Intriguingly, a single arm trial represents a further extreme of
borrowing in that we typically use the historical data to construct a performance criterion.
Thus, given that our historical study has an observed rate of 0.65, we might choose a single
arm trial where we place 200 subjects on treatment (no control arm) and use a primary
analysis of H0: pT = 0.65 against H1: pT > 0.65. In effect, in the single arm trial, we choose
not to observe the control data (typically this is performed with smaller sample sizes, but the
principles described here remain).
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With n = 200 subjects on the treatment arm and using α = 0.025, we find that the null
hypothesis H0: pT = 0.65 is rejected if we observe YT = 144 responses or more using an
exact binomial test.

Figure 1 compares what the trial will conclude for separate, pooling, and single arm trials.
The X-axis in Figure 1 shows the observed number of control responses in the current trial,
while the Y-axis shows the observed number of treatment responses. The three curves
represent the decision boundaries for separate (orange), pooled (red), and single arm
(purple) designs. Trials with a (control and treatment) result above the curve are successful,
while trials with a (control and treatment) result below the curve are not successful. Note
that the red (pooled) curve is more horizontal than the separate (orange) curve. The extra
information from the pooled observations results in the test being less sensitive to the
current control data. Note the purple (single arm) curve is flat. The current control arm is not
observed in a single arm trial and thus has no effect on the results. Generally, the pooled
analysis would be more and more horizontal as the sample size of the historical data
increases. N = 200 is shown, but N = 0 would correspond to the separate analysis (nothing to
pool). In the extreme, with an infinite sample size in the historical data, we would acquire
the flat purple curve. Essentially, the single arm trial completely ignores the uncertainty in
the historical data and assumes that the control parameter is known, thus borrowing to a
degree beyond pooling (the effective sample size borrowed is infinite).

Once a method has been established, we must consider its operating characteristics. We
proceed here similarly to much of the literature, fixing the historical data and computing
MSE of point estimates, type I error, and power as a function of the true rate p0 in the
current control arm. Before continuing, it is important to also note that an alternative
framework exists, where one may prospectively (prior to the historical study) plan on using
the historical data in the current trial. This would occur, for example, in an inferentially
seamless phase II/III trial, where one prospectively decides that the phase II data will be
combined with the data from the phase III portion of the study. In our current framework
with the historical data fixed but the current control parameter varying freely, we always
consider situations where the observed historical rate is far from the current control rate,
without consideration of how likely this is to occur. To take this to the extreme, suppose we
had several large, clearly applicable historical trials all with rates near 0.65. The argument
‘if the true current control rate is 0.90, then you will acquire a large bias to your estimates
and inflate type I error’ is certainly true. However, the historical data themselves (several
large trials, all with rates near 0.65 and thus far from 0.90) make the premise of the
argument ‘if the true current control is 0.90…’ questionable at best. In the second
framework (borrowing considered prospectively, prior to the historical data), these
differences between the current and historical data are part of the likelihood and hence
directly computable (of course, issues of drift in the parameter, etc., are still relevant).

Figure 2 shows the MSE, type I error, and power (for detecting a 12% improvement on the
treatment arm) conditional on the current control rate (X-axis) and fixing the historical data.

Mean square error is generally flat for the separate analyses (with the usual maximization of
the variance for p0 = 0.5). The pooled analysis (red) reduces the MSE when the true control
rate is anywhere between 0.58 to 0.73, while the single arm trial (purple, which simply
assumes the control rate is 0.65) is perfect when 0.65 is the correct answer but quickly has
bias with any change in the true control rate.

Note that the orange curves show that the separate analysis controls type I error under 0.025
(dashed horizontal line) by design while achieving a variable amount of power depending on
the control rate (power is around 70% if the true current control proportion is 0.65).
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Generally, for all borrowing methods, we can divide the current control rate axis into three
regions. In a region near the observed historical rate (0.65), methods that borrow generally
simultaneously have lower type I error rates and higher power than a separate analysis,
largely combined with reduced MSE. The borrowed data are an accurate estimate of p0 and
thus have all the benefits of simply adding extra data without any added cost. We call this
region ‘the sweet spot’ as here borrowing dominates a separate analysis. For the pooled
analysis, the sweet spot extends from a true control rate around 0.61 (where the power for
pooling exceeds the separate analysis) to around 0.67 (after which the type I error inflates,
although the type I error for pooling is actually still controlled a little farther than that).

For true current control rates below the sweet spot, the pooled analysis controls type I error
very well but has reduced power. For observed control rates much lower than 0.65,
borrowing increases the estimated control rate, and thus, the bar for the treatment arm is
raised (it requires more treatment responses for success than a separate analysis). This
makes it harder to declare trial success that simultaneously lowers type I error and power.
Similarly, if the true control rate is much higher than 0.65 (how much higher depends on the
borrowing method), the bar for success tends to be lowered, making it easier to declare
success. This has great benefits for power but comes at the cost of type I error inflation.
Generally, these areas also show increased MSE.

Thus, in assessing a borrowing method in terms of MSE, type I error, and power, we have
several questions. First, how broad is the sweet spot and how much is the benefit (how much
power increase)? The larger a region where borrowing dominates the separate analysis, the
more appealing the method will be. Second (and most important for possible confirmatory
trials), where is the type I error and how much type I error inflation occurs? While type I
error will almost always inflate to some degree, often user selected parameters can reduce
the inflation if a particular ‘cap’ is desired. Third, how much of a power loss do we have
when the true control rate is much lower than the historical rate? Again, user controlled
parameters can affect this amount.

These three regions (reduced power, sweet spot, and inflated type I error) create a decision
problem in deciding whether to adopt borrowing. As noted earlier, a key issue is the
likelihood of relative values in the sweet spot and the magnitude of the type I error inflation
and power loss. The historical data itself should provide some insight into the likely range
for the current control rate (that is the point of using it), but this should also be combined
with substantive knowledge regarding possible drift in the true parameters in the time
between observing the historical and current data. If the historical data have a sufficiently
large sample size and drift may be assumed to be minimal, the sweet spot may be quite
likely to occur. Alternatively, in situations where much drift may be expected (or even
observed if historical data are available at various time points), we may be quite worried
about the extreme regions and question borrowing.

In our example, we noted that the sweet spot is around 0.61–0.67. A negative aspect of
pooling is that the inflation of type I error thereafter occurs rapidly and without bound.
Should the true control rate be 0.80, the type I error rate approaches 20%. The following
alternative methods attempt to improve upon this aspect.

It is important to note that the single arm trial suffers from substantially larger type I error
inflation than pooling. The type I error rate is inflated for almost all true control rates above
0.65, and the type I error rate exceeds 20% when the true control rate is 0.70. The central
statistical advantage of the single arm trial is its dramatically increased power when the true
control rate is exactly 0.65, but its performance quickly degrades should there be any drift in
the control population. Generally, type I error is considered ‘controlled’ under the nominal

Viele et al. Page 7

Pharm Stat. Author manuscript; available in PMC 2014 March 13.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



null of H0 : p = 0.65, but given that the actual trial conclusion may be interpreted as testing a
null of H0: p0 = pT, we note that generally the performance of the single arm trial is worse
than any common method for historical borrowing. Note that this problem is not removed
simply by choosing a higher performance criteria (such as running a single arm trial with a
null hypothesis of H0 : p = 0.70). This will shift the power and type I error curves downward
and thus may afford type I error control up to a true current parameter of 0.7, but will not
change the fact that the type I error rate inflates greatly beyond whatever null value is
chosen.

2.3. Test-then-pool

A difficulty in the pooled (and single arm) examples is the dramatic type I error inflation.
This is a result of ‘static borrowing’ in that the pooled analysis always borrows the complete
historical dataset. In contrast, we would prefer dynamic borrowing where the amount of
historical data borrowed is related to the agreement between the current control and
historical data.

In test-then-pool (described in Section 2.1), we first perform a hypothesis test of equal rates
between the current and historical control subjects. If this hypothesis is not rejected, we use
the pooled analysis. If the null hypothesis of equality is rejected, we perform the separate
analysis. This results in an ‘all or nothing’ approach, using one of the extremes of
borrowing.

The user may choose the size of the test (α) of equality between the current and historical
controls (one might choose α = 0.20, 0.10, 0.05, or 0.01 independently of the size of the test
comparing treatment and control for the primary analysis, which remains 0.025 regardless of
the borrowing behavior). By changing the size of this test, one can produce rejection regions
anywhere in between the pooled and separate analyses (large sizes always reject the null
hypothesis and thus are nearly always separate analyses, while small sizes almost never
reject and thus almost always pool).

Figure 3 illustrates the decisions made by the test-then-pool approach for tests of equality of
the current and historical controls with sizes 0.20, 0.10, 0.05, and 0.01. combined with a
0.025 size test comparing treatment to control. Similar to Figure 1, the orange and red
curves provide the decision boundaries for separate (orange) and pooled (red) trials. Trials
above the decision boundary are successful. Note that the blue curves represent the test-
then-pool decisions. These overlap the pooled analysis when the test of equality is not
rejected and overlap the separate analysis when the test of equality is rejected. The size of
the test determines the degree of overlap with separate and pooled. Small sizes require
extreme differences between the current and historical data to reject. Thus, small sizes
emulate pooled analyses over a broader range of control data than large sizes. Here, the test
of equality at size 0.10 (solid blue line) between the current and historical controls would
not reject (and hence pool) if the current control arm has between 109 and 149 responses
(observed rates between 0.545 and 0.745). Thus, we acquire ‘cliffs’ in the borrowing
structure. If we observe 108 responses, we completely ignore the historical data, while for
109 responses, we pool. Changing the size of the test of equality simply widens or narrows
the region in which pooling occurs.

One important advancement here over pooling is that there is a constraint on the borrowing.
If the current control arm differs sufficiently from the historical data, the model will cease
borrowing heavily (here it will not borrow at all). This allows for dynamic borrowing and
thus caps the amount of type I error inflation possible.
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Figure 4 shows the borrowing behavior, MSE, type I error, and power characteristics for
test-then-pool (blue curves) compared to separate (orange) and pooled (red) analyses,
similar to Figure 2. The four blue curves in each plot correspond to different sizes (α = 0.20,
0.10, 0.05, and 0.01) for the test of equality of the historical and current control data. Recall
that a size of 0.10 (solid blue line) is shown in Figure 3, and changing the size of the test of
equality (e.g., the criteria for pooling) can expand or contract the region where pooling takes
place. Thus, the pooled and separate analyses can be viewed as extremes of test-then-pool.

The top left panel in Figure 4 shows the expected number of borrowed subjects. Given test-
then-pool either borrows all (100 subjects) or none (0 subjects), the expected number of
borrowed subjects simply is 100 multiplied by the probability one will observe a dataset
where pooling occurs. Thus, for example, we see that when the true control rate is 0.75, the
solid blue line (size = 0.10 for test of equality) shows we expect around 40 borrowed
subjects, which indicates around a 40% chance of pooling (a true 0.75 current control
parameter has a reasonable likelihood of generating data close to the historical control rate
of 0.65). Note that if the true control rate is near 0.65, the model is extremely likely to
emulate pooling, but as the true control rate differs from the historical 0.65, we are less
likely to borrow. This is dynamic borrowing in that the weight given to the historical data
depends on the current control data.

The upper right panel shows the MSE of test-then-pool. For any chosen threshold, test-then-
pool performs similarly to pooling when the true control rate is near 0.65. In contrast to
pooling, as we move away from p0 = 0.65, we borrow less, and hence, the MSE does not
continue to increase but rather decreases to approach the separate analyses.

The bottom panels of Figure 4 are similar to Figure 2, again showing four blue curves. As
test-then-pool tends to emulate pooling for control rates near 0.65, we see a similar sweet
spot of improved MSE, increased power, and reduced type I error for test-then-pool. In
addition, as an advantage over pooling, we see the dynamic borrowing behavior. As the true
control rate moves away from 0.65, the model borrows less, thus capping the amount of
possible type I error inflation or potential power loss outside of the sweet spot. If one is
given a goal, for example, we want a type I error rate of 0.025 around p0 = 0.65, but are
willing to tolerate ‘X’ amount of inflation, then one can find an appropriate test-then-pool
parameter that achieves that goal, while preserving most of the power gains near p0 = 0.65.
Also note that the maximal type I error inflation occurs for a current control rate around 0.75
or higher, so this may or may not be a concern for the current trial, depending on the
anticipated current control rate.

There are several possible variants of test-then-pool. For example, the point where null
hypothesis could be replaced by an equivalence test. One could also consider a Bayesian
model averaging [7] approach that considers the posterior probabilities of pooling and
separate approaches. This would create a smoother version of test-then-pool. The remaining
methods (power priors and hierarchical models) allow a continuum of borrowing (e.g., one
can weight the historical data somewhere between pooling and separate analyses).

2.4. Power priors

The power prior (see, e.g., [4]) is a useful class of informative priors for historical
borrowing. Here, we focus on the particulars of applying the power prior to the binomial
dataset; a more complete description may be found in [2, 6] and [8].

Intuitively, the goal behind a power prior is to ‘downweight’ the historical data to some
degree. Thus, in our example, we have 100 historical observations available. Pooling would
borrow these at full weight, adding 100 observations to the 200 we will have on the current
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control arm, and would result in an effective sample size of 300 for the current control arm.
Given that we may have differences between the historical studies and the current control
arm beyond simple sampling error (if that were the only discrepancy, pooling would be
appropriate), one option is to downweight the historical data, treating the historical data as if
it had the same observed rate but with a smaller sample size.

Thus, in our example, suppose prior to the historical study we began with a vague
Beta(0.001, 0.001) prior on the response rate. After observing 65 of 100 responses in the
historical study, we would update this prior to a Beta(0.001 + 65, 0.001 + 35) posterior
distribution. With downweighting, we treat the data as if the observed proportion was 0.65
but with a smaller sample size. Suppose our weight was a = 0.4 (the power parameter),
indicating we want to count the 100 observations as if they held the information of 40
observations. Our posterior distribution after the historical data is observed would be
Beta(0.001 + (65 * 0.4), 0.001 + (35 * 0.4)).

We would then use this posterior (Beta(26.001, 14.001)) as an informative prior for the
current control study. This weights the historical data less than pooling but still incorporates
the point estimate from the historical study to some degree. A weight of 0 corresponds to
ignoring the historical data and performing a separate analysis, while a weight of 1
corresponds to pooling.

After observing Y0 responses on the current control arm and YT responses on the treatment
arm, combined with our power prior p0 ~ Beta(26.001, 14.001) and a non-informative pT ~
Beta(0.001, 0.001) (we may want to be more careful about these priors if we expected very
few or very many responses), we would acquire the posterior distribution p0|Data ~
Beta(26.001 + Y0, 14.001 + 200 − Y0) and pT|Data~Beta(0.001 + YT, 0.001 + 200 − YT).
As this is a Bayesian analysis, our primary analysis is conducted by declaring trial success if
Pr(p0 < pT|Data) > 0.975. Note that we can change the 0.975 threshold to further tune type I
error and power.

Formally, power priors are defined as a generalization of the usual Bayesian updating step,
where the prior for the current study is a product of an initial prior (often non-informative)
and the likelihood for the historical study. In a power prior, the likelihood for the current
study is raised to a power (between 0 and 1), and the resulting ‘posterior’ is used as an
informative prior for the current study. For a Beta prior, this results in the calculation earlier.
For more general information, see Chen and Ibrahim [9].

Figure 5 shows how this method would make decisions using 20%, 40%, 60%, or 80%
weight. Almost by definition, the decisions are proportionally between pooling and separate
analyses. Note this creates static borrowing, in that the amount of weight given to the
historical data does not depend on the current control data. If you use 40% weight (solid
curve), you always borrow 40 observations. Generalizations to dynamic borrowing are
briefly mentioned in the succeeding paragraphs.

Figure 6 compares the borrowing, MSE type I error, and power characteristics using 20%,
40%, 60%, or 80% weight. As noted earlier, the weight assigned to the historical data is
fixed regardless of the current control data. Thus, the top panel of Figure 6 shows horizontal
blue lines at 20, 40, 60, and 80 observations. As with previous comparisons of type I error
and power, we observe a sweet spot region, with lower current control rates resulting in
reduced power and higher current control rates resulting in type I error inflation.

Generally, the sweet spot is wider and shifted to the left (lower current control rates)
compared to the pooled analysis. The shift is largely a result of the shift from a frequentist to
a Bayesian analysis combined with the discreteness of the problem (thus, with different
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sample sizes, this may not be the case). The larger sweet spot region is thus a function of the
downweighting resulting in increased power over a much broader range of control values
less than 0.65. Instead of only going down to 0.61 (where the pooled and separate analysis
power curves cross), downweighting of 40% (solid blue line) has higher power all the way
down to a control rate of 0.58, with a 20% downweighting descending even farther. A
similar situation is observed with the MSE, where low weights result in broad regions of
slight improvement over separate analyses, while high weights result in MSE curves closer
to the pooled analysis.

Also note that, like test-then-pool, the weight parameter can be set to control the amount of
type I error inflation. Unlike test-then-pool, there is no cap on the amount of type I error
inflation. While the graphs shown reach a maximum, as the true current control rate exceeds
0.80, the type I error continues to increase. This is in contrast to test-then-pool and other
dynamic borrowing methods that reach a maximum and then decrease as they borrow less
and less for extreme datasets. By choosing a weight of 20% or 40%, one achieves far less
type I error inflation than a pooled analysis.

Hobbs et al. [3] as well as Ibrahim and Chen [4] and Neuenschwander, Branson, and
Spiegelhalter [10] consider dynamic borrowing versions of power priors that consider the
weight random and estimate it using the agreement between the current and historical data.

An empirical estimate for the power parameter (or a fixed value) appears to present an easier
posterior analysis than a random power parameter. Specifically, even with a properly
normalized conditional power prior [11], Hobbs et al. [12] point out that the posterior
distribution for the power parameter does not involve the current data. Thus, the
commensurability of the historical and current data is not easily captured using random
power priors. Neelon and O’Malley [13] warn that using random power parameters (in their
case, with a beta prior distribution) tends to over-attenuate the influence of the historical
data, and so one might have to use highly informative priors on the power parameter.

Chen and Ibrahim [9] discuss relationships between power priors (with a fixed or estimated
power) and the hierarchical priors that are covered in the next section. Consult the reference
for case examples of the use of power priors in practice.

2.5. Hierarchical models

In a hierarchical model, one places an explicit distribution across the true response rates in
the different studies and estimates those across group parameters to facilitate the borrowing
of information. Generally, let p0 be the true control rate in the current study, and let p1, p2,
…, pH be the true response rates in the H historical studies (H may be 1). Define γ0, γ1, …,
γH to be the logits of the true control rates (logit(p) = log(p/(1 − p))) and further assume

γ0, γ1, …, γH ~ N (μ, τ2)

Thus, μ and τ represent the between-study mean and standard deviation. The key parameter
for borrowing is τ. For τ ≈ 0, it is extremely likely that all the γ values will be similar (and
thus borrowing extensively would be appropriate), while for large τ, we may acquire quite
different true control rates in the different studies (and thus minimal borrowing is
appropriate).

Unfortunately, of course, we do not typically know τ (or μ). Thus, we place priors on both μ
and τ, adding a second layer to the model and thus creating a hierarchical structure with

μ ~ N(μ0, τ0) and τ2 ~ IGamma(α, β)
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Note that the choice of IGamma can be controversial (see, e.g., [14]). Here, we consider
‘informative’ choices such as IGamma(1, β) that, by varying β, allow a mild to moderate
degree of prior information on the scale of τ2. We also consider the more controversial
IGamma(ε, ε) prior. As noted in Gelman [14] and Lambert et al. [15], despite appearances
this is not ‘uninformative’ as the choice of ε drastically changes the properties of the prior.
That said, as can be seen in the graphs in Figure 8, the results are competitive with other
methods.

We place a N(0, 100) prior on μ (essentially non-informative on the logit scale), IGamma(1,
β) priors for τ2, with β = 1, 0.1, 0.01, and 0.001, and IGamma(ε, ε) priors on τ2 with ε = 0.1,
0.01, and 0.001. Note that on the logit scale, standard deviations of 1 are fairly broad, so all
mass above τ = 1 represents a small amount of borrowing. Thus, we compare priors with
differing scales for smaller τ.

For this analysis, we assume that the control data is Y0 ~ Bin(n = 200, p0), and the treatment
data is YT ~ Bin(n = 200, pT) where logit(pT) = γ0 + θ. Thus, θ represents the log odds
treatment effect, on which we place a non-informative θ ~ N(0, 100) prior. With this prior,
the posterior distribution of the control arm is minimally dependent on the treatment data.

The posterior distribution can be acquired via standard MCMC techniques.

Our primary analysis of H0 : p0 = pT against H1 : p0 < pT is equivalent to testing H0 : θ = 0
against H1 : θ > 0. Thus, we declare a primary analysis success if, after acquiring the
posterior distribution of θ, we observe Pr(θ > 0|Data) > 0.975 (note that this threshold may
be altered to change the type I error and power trade-off if desired).

The estimation of τ produces dynamic borrowing. Situations where the current and historical
data are far apart produce a posterior distribution more heavily weighted toward large τ,
while situations where the current and historical controls are similar produce a posterior
distribution more heavily weighted toward small τ. Given the limited number of studies
typically present in historical borrowing, these posterior distributions are still quite vague
(e.g., they reflect the uncertainty in the prior), but the general shift produced by the data is
sufficient to result in dynamic borrowing behavior.

Figure 7 illustrates the decisions made by hierarchical modeling for various priors on τ2.
Generally, we observe the behavior to produce an S-shaped interpolation between the
separate and pooled analyses, approached the pooled analysis when the observed control
data are similar to the historical data, and approaching the separate analysis as the current
control data diverge from the observed historical rate. This prior is fairly informative in
terms of the prior median being near strong borrowing and also has a long tail that allows
larger τ to be considered.

Similar to Figures 1, 3, and 5, the background in Figure 7 indicates the trial decisions for
separate analyses and the black outlines indicate the trial decisions from pooling. The blue
dots here indicate the trial decision from hierarchical borrowing. As with the other methods,
the hierarchical model produces borrowing between separate analyses and pooling.
Generally, we acquire behavior similar to pooling when the current control data are close to
the observed historical rate, and gradually move back toward separate analyses as the
current control rate differs from the historical data.

Figure 8 shows the borrowing behavior, MSE, type I error, and power comparisons for the
seven different choices of prior on τ. In the top panel, we see that borrowing with the
hierarchical model is dynamic, with maximal borrowing occurring for a true control rate of
0.65 and decreasing as the true control rates vary from this value. Generally, the decrease is
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gradual, with some borrowing occurring even at control rates fairly distant from the
historical 0.65. Note that for each prior, there is a cap on the expected amount of borrowing
somewhere less than pooling. Thus, by choosing the prior distribution for τ, one can
maximize the possible amount of weight given to the historical data. Note that with binomial
likelihoods, effective sample sizes are somewhat approximate, and thus, the expected
borrowing can be negative

In terms of type I error and power, one sees the (now) usual pattern of decreased power
when the true control rate is much lower than 0.65, followed by a sweet spot of reduced type
I error and increased power compared to separate analyses around 0.65, followed by inflated
type I error and increased power for values much higher than 0.65. In Figure 8, the blue
curves correspond to the IGamma(1, β) priors while the green curves correspond to the
IGamma(ε, ε) priors. Note that the green IGamma(ε, ε) priors tend to borrow less and thus
generally lack the inflated MSE and inflated type I error rate that occurs with the more
informative IGamma(1, β) choices. The solid lines (green and blue) show choices of β =
0.01 and ε = 0.001 where the type I error power trade-off would appear to be heavily in
favor of the ε = 0.001 choice. Similar to the curves for power priors, the type I error and
power curves are ‘flatter’ than what we see for the other methods such as pooling or test-
then-pool, with the sweet spot extending farther below 0.65 and the type I error inflation,
while certainly occurring at the lower rate. Note that by changing the threshold for trial
success (e.g., by changing Pr(θ > 0|Data) > 0.975 to Pr(θ > 0|Data) > 0.98), one can move
the sweet spot to some degree at the cost of a small amount of power. As with other
methods, by changing the prior on τ, one can achieve goals for minimizing the amount of
type I error inflation, again potentially at the cost of some of the power gains.

Bayesian hierarchical models have been used extensively in the literature. Some texts to
consult for references include [16] and [17].

2.6. Comparison of methods

The previous sections have focused on each method (single arm trials, test-then-pool, power
priors, and hierarchical modeling), demonstrating how user controlled parameters can affect
the borrowing behavior of each method. Here, we make a brief comparison of the methods
against each other.

As noted in the previous sections, by selecting appropriate parameters, one can essentially
select the degree of type I error inflation. We have chosen to compare test-then-pool with
size 0.10 on the test of equality, downweighting with 40% weight, the hierarchical model
with τ2 ~ IGamma(1, 0.01), and the hierarchical model with τ2 ~ IGamma(0.001, 0.001).
The type I error and power of these three choices are shown in Figure 9 (test-then-pool in
purple, power prior in blue, IGamma(1, 0.01) hierarchical model in dashed green, and
IGamma(0.001, 0.001) in solid green). These were chosen based on their maximal amount
of type I error inflation (note that the IGamma(ε, ε) priors did not reach a particularly high
amount of type I error inflation). Test-then-pool reaches its cap on type I error earlier and
also tends to have lower power than the power priors/hierarchical models over much of the
parameter space shown. Generally, the particular choices shown have common values of
type I error and power for true control proportions immediately near 0.65, although they
diverge as the true control proportion diverges from 0.65. In particular, test-then-pool has
more dramatic type I error inflation followed by an equally dramatic reduction in type I
error. The IGamma(0.001, 0.001) tends to have milder type I error inflation over much of
the range considered, at some moderate cost to power compared to the other methods
(although generally the IGamma(0.001, 0.001) outperforms test-then-pool).
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Figure 9 of course does not show the entirety of the current control parameter space. For
current control rates above 0.8, the power priors with 40% downweighting have increasing
type I error, while the hierarchical model begins to descend because of the dynamic
borrowing. Given the historical data, it is unclear whether values above 0.8 are likely, but if
they are viewed as plausible, then this range should of course be considered.

3. TYPE I ERROR INFLATION AND CONDITIONAL/UNCONDITIONAL

CALCULATIONS

The fundamental concern of borrowing in drug development is the inflation of type I error,
which presents a difficulty for using borrowing in phase III (confirmatory) trials. We noted
earlier that part of this difficulty involves the definition of type I error inflation in that
typically type I error is computed conditional on both the current control rate and the
historical data. By viewing the entire space of current control rates, it is always possible to
find a current control rate far from the observed historical rate and thus acquire type I error
inflation from borrowing.

This places us in the following situation, returning to the basketball analogy from the
introduction. Suppose a coach has a new player (novel treatment) and wants to determine if
the new player is better than an existing player (current control) in game situations (one
could acquire many data at practice, a weakness in the analogy we are ignoring here). The
coach has 2 weeks to make a decision (this may involve as few as 25 observations/‘free
throws’). The coach knows the existing player has a 0.650 free throw percentage for the
season to date (assume a large number of observations). If the coach argues that he will use
the 0.650 free throw percentage in making a decision, the existing player can legitimately
argue ‘but coach, suppose all my practice has paid off and I’m now shooting 90%. Using my
results earlier this season will bias your estimates and increase your type I error (if the new
player is no better than me, I’ll be more likely to lose my job by chance to the new player
than I should be)’. This is quite true, and a key issue for the coach is to determine how likely
it is that the practice has paid off to that degree (players may be known not to change that
much, or equivalently very few players have that high a free throw percentage). The simple
existence of type I error inflation may not be the issue as much as its likelihood and degree.

Returning to a clinical trials application, a rigid ‘no type I error inflation at all is acceptable’
approach can create some clearly irrational decisions. Suppose (possibly impractically) that
one were able to guarantee that pC = pH (the true rate for the current control rate is identical
to the true rate for the historical data). Of course, the data are still prone to sampling error,
but the parameters are identical. Here, the correct decision must be to pool the historical
data.

However, all the arguments about type I error inflation remain. Suppose we observed 65/100
responses in the historical dataset, while also knowing pC = pH. It is possible that pC = pH =
0.8 and we by chance observed a low observed historical rate. Conditional on pC = 0.8 and
the historical data, pooling inflates type I error (as shown in Figure 2, the type I error
inflation is quite large). If we did not allow any possibility of type I error inflation
conditional on the historical data, we would not be allowed to pool the historical data. But
we know that pC = pH, and thus, we should pool. Essentially, values outside the sweet spot
arise from the possibility that the historical data may lead us in the wrong direction. If we
cannot allow any possibility that the historical data are misleading, then we are forbidden
from using any data in the past, and essentially ‘the only good data are unseen data’.

In practice, we are never granted such a powerful assumption. We are faced with the
uncertainty of drift in the control population, the chance that our literature search is not ‘on
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point’ or suffers from publication bias, and many other factors. To properly evaluate the
possibility of borrowing, one must consider the possible likelihood of such drift combined
with the straightforward possibility of sampling error in the historical data and assess
whether the benefits of increased power and reduced type I error are more likely to occur
than the pitfalls of reduced power for some values of p0 and type I error inflation for others.

As noted earlier, these calculations change if one prospectively intends to use the data from
one study in another study. One must still account for the possibility of drift, but prior to
observing the data from the first study, the agreement between the historical and current
control data is random and thus part of the type I error calculations. This is not the most
common situation, but it also deserves investigation as such prospective designs have the
possibility of further limiting the possible type I error inflation.

4. EXTENSIONS FROM THE LITERATURE

There have been many extensions to the models demonstrated thus far. For example,
exchangeability between historical studies and current studies in the hierarchical model may
be a concern. Neelon and O’Malley [13] propose an ‘exchangeable power prior’ to limit the
impact of historical data in a hierarchical model. Consequently, even if the between-study
variance parameter indicates borrowing, the power parameter will temper the borrowing by
a fixed amount. The same authors also warn about too much attenuation of historical data
when a power prior is used with a random power parameter (unless a very informative prior
is used for the power parameter). Commensurate power priors [12] were proposed as an
alternative. The commensurate prior adjusts the power parameter prior conditionally through
a measure of the degree to which the historical and current data are commensurate,
analogous to a measure of bias between the historical and current controls [1]. Thus, the
borrowing obtained via the power parameter can be adjusted based on commensurability,
and attenuation occurs when it is appropriate.

Furthermore, several authors have expanded models for incorporating historical controls.
Extensions include the addition of covariates (e.g. [18]), multiple historical controls or
multiple clinical sites [3], and adaptive randomization using historical controls [19].
Bayesian design including sample size determination is discussed in De Santis [20] and
Chen et al. [21]. In this section, we discuss some useful extensions in the literature for
incorporating historical controls in Bayesian trials.

4.1. Multiple historical controls

Multiple historical controls entail multiple power parameters in the power prior model (see
Ibrahim and Chen [4]) and a more complicated relationship between the commensurability
parameter and the between-study variance from the hierarchical model [3]. For the power
prior example in Section 2.4, if the historical controls are assumed independent of one
another (conditional on the control proportion), multiple historical controls would allow for
multiple weights, one for each historical control. For hierarchical modeling, multiple
historical controls make the estimation of the between-study precision more reliable (τ in
Section 2.6). As such, the extent of borrowing as well as pre-posterior risk (i.e., the expected
posterior squared error loss prior to observing data) is not overly sensitive to the forms of
hyperpriors (see [15] and [3]).

Chen et al. [21] investigate Bayesian design and analysis of a non-inferiority trial and
compare hierarchical priors with power priors when both incorporate multiple historical
controls. For the power prior, they study both fixed and random power parameters. In their
example, they study a 12-month target lesion failure (TLF, a binary endpoint) in a new
generation drug-eluting stent compared to a historical control composed of two studies on
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previous generation drug-eluting stents. TLF was modeled using a binomial likelihood with
beta priors on the TLF rates. Chen et al. computed operating characteristics when a future
study had a control TLF rate that was the pooled average of the two historical rates and
when the device TLF rate was either equal to the control (power) or equal to the control plus
non-inferiority margin. When the between-study precision for the hierarchical prior had a
Gamma(0.001, 0.001) prior, the power weights all had Beta(1, 1) priors or were all fixed at
0.03, and power was relatively similar across priors, even as sample size increased. When
the between-study precision had a Gamma(0.01, 0.01) hyperprior, power was somewhat
lower, and type I error rate was somewhat higher than for the other priors. The type I error
rate for both fixed and random power priors was somewhat lower than for the other priors.

4.2. Adaptive allocation

When historical controls are used within a randomized controlled trial, the realized
randomization ratio of treatment to (current) control may be much higher than 1:1 because
historical control information can be used in place of current control subjects so that fewer
current controls need to be randomized. Such ‘information-balanced’ randomization has
been researched by Hobbs et al. [19]. Here, the randomization ratio adapts as a function of
the relative informativeness of the historical control data for evaluating the endpoints. Their
method requires interim assessment of relative informativeness of the historical control(s)
using an expression for the interim effective sample size in the control. To the extent that the
treatment effect from the already enrolled current control subjects is similar to the effect
estimate from the historical control(s), the higher the effective sample size in the control
group, and the fewer new control subjects need to be randomized. While Hobbs et al. are not
the first to suggest adapting the randomization ratio, other authors have mostly focused on
using response-adaptive or outcome-adaptive randomization (see [2]). Hobbs et al. illustrate
their method using data from a colon cancer trial, with prior data coming from a previous
trial. The trial begins non-adaptively, with 1:1 randomization until a certain number of
events occurs; then, at each of a specified number of interim looks, the allocation ratio
adapts to the information obtained from the historical controls.

Several authors show that the effective sample size could be estimated a priori to design a
clinical trial (see [5, 20, 22, 23]). Here, if the historical control data are worth n* prior
control subjects, then under a 1:1 randomization ratio to treatment and control with n
subjects per group, the trial would need only n−n* control subjects. Naturally, the lower the
between-trial heterogeneity among the current and historical controls, the higher the prior
effective sample size and the lower the mean-squared error of the control estimate [5].

4.3. Role of covariates

Study-level and/or patient-level covariates may be important in determining the relevance of
historical data and could be accounted for in the modeling. However, to this point, the use of
covariates in formal borrowing of historical data has seemingly limited investigation/
discussion in the literature, revealing a potential research gap. O’Malley et al. [18]
illustrated sample-size methodology for a Bayesian trial that used historical control
information with relevant covariates that influence the treatment effect. More recently,
Hobbs et al. [3] developed their commensurate prior approach using a general linear
regression model format, which is also adapted for other types of linear models, such as
generalized linear models, mixed effects models, and failure time models. Hobbs et al. [3]
assume that p − 1 identical fixed covariates of interest are measured in both the current and
historical trials. Commensurability then depends on similarity in the intercepts as well as the
covariate effects (and, in the case of accelerated failure time models, the scales too).
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Often, modeling covariates can help the assumption of exchangeability of the current and
historical controls. Partial exchangeability [24] is applicable when the control groups are
exchangeable after accounting for baseline covariates. Thus, if the control populations differ
in a measurable way, exchangeability may still be viable. As a simple illustration, consider a
new weight loss device to be compared with a control device, where some control patients
may be obtained from one or more historical studies. Suppose the patients from the
historical studies had a higher baseline weight on average than the currently enrolled
patients. In order to borrow appropriately from the historical controls, patients’ initial weight
should be accounted for in the model so that outcomes are exchangeable after conditioning
on baseline weight. For a numerical illustration, see Pennello and Thompson [25].

In certain situations, calibrating the current and historical controls is imperative for making
correct inferences. Pennello and Thompson [25] consider a randomized controlled non-
inferiority study of a complication rate. A hierarchical model is employed to borrow strength
from historical controls to help estimate the concurrent control rate in order to reduce the
sample size of the concurrent control. If the current control subjects are less healthy than the
historical control subjects, they are more likely to have complications. Consequently,
borrowing strength from the historical controls without proper adjustment for covariates that
measure health status will bias downward the concurrent control complication rate, making
it more difficult to demonstrate non-inferiority of the new device. An analogous situation
could describe an anti-conservative bias where non-inferiority (and superiority) is easier to
demonstrate because the historical subjects are less healthy than the current control subjects.

Baseline (and time-varying) covariates could also play an imperative role in borrowing
strength across different populations, where one population is limited or scarce. A timely
example is where an indication is sought in a pediatric population for a medical device that
already has an adult indication. Parents may be hesitant to enroll their children in a study
where there is a possibility of acquiring the control treatment. If adult studies are determined
to be appropriate for borrowing strength in the control group, then a necessary task to
determining the extent of borrowing is to identify covariates that make the adult and
pediatric populations different in the effectiveness of the control treatment.

Covariates are also included in power prior models, as the power prior is simply the
historical likelihood raised to a power [4]. Coefficients associated with the covariates in the
model may or may not be the same for the historical likelihood as the current likelihood.

5. DISCUSSION

Our central goal has been to illustrate the main practical issues in drug development utilizing
historical borrowing for the current control arm (presuming little to nothing can be assumed
about the test treatment). At its best, borrowing good information from past studies allows
for reduced type I error and power in a current study, which may either be used at face value
or translated into a smaller sample size for the current trial and/or unequal randomization.

Generally, borrowing is dominant (reduced type I error and higher power) when the current
control rate is close to the historical observed rate. This is intuitive as we are borrowing
information nearly identical to the true current value. As the true current control rates
diverge from the observed historical data, we can acquire reduced power (in one direction)
and inflated type I error (in the other direction). Assessing the magnitude and relative
likelihood of these costs in comparison to the possible benefits is the key issue in
determining whether historical borrowing is appropriate in any given setting.

We have compared several possible borrowing mechanisms. We note that pooling produces
good results in the region very near the historical observed rate but can suffer from greatly
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inflated type I error (while also showing that commonly used single arm trials can actually
inflate type I error more than any proposed borrowing mechanism). Alternative methods
such as test-then-pool, power priors, and hierarchical models can produce lower type I error
inflation, and in fact, each of these methods has user-settable parameters that allow the user
to cap the amount of type I error inflation in a specific range of control rates.

Finally, we note that a more prospective viewpoint of historical borrowing, always viewing
today’s trial as information for future trials, can create a different calculation for computing
type I error, as the discrepancy between the historical and control datasets then has an
explicit distribution. This is particularly relevant for seamless phase II/III trials, which were
not considered here.

With the current environment demanding more efficient clinical trials, proper balancing of
the risks and benefits of historical borrowing has the potential to further streamline the
development of drugs and medical devices.
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Figure 1.
Conclusions reached by separate, pooled, and single arm trials. The X (control) and Y
(treatment) axes show the possible values of the observed data, while the three curves show
the decision boundaries for the separate (orange), pooled (red), and single arm (purple)
trials. Note that in a single arm trial, control data are not collected, and hence, the decision is
based on the treatment data alone.
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Figure 2.
Comparison of the mean square error (MSE) (left), type I error (middle), and power (right)
for separate (orange), pooled (red), and single arm trial (purple) designs. Generally, there is
a ‘sweet spot’ near 0.65 where borrowing simultaneously achieves lower MSE, lower type I
error, and higher power compared to the separate analysis. Below the sweet spot, we see
diminished power with borrowing, and above the sweet spot, we see inflated type I error.
Assessing the relative likelihood of these regions is important to assessing the costs and
benefits of borrowing.
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Figure 3.
Conclusions drawn by separate, pooled, and test-then-pool (using sizes 0.20, 0.10, 0.05, and
0.01 for the test of equality between current data and historical data) analyses. The curves
indicate the decision boundaries for each design, showing separate (orange), pooled (red),
and test-then-pool (blue). Results above the curves are successful trials. Note that small sizes
for the test of equality produce the greatest overlap between test-then-pool and the pooled
analysis. Thus, the 0.01 size test of equality (the dotted line) has the greatest overlap with
pooling. For control values between 109 and 149 responses, test-then-pool (at size 0.10)
chooses the pooled analysis, while outside this region, the test-then-pool approach emulates
a separate analysis.
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Figure 4.
Comparison of borrowing, mean square error, type I error, and power for test-then-pool. The
red curves indicate pooled analyses, the orange curves separate analyses, and the blue curves
test-then-pool analyses with sizes of 0.20, 0.10, 0.05, and 0.01 for the test of equality (the
primary analysis for testing the novel treatment still uses size 0.025). Test-then-pool
incorporates dynamic borrowing (the model borrows less as the historical and current
control rates diverge). This caps the amount of type I error inflation. In addition, by
changing the size of the test, one can construct a continuum of procedures that can achieve
any particular goal for type I error.
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Figure 5.
Decisions made by downweighting using a power prior. Similar to Figures 1 and 3, the
curves indicate the decision from a separate analysis (orange), pooled analysis (red), or a
20%, 40%, 60%, or 80% downweighting (dot dashed, solid, dashed, and dotted lines). Data
above a curve result in trial success for that design. Downweighting essentially acts
proportionally between the separate and pooled analyses.
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Figure 6.
Borrowing, mean square error type I error, and power comparison for downweighting. The
top panel provides the effective number of borrowed observations (here directly set by the
weight parameter, one of 20%, 40%, 60%, or 80%). The bottom left panel shows the type I
error as a function of the true control proportion, while the bottom right panel shows the
power. Generally, the ‘sweet spot’ where borrowing dominates a separate analysis is longer
for downweighting than pooling, and downweighting with low weights can limit the amount
of type I error inflation for values near the historical rate of 0.65.
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Figure 7.
Decisions made using hierarchical borrowing with different priors on τ2. Hierarchical
borrowing is dynamic, emulating pooling when the current controls agree with historical
data and coming closer to separate analyses as the current control data diverge from the
historical data, and interpolating between those extreme with an S-shape. The green curves
(quite similar to a separate analysis represent the Gamma(ε, ε) priors, while the blue curves
represent Gamma(1, ε) priors.
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Figure 8.
Comparison of borrowing, mean square error, type I error, and power for hierarchical
models. As before, orange line represents the separate analyses while the red represents the
pooling analyses. Blue curves correspond to IGamma(1, β) priors on τ2 while green curves
correspond to IGamma(ε, ε) priors on τ2. Borrowing behavior tends to be ‘flatter’ for
hierarchical models, borrowing moderately over a long range, while still displaying dynamic
borrowing (borrowing is reduced when the true control rate is far from the historical data).
This moderate, long range borrowing is also reflected in the type I error inflation that has a
lower slope than other methods (although it still does reach reasonably high values).
Generally, the ‘sweet spot’ of improved type I error and higher power extends farther down
(for values under 0.65) than other methods. Also note that the green IGamma(ε, ε) choices
tend not to inflate type I error as much as the more informative IGamma(1, β) choices.
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Figure 9.
Type I error and power comparison for separate (orange), pooling (red), selected test-then-
pool (size 0.10, purple), downweighted power prior (40% weight, blue), and hierarchical
model (IGamma(1, 0.01) in dashed green, and IGamma(0.001, 0.001) in solid green).
Generally, the test-then-pool approach has lower type I error and also lower power near a
control rate of 0.65, but has reduced power compared to power priors and hierarchical
models outside that range. For control rates near 0.65, all methods achieve similar power
gains as pooling (red) with much less type I error inflation.
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