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Abstract: Combining hydrogeochemical characterization and a hyperspectral reflectance measure-
ment can provide knowledge for groundwater security under different conditions. In this study, com-
prehensive examinations of 173 groundwater samples were carried out in Makkah Al-Mukarramah
Province, Saudi Arabia. Physicochemical parameters, water quality indices (WQIs), and spec-
tral reflectance indices (SRIs) were combined to investigate water quality and controlling fac-
tors using multivariate modeling techniques, such as partial least-square regression (PLSR) and
principal component regression (PCR). To measure water quality status, the drinking water qual-
ity index (DWQI), total dissolved solids (TDS), heavy metal index (HPI), contamination degree
(Cd), and pollution index (PI) were calculated. Standard analytical methods were used to as-
sess nineteen physicochemical parameters. The typical values of ions and metals were as follows:
Na2+ > Ca2+ > Mg2+ > K+, Cl− > SO4

2− > HCO3
− > NO3

− > CO3
2−; and Cu > Fe > Al > Zn > Mn > Ni,

respectively. The hydrogeochemical characteristics of the examined groundwater samples revealed
that Ca-HCO3, Na-Cl, mixed Ca-Mg-Cl-SO4, and Na-Ca-HCO3 were the main mechanisms governing
groundwater chemistry and quality under the load of seawater intrusion, weathering, and water-rock
interaction. According to the WQIs results, the DWQI values revealed that 2.5% of groundwater
samples were categorized as excellent, 18.0% as good, 28.0% as poor, 21.5% as extremely poor, and
30.0% as unfit for drinking. The HPI and Cd values revealed that all groundwater samples had a low
degree of contamination and better quality. Furthermore, the PI values showed that the groundwater
resources were not affected by metals but were slightly affected by Mn in Wadi Fatimah due to
rock–water interaction. Linear regression models demonstrated the significant relationships for the
majority of SRIs paired with DWQI (R varied from −0.40 to 0. 75), and with TDS (R varied from 0.46
to 0.74) for the studied wadies. In general, the PLSR and PCR models provide better estimations for
DWQI and TDS than the individual SRI. In conclusion, the grouping of WQIs, SRIs, PLSR, PCR, and
GIS tools provides a clear image of groundwater suitability for drinking and its controlling elements.

Keywords: groundwater quality; water facies; geochemical processes; spectral reflectance indices;
drinking water; pollution indices

1. Introduction

Groundwater is a fundamental and critical resource for humans all around the planet.
Because of the importance of this resource, the world’s nations face a major challenge of
water scarcity, especially in arid and semiarid regions [1,2]. Low precipitation and high
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evaporation rates in arid and semiarid regions increase water salinity, which increases the
toxicity of some chemicals in groundwater [3]. According to recent studies, an estimated
2.1 billion people do not have access to adequate quality fresh water [4]. Water security that
fulfils the quality specifications stipulated in relevant standards is currently the foundation
for the operation of most communities [5].

Makkah Al-Mukarramah Province, located in southwest Saudi Arabia, has about
43 coastal wadies that are characterized by relatively heavy flashfloods and groundwater
resources. It is a densely populated area due to its religious location, which leads to a
sharp increase in water demand and affects the quality of its water. The groundwater in
the Makkah Al-Mukarramah region is the major source of water resources, which have
decreased significantly over the past few years. As the KSA Vision “2030” aims to maximize
the utilization of Kingdom resources, such as water, and keep them from deteriorating in
order to provide a decent life for its citizens, and with the ever-increasing population, the
need for natural resources increases in order to secure the needs of the society. Therefore,
periodic and seasonal monitoring of groundwater levels and quality has become extremely
important for evaluating groundwater and overcoming the problem of depletion and degra-
dation of groundwater in this region. The traditional methods for assessing groundwater
quality from sample collection, conservation, and laboratory analysis have become very
difficult and costly. Therefore, it was necessary to propose an alternative solution to the
periodic chemical analysis of water depending on the hydrochemical models, spectral
reflectance measurements, and remote sensing technology.

Water quality management, water pollution control, and environmental preservation
must all be emphasized in order to safeguard living circumstances [6,7]. Understanding
groundwater chemistry is a necessary prerequisite for mechanism analysis and quality
evolution [8–10]. Natural processes such as dissolution, percolation, precipitation, and
cation exchange, as well as anthropogenic activities, define the mechanism for groundwater
chemistry [11–13].

In past investigations, standard water quality indices (WQIs) were used to assess
groundwater quality [14,15]. Considering the numerous hydrochemical criteria, the WQIs
technique is ineffective for determining groundwater quality [16]. Because of its more
complete calculation, the methodology for evaluating groundwater quality using numerous
hydrochemical parameters is seen to be a more robust approach [17–20]. Therefore, the
WQIs have been extensively used for assessing groundwater quality. Furthermore, the
geography information system (GIS) is useful in determining the spatial distribution of
WQI values. Global research has been conducted in order to establish appropriate water
quality assessment methodologies, including the single factor index approach based on
water body objectives and needs [21,22].

The most frequent techniques for assessing water quality are the DWQI, HPI, Cd,
and PI. As a result, it is vital to improve the method used to compute the weight, which
might represent tacit information included in data [23]. The WQIs are derived from a
large information set that includes multiple water quality metrics from diverse places.
Many WQIs have been established to serve as markers for evaluating water quality in both
drinking and agriculture usages [24–27]. The primary purpose of WQIs is to transform large
amounts of complex information into numeric datasets, which helps to improve knowledge
of water quality. The DWQI might be established as a dependable measure, defined as a
number that indicates the integrated influence of several water quality elements. As a result,
The DWQI is calculated by assessing the combined effect of man-made and environmental
activity in the hydro-geometry characteristics of groundwater in the study area [28].

Remote sensing, in conjunction with geospatial approaches, plays an important role in
measuring and mapping environmental contamination by facilitating spatial assessment.
These strategies rely on non-spatial data being spatially represented in order to map the
researched parameter throughout the entire region, including non-surveyed locations [29].
Moreover, spatial data have made tremendous advances in health and environmental
appraisal research, assisting in the detection of pollutants and the concerning environmental
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elements [30]. The integration of remote sensing and GIS, as well as field observations
and laboratory experiments, have generated exceptional environmental visualization of
data with the help of spatial variation maps, which facilitate strategic planning [31]. Many
studies commonly employ the visible and near-infrared ranges of the sun spectrum to
extract accurate connections between SRIs and single water quality metrics (SWQM). Total
suspended solids, turbidity, and chlorophyll-a were typically assessed utilizing remote
sensing monitoring equipment [32,33]. However, defining a single water quality standard
based on water quality usage is problematic.

There is particularly limited information available on the efficacy of spectral indices
for predicting drinking and irrigation indices for water. There is just one study that
discovered how to assess the drinking water quality index for water using known models
based on spectral reflectance measurements to classify water quality level for drinking [34].
Consequently, the purpose of this research was to assess the robustness of recently created
and published SRIs for calculating groundwater water-quality indices in three chosen
wadies (Marawani, Fatimah, and Qanunah) in the Makkah region. As a consequence,
freshly generated spectrum indices coming from the two wavelengths in the spectra will
be assessed by building correlation matrices (contour maps) based on linear, quadratic,
and exponential equations. Instead of formulating indices, whole spectra were used
on an empirical basis to best fit the model to predict the trait of interest. Partial least
square regression (PLSR) and principal component regression (PCR) models are typical
methods that define an empirical rationale for a fit of the accuracy model to predict traits
of interest [35]. Because the characteristics may be examined throughout a wide range
of wavelengths from the spectral regions VIS and NIR or based on spectral indices SRIs,
the PLSR and PCR are regression techniques that may be used to reduce the amount of
collinear spectral factors generated [36,37].

Our research focuses on assessing groundwater quality in three different wadies
utilizing physiochemical parameters, WQIs, and the accuracy of proximal remote sensing
based on spectral bands. The objectives of this study were to: (i) identify geochemical
types and their controlling factors based on physical and chemical metrics; (ii) assess the
suitability of groundwater for drinking in relation to WQIs; (iii) assess the performance
of newly and published SRIs for estimating the four WQIs of DWQI, TDS, HPI, and Cd;
and (iv) evaluate the efficacy of PLSR and PCR models depending on investigated SRIs to
predicting the four WQIs.

By concentrating on the most useful water quality criteria, this research offers tools for
improved decision making concerning groundwater quality assessment in arid regions to
guarantee successful management, aids in the identification of contamination sources, and
offers a clearer picture for the redesign of sampling methods.

2. Materials and Methods
2.1. Study Wadies Description

The administrative borders of the Makkah province are bounded by the Red Sea in the
west, Riyadh in the east, Al-Madinah Al-Munawarah in the north, and the Provinces of Al
Bahaand Asir in the south, with a total area of 141,216 km2 (Figure 1). This work was carried
out under different condition in three representative wadies in Makkah Al-Mukarramah
Province to evaluate the groundwater quality for drinking (Figure 1). Topographically,
the Makkah region is characterized by a great diversity in altitude ranging from 0.0 m
to 2984.0 m above mean sea level (amsl), as shown in Figure 2a [38]. Geologically, the
lithological units that dominated in this area belong to the era that extends from the pre-
Cambrian to the Quaternary (Figure 2b) [39]. The average annual precipitation distribution
map in the Makkah region was constructed (Figure 3). Wadi Marawani, Wadi Fatimah,
and Wadi Qanunah received an average rainfall of about 70–110 mm, 50–110 mm, and
100–400 mm, respectively, due to the presence of the upper mountainous region of the
wadies [40].
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Figure 1. Location map of the groundwater points for the selected wadies in Makkah Al-Mukarramah
Province, Saudi Arabia: (a) Wadi Marawani, (b) Wadi Fatimah, and (c) Wadi Qanunah.

Hydrogeological Description

The main water bearing formation in the selected wadies was the Quaternary aquifer,
which is the primary source of groundwater for different uses. According to the information
collected from the comprehensive survey of 173 groundwater wells, this aquifer was
extended in coastal plains and wadi channels with a maximum thickness of about 118 m
in Wadi Marawani, 60 m in Wadi Fatimah, and 74 m in Wad Qanunah. Lithologically,
the Quaternary aquifer in the studied wadies in the Makkah region was formed mostly
from alluvial deposits (gravel, sand, and silt) and the igneous metamorphic rocks form
the bedrock of the aquifer, which were highly fractured and weather-cracked, making
them an ideal host for groundwater preservation [40]. Therefore, the Quaternary aquifer
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in the study area is of an unconfined condition. As a result of the shallow depth of the
groundwater and the porous and permeable deposits on top of the aquifer, human and
agricultural activities could contribute to pollution in these wadies. The amount of rainfall
distributed along these waterways is a major source of groundwater recharge. The majority
of rainfall runoff infiltrates into highly permeable sediments that fill the wadi channels,
where it recharges the shallow underlying Quaternary aquifer.

Figure 2. (a) Digital elevation model (DEM) and (b) geological map of Makkah Al-Mukarramah
Province, Saudi Arabia.

Figure 3. Annual distribution map of average rainfall (mm) in Makkah Al-Mukarramah Province,
Saudi Arabia (1960–2012).
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2.2. Groundwater Sampling

During 2021, groundwater samples were collected from the Quaternary aquifer along
the three wadies. Sixty-four samples were taken from depths ranging between 1 and 30 m
for Wadi Marawani, 59 samples from 1.2 to 50.1 m for Wadi Fatimah, and 50 samples
between 0.8 and 21.7 m for Wadi Qanunah, through a surveying trip to convey the overall
genuine conditions for assessing groundwater quality for drinking purposes. A portable
GPS (MAGELLAN GPS 315, USA/United States of America) was used to determine the
position of the water samples and identify the Universal Transverse Mercator coordinates
system UTM of the research area (Figure 1).

2.3. Field Measurments and Laboratory Analysis

Portable conductivity multi-parameter equipment calibrated with standard solutions
was used to determine T (◦C), pH, EC, and TDS at the site (Hanna HI 9033, Germany).
For chemical analysis, two groups of groundwater samples were obtained in 500 mL from
each sampling location and filtered using 0.45 m Whatman filter paper. The samples were
maintained at 4 ◦C until they were transported to the laboratory for physiochemical inves-
tigation. Using standard analytical procedures, twenty distinct physiochemical parameters
were determined. The EDTA titrimetric approach was used to measure Mg2+ and Ca2+ con-
centrations, whereas a flame photometer was used to evaluate K+ and Na2+ concentrations
(ELEX 6361, Hamburg, Germany). Titration with AgNO3 was employed to measure Cl−

concentrations, whereas titrimetry was utilized to detect HCO3
− and CO3

2− concentrations.
Sulfate (SO4

2−) and NO3
− concentrations were determined using a spectrophotometer

with UV spectrum (DR/2040 Loveland, USA). For analysis of trace element, samples were
adjusted to a pH of 2 with conc. HNO3 preservatives before being analyzed. Standard
analytical protocols [41] were utilized to analyze metals such as Al, Cu, Fe, Mn, Ni, and Zn
with an inductively coupled plasma mass spectrometer (ICP-MS, Waltham, USA/United
States of America). Several quality assurance methods were employed throughout the
evaluation of the water samples. The charge balance errors (CBE) were determined after the
laboratory double-checked the experimental data using the formula below (Equation (1)).

CBE =
∑ Cations − ∑ Anions
∑ Cations + ∑ Anions

× 100 (1)

2.4. Measuring Spectral Reflectance

The spectral reflectance of the 173 collected groundwater samples from the three
wadies was measured using a passive sensor (tec5, Oberursel, Germany). To study the
link between the surface water spectrum in situ and the water quality indicators, a passive
sensor with a viewing angle of 12◦ was utilized to measure the reflection of water. The
water sample was placed in a glass jar, and the spectral reflectance of the water samples
was measured at a distance of 0.30 m. A black sheet was used to cover the edges of the glass
jar to avoid reflection from the backdrop and to collect all reflectance of water samples. The
passive sensor has a spectral range from 302 nm to 1148 nm and a bandwidth of 2 nm [42].
The water reflection was obtained at a sunny period in a short time to eliminate variations
in light radiation intensity, and each sample was a ten-scan average.

2.5. Selection of SRIs of Groundwater Samples of the Three Wadies

Fourteen SRIs, including five published indices and nine newly developed indices,
were examined (Table 1). Contour maps were established to show determination coefficients
(R2) between the DWQI, TDS, HPI, and Cd of water samples with ratio spectral indices
(RSI). For example, the best RSI was determined by combining two separate wavelengths
in the spectra ranging from 302 to 1148 nm for DWQI of three wadies: (a) Wadi Marawani,
(b) Wadi Fatimah, and (c) Wadi Qanunah, as shown in Figure 4. The spectral reflectance
contour maps of the spectrum region were constructed, which could be used to determine
the effective spectral area with optimum wavelengths and to recognize the importance of
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SRIs. SRIs were calculated using thirteen wavelengths (454, 470, 472, 480, 488, 510, 480, 510,
554, 570, 590, 1122, and 1124 nm).

Table 1. Description of different SRIs used in this work.

SRIs Formula References

Published SRIs
Ratio between blue and red Blue/Red [43]

Ratio between green and red Green/Red [44]
Ratio between NIR and red NIR/Red [45]
Ratio between NIR and blue NIR/Blue [45]

Ratio between NIR and green NIR/Green [45]
New SRIs
RSI1122,454 R1122/R454 This work
RSI1122,470 R1122/R470
RSI1124,472 R1124/R472
RSI1122,480 R1122/R480
RSI1122,488 R1122/R488
RSI1122,510 R1122/R510
RSI1122,554 R1122/R554
RSI1124,570 R1122/R570
RSI1122,590 R1122/R590

Figure 4. Correlation matrices displaying (R2) values for possible dull wavelength ranging from 302 to
1148 nm with DWQI of three wadies: (a) Wadi Marawani, (b) Wadi Fatimah, and (c) Wadi Qanunah.

As indicated in Table 1, a ratio spectral index was calculated using this equation:

RSI = R1/R2 (2)
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where R1 and R2 refer to the values of spectral reflectance at various wavelengths.

The linear fitting equation: Y = a + b RSI (3)

2.6. Indexing Approach

The DWQI, HPI, Cd, and PI were calculated based on cited references [46–49] to detect
the suitability of groundwater quality in the three selected wadies.

2.6.1. Drinking Water Quality Index (DWQI)

The DWQI were derived by the concentrations of thirteen determinants across the
selected wadies (Table 2). The results of all laboratory analyses for all groundwater wells ob-
tained were examined for quality review. The physicochemical parameters were weighted
depending on their relevance in the overall quality of water for water supply. According to
Equation (4), the DWQI displays the overall water quality of each water component as a
function of a range of water quality factors and their utilization in the ecosystem [50].

DWQI =
n

∑
i=1

Wi × (
Ci

Si
× 100) (4)

where Wi indicates the weight unit of each parameter, and 13 physical and chemical
parameters were used. The concentration (Ci) and standard (Si) values for each water
variable were derived using the formula below (Equation (5)):

Wi =
wi

∑ wi
(5)

Table 2. Arithmetic rating method for calculation of drinking water quality index (DWQI).

Physicochemical Parameters Measured Sample Si (mg/L)
WHO (2011) Unit Weight Wi Sub Index (Qi) Qi×Wi

pH 7.70 8.5 0.4155 46.4162 19.2842
EC 3696.45 1500 0.0024 246.4297 0.5802

TDS 2214.00 500 0.0071 442.7992 3.1274
TH 1004.30 500 0.0071 200.8604 1.4187
K+ 8.80 12 0.2943 73.3304 21.5802

Na2+ 415.20 200 0.0177 207.5998 3.6656
Mg2+ 89.34 50 0.0706 178.6869 12.6204
Ca2+ 255.20 75 0.0471 340.2723 16.0220
Cl− 818.44 250 0.0141 327.3740 4.6244

SO4
2− 531.45 250 0.0141 212.5783 3.0028

HCO3
− 186.25 120 0.0294 155.2062 4.5675

CO3
2− 2.39 350 0.0101 0.6837 0.0069

NO3
− 46.83 50 0.0706 93.6599 6.6151

∑ (Wi) = 1 ∑n
i=1 Qi × Wi

Equation (6) computes wi for each parameter using the accepted criteria [51]:

wi = K/Si (6)

where K denotes the proportionality factor.
To calculate the DWQI, each groundwater variable (wi) is weighted, and the relative

weight is established (Wi). Therefore, the values of Wi were given to totally physicochemical
parameters, and wi was computed using Equation (7). Table 2 displayed the calculated
values of the water parameters’ standards, weights (wi), and arithmetic weights (Wi).
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2.6.2. Water Pollution Indices (PIs)
Heavy Metal Pollution Index (HPI)

To determine total groundwater quality, a toxicity index (HPI) based on rating the
mathematical weights of metals was utilized (Table 3). The HPI values represent the
cumulative effect of elements on overall groundwater quality [52] in comparison to the
suggested standard recommendations (Si) for each metal, namely, Al, Cu, Fe, Mn, Ni, and
Zn. The HPI values were calculated using Equation (7):

HPI =
∑n

i=1 WiQi

∑n
i−1 Wi

(7)

where Wi and Qi are the corresponding unit weights and sub-indices for Al, Cu, Fe, Mn,
Ni, and Zn, and n is the number of elements examined. There are three categories of HPI
values: low heavy metal pollution (HPI > 100), heavy metal pollution with threshold risk
(HPI = 100), and excessive heavy metal pollution (HPI > 100) [53].

Table 3. The HPI, Cd, and PI are computed using an arithmetic rating approach.

Trace Element
(mg/L) Measured Sample Si (mg/L)

(WHO, 2011) MACi Unit Weight Wi Sub Index Qi Qi×Wi

Al 0.003 0.2 200 0.072 1.500 0.108
Cu 0.08 2 2000 0.007 4.000 0.029
Fe 0.016 0.3 300 0.048 5.333 0.257
Mn 0.002 0.1 100 0.145 2.000 0.289
Ni 0.014 0.02 20 0.723 70.000 50.602
Zn 0.006 3 3000 0.005 0.200 0.001

∑ (Wi) = 1 ∑n
i=1 Qi × Wi

Contamination Index (Cd)

The contaminated components of certain heavy metals that were above allowable
levels were used to compute groundwater contamination degrees, which are expressed by
Cd values [47,48] according to Equations (8) and (9):

Cd =
n

∑
i=1

Cfi (8)

Cfi =
CAi

CNi
− 1 (9)

where Cfi represents the contamination factor for each heavy metal, CAi represents the
analytical value for each metal, CNi is the acceptable concentration of each element, and
CNi is reserved as the maximum acceptable concentration.

Pollution Index (PI)

To assess the influence of heavy metal contamination for the groundwater quality, PI
values were calculated. These demonstrate the particular contaminating impact of each
heavy metal on groundwater quality and are categorized into five groups (Table 4) based
on Equation (10):

PI =

√
[(Ci

Si
)2

max + (Ci
Si
)2

min]

2
(10)

where Ci denotes the metal content in water, and Si indicates the metal level based on
standards for each metal [54].
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Table 4. Pollution levels as determined by PI according to Edet and Offong [48].

Class PI Value Effect

1 <1 No effect
2 1–2 Slightly affected
3 2–3 Moderately affected
4 3–5 Strongly affected
5 >5 Seriously affected

2.7. Partial Least-Square Regression (PLSR) and Principal Component Regression (PCR)

Both the PLSR and PCR models were utilized in this study to predict the DWQI,
TDS, HPI, and Cd. Both models of the four WQIs were created using unscramble X
software version 10.2. The two models (PLSR and PCR) included all selected SRIs in
Table 1 as input datasets to forecast the four WQIs as output data for each wadi. The
independent parameters were associated to the dependent parameter using leave-one-out
cross-validation (LOOCV) for two models. The ideal number of latent variables (LVs)
was selected based on the lowest value of RMSE to describe the calibration data without
overfitting or underfitting (Figure 5). To strengthen the robustness of the results, the
datasets were subjected to random 10-fold cross-validation.

Figure 5. Schematic flowchart of the process of PLSR and PCR used to assess DWQI, TDS, HPI, and
Cd of water samples in this study.
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Three metrics were employed to assess the two models’ effectiveness in predicting the
four WQIs: R2 coefficient, RMSE, and equation slope.

R2 coefficient:

R2 = 1 − ∑n
i=1(WQIsoi − WQIsfi)

2

∑n
i=1(PIsoi)

2 (11)

RMSE:

RMSE =

√
∑n

i=1(WQIsoi − WQIsfi)
2

n
(12)

where WQIsoi is the measured value, n is the number of data points, and WQIsfi is the
predicted value.

2.8. Data Analysis and Graphical Approach

The descriptive statistics, including the minimum, maximum, and mean of the physic-
ochemical parameters, WQIs, and SRIs, were calculated using SPSS 22 (SPSS Inc., Chicago,
IL, USA). Hydrochemical facies generation models, such as the Piper and Gibbs diagrams,
have been developed to establish groundwater types, geochemistry processes, and primary
chemical control variables utilizing Geochemist’s Software package 12.0. In order to char-
acterize the geochemical types of groundwater in the analyzed region, Piper’s trilinear
diagram was used [55] to quantify the predominant cations and anions in meq/L of the
collected groundwater samples. Gibbs diagram is widely used to establish a connection
between groundwater composition and the aquifer matrix [56]. Gibbs diagram identifies
the fundamental regulatory mechanisms that influence groundwater geochemistry by pre-
senting TDS vs. (Na + K)/(Na + K + Ca) and Cl/(Cl + HCO3). GIS version 10.0 was used to
construct spatial variation maps for WQIs tested in this study. In addition, a combination
of geo-statistical data processing and physicochemical characteristics was used to construct
the WQI maps.

3. Results and Discussion
3.1. Physicochemical Parameters

Physicochemical metrics are significant criteria for assessing the geochemistry of
groundwater and related signaling pathways, and so play a significant role in water quality
management. Table 5 provides statistical summaries (min., max., mean) of the physico-
chemical properties of the groundwater locations studied in the three selected wadies.

The data analysis of physicochemical properties for groundwater samples from three
wadies revealed that groundwater temperatures varied from 23.0 to 32.0 ◦C, with an
average of around 28.08 ◦C based on well depths to the water surface. The pH read-
ings varied from 6.99 to 8.39, with a mean of 7.69, indicating that the groundwater was
mildly alkaline. The EC measurements varied from 429.0 to 28,700 µS/cm, with a mean of
3696.44 µS/cm. The TDS values ranged from 208.0 to 18518 mg/L, with a mean value of
2213.99 mg/L, which indicates brackish to saline groundwater, especially for Marawani and
Fatimah basins, which indicated the possibility of seawater intrusion, especially in wells
near the coast, and with the increase for discharging from those wells (mixing process).
The relatively fresh water of Wadi Qanunah was due to the high annual rainfall amount
along this wadi (100–400 mm), where infiltration rates are sufficient to fill the alluvial
deposits within a short amount of time, and, consequently, at places of high permeabil-
ity, and the surface water depressions appear directly connected to shallow unconfined
aquifers [40]. The ionic content of K+, Na2+, Mg2+, Ca2+, Cl−, SO4

2−, HCO3
−, CO3

2−, and
NO3

− displayed mean values of 8.79, 415.19, 89.34, 415.19, 818.43, 531.44, 186.24, 2.39, and
46.82 mg/L, respectively (Table 5). Therefore, the average ion values displayed sequences of
Na2+ > Ca2+ > Mg2+ > K+, and Cl− > SO4

2− > HCO3
− > NO3

− > CO3
2−, respectively. These

values revealed that Na2+ was the dominant cation and Cl− was the dominant anion for
the collected water samples. The high concentration of NO3

− in groundwater samples was
mostly caused by nitrate fertilizer leaching from agricultural areas and domestic wastew-
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ater leakage from the nearby residential area [39]. The average concentrations of trace
elements (Al, Cu, Fe, Mn, Ni, and Zn) across the selected wadies were 0.0239, 0.1316, 0.0300,
0.0204, 0.0095, and 0.0341 mg/L, respectively, which exhibited the following tendency:
Cu > Fe > Al > Zn > Mn > Ni (Table 5). We know that trace elements in groundwater
originate from a variety of sources, including weathering, soil leaching, and human activity.
The quantities of trace elements in the analyzed groundwater samples showed low level
of contamination by metals that were less than the specified permitted limits for drinking
usages [50]. Accordingly, these elements were distributed uniformly, indicating that they
were mainly derived from dissolution of silicate minerals in the aquifer matrix [39].

Table 5. Statistical analysis of the physical and chemical parameters of groundwater samples in the
three selected wadies, Makkah Al-Mukarramah Province.

Physicochemical Parameters Wadi Marawani
(n = 64)

Wadi Fatimah
(n = 59)

Wadi Qanunah
(n = 50)

Min. Max. Mean Min. Max. Mean Min. Max. Mean

T ◦C 24.00 31.00 27.30 30.00 32.00 30.66 23.00 30.00 26.04
pH 7.10 8.00 7.67 6.99 8.39 7.74 7.12 8.14 7.68
EC 658.00 28,700.00 4905.52 553.00 25,000.00 4217.27 429.00 4010.00 1534.26

TDS 346.00 18,171.00 2936.54 227.00 18,518.00 2572.27 208.00 2375.00 866.38
TH 67.18 7914.51 1298.81 44.17 6032.46 1189.46 136.31 1143.57 408.84
K+ 0.79 28.10 8.12 0.99 79.03 13.87 0.60 13.57 3.69

Na+ 38.00 5150.00 588.90 43.64 4602.76 441.93 24.10 641.40 161.32
Mg2− 9.30 710.00 129.67 4.12 575.28 90.56 9.00 133.40 36.28
Ca2+ 11.60 2002.00 306.85 10.92 1995.81 327.26 34.50 415.00 104.08
Cl− 37.10 9666.00 1193.12 70.53 7271.04 926.22 14.70 901.50 211.65

SO4
2− 19.30 2840.00 609.62 30.01 5180.28 692.35 25.70 945.00 241.51

HCO3
− 31.00 394.00 200.50 12.20 274.50 146.19 104.00 356.00 215.28

CO3
2− N.D. N.D. N.D. N.D. 24.00 7.02 N.D. N.D. N.D.

NO3
− 2.20 290.70 53.99 0.01 475.44 57.28 0.78 160.80 25.34

Al 0.007 0.233 0.024 0.003 0.073 0.014 0.002 0.233 0.037
Cu 0.006 0.643 0.181 0.005 0.080 0.022 0.005 0.726 0.198
Fe 0.006 0.415 0.039 0.010 0.025 0.017 0.006 0.175 0.034
Mn 0.007 0.192 0.028 0.002 0.285 0.011 0.008 0.108 0.021
Ni 0.008 0.021 0.011 0.001 0.017 0.008 0.007 0.015 0.010
Zn 0.005 0.740 0.053 0.001 0.090 0.009 0.005 0.226 0.040

Note: Except for temperature (T ◦C), pH, and EC (µS/cm), all physical and chemical characteristics are provided
in mg/L.

3.2. Geochemical Facies and Controlling Processes

Hydrogeochemical data analysis was conducted through illustrative methodologies,
such as Piper and Gibbs diagrams, to better understand the different geochemical influ-
ences that control the groundwater quality in the studied wadies. According to the chemi-
cal characteristics of the groundwater samples analyzed, the hydrochemical facies were
Ca-HCO3, Na-Cl, mixed Ca-Mg-Cl-SO4, and Na-Ca-HCO3 (Figure 6). The weathering
process and the aquifer matrix significantly alter the chemical composition of groundwa-
ter. A plot of chemical data on a Gibbs diagram (Figure 7) showed that the groundwater
samples of the three wadies were distributed throughout the weathering and rock–water
interactions fields [9].

3.3. Water Quality Indices

The statistical analysis and categorization of the various WQIs, including the DWQI,
HPI, and Cd, employed in this study are shown in Table 6. Furthermore, spatial distribution
maps for each index were utilized to present the quality of water in the researched basins
(Table 6).
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Table 6. Classification of several water quality indices (WQIs).

WQIs Min. Max. Mean Range Water Category
Number of Samples (%)

Wadi Marawani (n = 64) Wadi Fatimah (n = 59) Wadi
Qanunah (n = 50)

DWQI

0–25 Excellent 0 (0.0%) 1 (2.0%) 3 (6.0%)
26–50 Good 7 (11.0%) 2 (3.0%) 22 (44.0%)

22.69 545.53 97.11 51–75 Poor 24 (37.5%) 10 (17.0%) 15 (30.0%)
76–100 Very poor 9 (14.0%) 19 (32.0%) 9 (18%)
>100 Unsuitable 24 (37.5%) 27 (46.0%) 1 (2.0%)

HPI
5.07 77.41 38.74 <100 Low polluted 64 (100.0%) 59 (100.0%) 50 (100.0%)

>100 High polluted 0 (0.0%) 0 (0.0%) 0 (0.0%)

Cd

<1 Low 64 (100.0%) 59 (100.0%) 50 (100.0%)
−5.84 −2.90 −5.02 1–3 Medium 0 (0.0%) 0 (0.0%) 0 (0.0%)

<3 High 0 (0.0%) 0 (0.0%) 0 (0.0%)

Figure 6. Geochemical facies and water type for selected wadies: (a) Wadi Marawani, (b) Wadi
Fatimah, and (c) Wadi Qanunah, Makkah Al-Mukarramah Province.

Figure 7. Geochemical controlling mechanisms for selected wadies: (a) Wadi Marawani, (b) Wadi
Fatimah, and (c) Wadi Qanunah, Makkah Al-Mukarramah Province.

3.3.1. Drinking Water Quality Index (DWQI)

According to Equation (1), the WQIs models were applied to evaluate groundwater
quality across three study locations, which were classified based on the purity of frequently
stately water quality indices. The DWQI across the three wadies was created for assessing



Water 2022, 14, 2311 14 of 24

the appropriateness of groundwater for potable usages. Table 6 shows the calculated
DWQI values in the acquired groundwater samples, which varied from 22.69 to 545.53,
with an average of about 97.11. The DWQI categorization (Table 6) classified roughly 2.5%
of groundwater as excellent, 18.0% as good, 28.0% as bad, 21.5% as extremely poor, and
30.0% as unfit for drinking due to the increase of Na2+ and Cl− concentrations as a result of
seawater intrusion, evaporation, and ion exchange processes. The DWQI distribution map
(Figure 8) revealed that most of groundwater samples cannot be used for safe drinking due
to the evaporation process, groundwater–rock interaction, reverse ion exchange processes,
and seawater intrusion, as well as a low amount of rainfall, especially in the northern
wadies of the Makkah region (Marawani and Fatimah). At the same time, in Wadi Qanunah
in the south of Makkah, 50% of the samples ranged from excellent to good water for
drinking use due to the floods following the rains, which have a positive impact on the
recharge of groundwater in the area and its quality.

Figure 8. Spatial distribution map of DWQI for selected wadies: (a) Wadi Marawani, (b) Wadi
Fatimah, and (c) Wadi Qanunah, Makkah Al-Mukarramah Province.
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3.3.2. Pollution Indices (PIs)

Table 6 and Figure 9 showed statistical descriptions and classifications of groundwater
samples with respect to PIs, such as HPI and Cd. The HPI readings varied from 5.07 to 77.41,
with a mean value of 38.74, indicating that all groundwater points were less contaminated
than the threshold HPI value (100). The calculated Cd values for the examined groundwater
samples indicated that the Cd levels varied from −5.84 to −2.90, with a mean value of
−5.02. The Cd values showed that all groundwater points had negative values (Cd < 1),
suggesting a minimal degree of pollution and improved metal purity (Figure 10).

The PIs are regarded as an important technique for determining the appropriateness
of water for drinking purposes in terms of metals [57]. According to the PIs findings,
the majority of groundwater locations in the research region are not suitable for drinking.
This might be attributable to a faulty drainage system, seawater intrusion, and rock–water
interaction [20]. As a result, groundwater in the research region needs be treated before it
can be consumed. The PIs, containing the HPI and Cd, demonstrated that groundwater in
the wadies was low in metal contamination. According to the categorization of PI values,
the data indicated two sets of heavy metal impacts (Table 7 and Figure 11). The obtained PI
values demonstrated that metals had no influence on the groundwater points (PI < 1.0),
whereas Mn had a slight effect in Wadi Fatimah (PI = 1–2), as shown in Table 7 and Figure 10.
The PI results revealed two classes of heavy metal effects based on the classification of PI
levels (Table 7 and Figure 11).

Table 7. Groundwater quality assessment for the selected wadies in Makkah Al-Mukarramah
Province based on metal impacts.

Metals
PI

Wadi
Marawani Class Effect Wadi

Fatimah Class Effect Wadi
Qanunah Class Effect

Al 0.58 I No effect 0.18 I No effect 0.58 I No effect
Cu 0.16 I No effect 0.02 I No effect 0.18 I No effect
Fe 0.69 I No effect 0.04 I No effect 0.29 I No effect

Mn 0.96 I No effect 1.43 II Slight
effect 0.54 I No effect

Ni 0.56 I No effect 0.43 I No effect 0.41 I No effect
Zn 0.12 I No effect 0.02 I No effect 0.04 I No effect

By comparing the geographical distribution maps of DWQI, HPI, and Cd findings, it
is evident that the groundwater quality for drinking is deteriorating near the downstream
parts of the wadies. Based on the link between the DWQI and PIs, metals had no effect on
groundwater quality in the research regions. As a result of differences in heavy metal con-
centration measurement techniques, the groundwater quality in the study region revealed
low levels of water contamination for HPI and Cd. As a result, combining the DWQI and
PIs provides a beneficial and relevant technique for evaluating groundwater quality for
drinking reasons using physiochemical parameters related to heavy metals.

3.4. The Variation of Spectral Reflectance under Different Groundwater Quality Levels

The spectrum measurements for 173 groundwater samples collected in the three
wadies were obtained. Figure 12 demonstrates the relationship between wavelength and
reflectance at various DWQI levels across the three wadies. The results in Figure 12 show
that there were distinct differences in respective spectral features associated to reflectance
values throughout the VIS and NIR. From 800 to 850 nm, the combined form of the
spectral signature and the wavelength locality exhibited a minor variation. The variance
in spectra from blue to red (400–700 nm) indicated a higher difference than the NIR range
(800–1148 nm). The spectral curve showed high values of reflectance at excellent levels of
DWQI and low values of reflectance at unsuitable levels of DWQI. According to the data,
the difference in spectral signature between DWQI levels, the VIS, and the NIR area is the
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highest among different electromagnetic spectrum regions. The difference in the composite
form of the spectral signature produced at different DWQI levels appears to be a result of
water component absorption. This conclusion emphasizes the importance of wavelength
ranges in the VIS and NIR spectra in analyzing the three wadies’ WQIs. The properties
of light reflected from water bodies at various wavebands in the magnetic spectrum can
be utilized as markers of changes in the water physiochemical composition [36,37,58].
Surprisingly, these alterations result in considerable variations in the SRIs obtained from
water samples throughout the whole spectral spectrum at certain bands. Several studies
have found that the spectra at VIS, red-edge, and NIR have a stronger relationship with
various physicochemical properties of different water bodies than other spectral regions,
hinting that these spectral bands may be utilized to evaluate water quality [59–66].

Figure 9. Spatial distribution map of HPI for selected wadies: (a) Wadi Marawani, (b) Wadi Fatimah,
and (c) Wadi Qanunah, Makkah Al-Mukarramah Province.
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Figure 10. Spatial distribution map of Cd for selected wadies: (a) Wadi Marawani, (b) Wadi Fatimah,
and (c) Wadi Qanunah, Makkah Al-Mukarramah Province.

3.5. Performance of Different SRIs to Estimate Groundwater Quality Indices

Several studies have been carried out in order to investigate the effectiveness of optical
remote sensing tools, such as satellite images and airborne and ground-based sensors,
to estimate water quality levels. However, the majority of them have only investigated
water quality metrics such as TSS, dissolved organic matter (DOM), chlorophyll-a, and
turbidity [67–73]. However, a few studies employed nearby hyperspectra to determine the
DWQI, HPI, and Cd of water [50]. The two-band slice map was used to pick R2 for the
associations between the four WQIs and the SRIs. The hotspot areas, depending on the
color scale for the best R2 based on information received from the WQIs in the VIS and
NIR regions, were used to identify the best connections between the SRIs and WQIs. The
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hotspots (color scale) of the best R2 identified were used to choose SRIs. Table 8 shows the
correlation coefficient (R) values for the association between the four measured WQIs and
SRIs. Linear regression models demonstrated the significant relationships for the majority
of SRIs paired with DWQI: R ranged from (−0.40 to 0.75), (0.44 to 0.76), and (−0.44 to 0.65);
with TDS, R ranged from (0.46 to 0.74), (0.45 to 0.76), and (0.41 to 0.65) for Wadi Marawani,
Wadi Fatimah, and Wadi Qanunah, respectively. This is due to the presence of different
levels of drinking water quality, ranging from the level of excellent to the level of unsuitable
for drinking.

Figure 11. Three-dimensional pie showing the relative pollution index of metals for selected wadies:
(a) Wadi Marawani, (b) Wadi Fatimah, and (c) Wadi Qanunah, Makkah Al-Mukarramah Province.
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Figure 12. Spectra reflectance of the various levels of drinking groundwater quality index across the
three wadies samples.

New SRIs presented better performance for assessing the DWQI and TDS for three
wadies than the published SRIs in Table 8. SRIs created using NIR and VIS regions, such
as RSI1122,590, RSI1122,488, and RSI1122,488, seem to be good indicators to assess DWQI and
TDS. Wang et al., (2017) discovered that the DWQI may be easily detected at the peak
wavelengths of 700–720 nm and 1070 nm. Spectrum curves for diverse water samples
indicated multiple strong high absorbency zones at 700, 750, 950, and 980 nm, as well as
low absorbency zones at 452, 703, and 850 nm, according to the researchers. Furthermore,
Gad et al. [50] discovered that SRIs derived from the VIS and NIR regions had substantial
associations with DWQI for two River Nile branches in Egypt. On the contrary, SRIs failed
to assess both HPI and Cd, as the results of both indices suggested a minimal degree of
pollution and improved metal purity. In addition, Gad et al. [50] found that SRIs could be
used to assess metal index (MI) under different pollution levels.

Table 8. Correlation coefficient of the linear association between SRIs and DWQI, TDS, HPI, and Cd.

Wadi Marawani (n = 64) Wadi Fatimah (n = 59) Wadi Qanunah (n = 50)

DWQI TDS HPI Cd DWQI TDS HPI Cd DWQI TDS HPI Cd

B/R 0.46 0.46 −0.01 −0.21 −0.13 −0.13 0.13 −0.07 −0.44 −0.49 −0.12 0.07
G/R 0.49 0.49 −0.04 −0.25 −0.13 −0.14 0.09 −0.05 −0.39 −0.43 −0.11 0.07

NIR/R −0.07 −0.03 −0.10 0.00 0.14 0.14 −0.21 −0.12 0.45 0.41 −0.05 −0.15
NIR/B −0.40 −0.38 −0.03 0.17 0.11 0.11 −0.11 −0.02 0.50 0.52 0.09 −0.09
NIR/G −0.38 −0.35 −0.03 0.17 0.12 0.12 −0.14 −0.03 0.48 0.47 0.04 −0.12

RSI1122,454 0.60 0.57 −0.25 −0.24 0.73 0.73 0.18 0.33 0.65 0.65 0.09 −0.04
RSI1122,470 0.66 0.63 −0.25 −0.25 0.76 0.76 0.18 0.34 0.65 0.64 0.08 −0.04
RSI1124,472 0.63 0.62 −0.15 −0.19 0.68 0.70 0.26 0.26 0.54 0.56 0.04 −0.12
RSI1122,480 0.69 0.66 −0.24 −0.26 0.75 0.75 0.18 0.33 0.65 0.63 0.08 −0.04
RSI1122,488 0.70 0.67 −0.24 −0.26 0.75 0.74 0.18 0.33 0.64 0.62 0.07 −0.04
RSI1122,510 0.73 0.71 −0.23 −0.27 0.71 0.71 0.17 0.30 0.63 0.60 0.06 −0.03
RSI1122,554 0.75 0.74 −0.20 −0.28 0.61 0.60 0.15 0.24 0.60 0.56 0.03 −0.03
RSI1124,570 0.74 0.74 −0.11 −0.23 0.44 0.45 0.21 0.13 0.49 0.48 −0.03 −0.14
RSI1122,590 0.75 0.74 −0.18 −0.29 0.48 0.48 0.15 0.19 0.56 0.52 0.03 −0.01

Note: All R values higher than −0.40 or 0.40 in table are significant.
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3.6. Prediction of Different WQIs Using PLSR and PCR Models

SRIs are straightforward techniques for evaluating water quality and may be used to
construct spectral sensors that are small and light for monitoring and controlling water
quality on a broad scale in a timely and cost-effective way. However, each SRI focuses
on just two or three sensitive waveband combinations [36,37]. This makes it challenging
to construct effective SRIs for evaluating water quality under a number of potentially
perplexing circumstances, such as large differences in water component amounts and types,
as well as the impact of these differences on the saturation levels of the water quality
measurements [42]. Therefore, in this work, the PLSR and PCR included SRIs as input
variables to predict WQIs. Tables 9 and 10 describe the R2 and RMSE, as well as the slope
of equations of the two models used as criteria to estimate WQIs in Wadi Marawani, Wadi
Fatimah, and Wadi Qanunah in Table 1. Generally, depend on these criteria, the PLSR
and PCR models offered a more precise estimate of DWQI and TDS and failed to predict
the HPI and Cd in Tables 9 and 10. For example, The PLSR model produced reasonable
DWQI and TDS estimations in calibration datasets with R2 of 0.69 and 0.69, 0.80 and 0.84,
and 0.41 and 0.40 in Wadi Marawani, Fatimah, and Qanunah, respectively (Table 10). The
PLSR model produced reasonable DWQI and TDS estimations in validation datasets with
R2 of 0.60 and 0.60, 0.75 and 0.77, and 0.42 and 0.43 in Wadi Marawani, Fatimah, and
Qanunah, respectively. The PCR model produced reasonable DWQI and TDS estimations
in validation datasets with R2 of 0.58 and 0.55, 0.71 and 0.78, and 0.40 and 0.37 in Wadi
Marawani, Fatimah, and Qanunah, respectively (Table 10). In general, the PLSR and PCR
models provided better estimation for DWQI and TDS than the indvidual SRI. The LVs
ranged from 1 to 7 and were chosen to support the calibration data for the PLSR models of
six WQIs without over-fitting through Wadi Marawani, Fatimah, and Qanunah (Table 9).
In addition, the LVs ranged from 1 to 9 and were chosen to support the calibration data
for the PCR models of six WQIs without over-fitting through Wadi Marawani, Fatimah,
and Qanunah (Table 10). The optimal LVs was selected based on the lowest value of RMSE.
Table 10 indicated variation in the slope of the linear relationship between measured and
predicted values of PLSR models for each index, with TDS showing the highest slope
(0.7739) and HPI showing the lowest slope (−0.0598). Furthermore, Table 10 indicated
variation in the slope of the linear relationship between measured and predicted values of
PCR models for each index, with TDS showing the highest slope (0.7725) and HPI showing
the lowest slope (−0.0514). In both PLSR and PCR models, the RMSE value of each index
was the smaller in Wadi Fatimah compare to the other two wadies. This is due to the
presence of different levels of water quality between the three wadies.

Table 9. Outcomes of calibration and validation models of PLSR for the association between observed
and predicted values for DWQI, TDS, HPI, and Cd of the three wadies.

Variable Calibration Validation

LVs R2 RMSE Equation R2 RMSE Equation

Wadi
Marawani

DWQI 6 0.69 *** 44.52 y = 0.6882x + 34.49 0.58 *** 52.29 y = 0.6323x + 41.862
TDS 6 0.69 *** 1974.80 y = 0.6865x + 920.59 0.55 *** 2358.24 y = 0.631x + 1100.4
HPI 1 0.05 9.01 y = 0.049x + 42.896 0.03 9.30 y = 0.0163x + 44.366
Cd 4 0.18 * 0.53 y = 0.1753x − 3.9717 0.07 0.57 y = 0.1292x − 4.2123

Wadi Fatimah

DWQI 6 0.80 *** 38.74 y = 0.8041x + 23.252 0.75 *** 46.52 y = 0.7271x + 31.232
TDS 7 0.84 *** 1296.72 y = 0.8378x + 417.3 0.77 *** 1555.53 y = 0.7739x + 529.15
HPI 3 0.15 * 0.05 y = 0.1494x + 26.367 0.00 17.68 y = 0.0942x + 27.843
Cd 1 0.10 0.44 y = 0.0998x − 4.8178 0.00 0.48 y = 0.0055x − 5.3217

Wadi Qanunah

DWQI 1 0.41 *** 15.46 y = 0.4111x + 32.043 0.42 *** 16.00 y = 0.3842x + 33.516
TDS 1 0.40 *** 466.36 y = 0.3983x + 521.21 0.43 *** 484.43 y = 0.3689x + 541.47
HPI 1 0.01 7.69 y = 0.0091x + 39.369 0.00 8.25 y = −0.0598x + 42.122
Cd 1 0.01 0.55 y = 0.0088x − 4.8545 0.00 0.58 y = −0.0377x − 5.0867

Note: *, *** Statistically significant at p ≤ 0.05 and at p ≤ 0.001, respectively.
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Table 10. Outcomes of calibration and validation models of PCR for the association between observed
and predicted values for DWQI, TDS, HPI, and Cd of the three wadies.

Variable Calibration Validation

LVs R2 RMSE Equation R2 RMSE Equation

Wadi Marawani

DWQI 7 0.69 *** 44.26 y = 0.6918x + 34.082 0.60 *** 51.83 y = 0.6532x + 37.369
TDS 7 0.69 *** 1965.51 y = 0.6894x + 911.96 0.60 *** 2321.90 y = 0.6325x + 1028.8
HPI 1 0.03 9.10 y = 0.0294x + 43.781 0.01 9.36 y = 0.0015x + 45.056
Cd 1 0.08 0.56 y = 0.0828x − 4.4171 0.05 0.58 y = 0.0527x − 4.5628

Wadi Fatimah

DWQI 6 0.80 *** 38.74 y = 0.8041x + 23.252 0.71 *** 46.70 y = 0.7034x + 34.53
TDS 9 0.85 *** 1249.78 y = 0.8493x + 387.69 0.78 *** 1530.39 y = 0.7725x + 481.98
HPI 1 0.05 17.31 y = 0.0468x + 29.547 0.03 17.92 y = 0.0117x + 30.655
Cd 1 0.02 0.45 y = 0.0186x − 5.2524 0.01 0.46 y = 0.0039x − 5.3304

Wadi Qanunah

DWQI 1 0.41 *** 15.48 y = 0.4098x + 32.11 0.40 *** 16.04 y = 0.3819x + 33.581
TDS 1 0.40 *** 467.15 y = 0.3963x + 522.98 0.37 *** 481.46 y = 0.3794x + 533.92
HPI 1 0.01 7.70 y = 0.0045x + 39.55 0.00 8.15 y = −0.0514x + 41.847
Cd 1 0.01 0.55 y = 0.0039x − 4.8781 0.00 0.57 y = −0.0252x − 5.0232

Note: *** Statistically significant at p ≤ 0.001.

Wang et al. [72] observed that PLSR models with a high number of wavebands outper-
formed models with only one or two wavebands in predicting inland water quality indices.
In addition, Gad et al. [50] found that the PLSR model correctly predicted the DWQI and
MI of the two branches of the River Nile in the validation datasets with R2 varying from
0.78 to 0.93, respectively, under different levels of pollution. Again, PLSR and PCR models
based on various SRIs may be used in water quality assessment as a unified strategy for
remote WQI assessment.

4. Conclusions

The quality of groundwater in the Makkah region was investigated in this study to
delineate the suitable zones for potable groundwater. The chemical analyses of the groundwater
samples indicated that Na2+ > Ca2+ > Mg2+ > K+, Cl− > SO4

2− > HCO3
− > NO3

− > CO3
2−;

and Cu > Fe > Al > Zn > Mn > Ni, respectively. The hydrochemical type of the groundwater
samples revealed Ca-HCO3, Na-Cl, mixed Ca-Mg-Cl-SO4, and Na-Ca-HCO3, which is
controlled by seawater invasion, weathering process, and groundwater–rock interaction.
The different WQIs, such as DWQI, HPI, Cd, and PI, were assessed for 173 groundwater
samples. According to the DWQI assessment, the overall quality of groundwater samples in
the studied areas varied greatly, from excellent (2.5%) to unfit for drinking (30.0%). The HPI,
Cd, and PI values revealed that all groundwater samples had a low degree of contamination
and were not affected by metals, except for Wadi Fatimah, which was slightly affected by
Mn due to rock–water interaction. New SRIs derived from NIR and VIS, such as RSI1122,590,
RSI1122,488, and RSI1122,488, seem to be good indicators to assess DWQI and TDS. Generally,
depending on R2, RMSE, and slope values, the PLSR and PCR were more accurate in
determining the DWQI and TDS and failed to predict the HPI and Cd. Finally, integrating
WQIs, SRIs, PLSR, PCR, and GIS techniques was successful and provided a clear image for
evaluating groundwater suitability for drinking and its regulating variables. In the future,
the technique described in this work, which combines spectral indices algorithms and
PLSR models, should be further assessed to increase its stability under varied groundwater
resource conditions.
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