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Abstract
Purpose—Identify novel tumor suppressor genes in melanoma utilizing an integrative genomic
approach

Methods—Data from: 1) prior reports of DNA loss and gain in malignant melanoma
accompanied by CGH high-definition array data of the entire human genome, 2) Microarray
expression data from melanoma derived cell lines identifying genes with significantly increased
expression due to methylation using a pharmacologic demethylating strategy, and 3) publicly
available RNA expression microarray data of primary tumors and benign nevi was integrated
utilizing statistical tools in order to define a population of candidate tumor suppressor genes.

Results—27 genes were identified in areas of deletion that demonstrated diminished expression
in primary melanomas relative to benign nevi and were significantly increased in expression by ‘5-
Aza treatment. Seven genes of these genes demonstrated methylation and deletion in a validation
cohort of 14 separate primary tumors. These were: CHRDL1, SFRP1, TMEM47, LPL,
RARRES1, PLCXD1, and KOX15. All of these genes demonstrated growth suppressive
properties with transfection into melanoma derived cell lines.

Conclusions—7 putative tumor suppressor genes in malignant melanoma were identified
utilizing a novel integrative technique.
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Introduction
Cytogenetic and epigenetic changes are the primary mechanisms by which tumor suppressor
genes are inactivated. DNA methylation is one form of epigenetic change and involves the
covalent addition of a methyl group to cytosine residues in CpG dinucleotides by DNA
methyltransferases. CpG-rich sequences (CpG islands) are infrequent in the genome.
Examination of familial cancer genes has revealed that tumor-specific hypermethylation
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may act as an inactivating event by preferentially targeting the wild-type allele of tumor
suppressors, whereas the promoter region of the mutant allele is not affected by methylation.
Inhibition of de novo methylation enzymes has been shown to reduce tumor formation in
several settings. Epigenetic inactivation of individual tumor suppressors by DNA
methylation has also been shown in malignant melanoma. A high incidence of methylation
in melanoma tissue samples has been reported for RARB (70%), RASSF1A (55%), PYCARD
(50%), MGMT (34%), DAPK (19%), and APC (19%), which may play tumor suppressor
roles in several tumor settings[1].

Exposure to ultraviolet radiation is the environmental factor most strongly associated with
development of melanoma. Many genetic and epigenetic changes associated with
melanomas have been described [2-4]. Yet, the molecular mechanisms of melanoma
carcinogenesis are still undergoing intensive investigation. Neoplastic cells undergo a
variety of genetic alterations, from point mutations to chromosomal aberrations, affecting
the function or expression of both oncogenes and tumor-suppressor genes. Deletion can
result in silencing via uniallelic or biallelic loss. Advances in techniques over the past few
years, including: array-based comparative genomic hybridization (aCGH), and array-based
single nucleotide polymorphism (aSNP) have allowed high-throughput, highly detailed
studies of chromosomal loss or gain.

New high-throughput screens of cancer genes are being developed at a rapid pace making
the need for efficient approaches for integration of large datasets that use diverse
technologies to describe genetic alterations in human cancers. [5]. Examples of such
genome-scale datasets include: array CGH (DNA loss or gain), RNA expression microarray
(tissues or cell lines), small molecule cell line screens, and various proteomic approaches.
Tumors may be susceptible to targeted therapies once their essential molecular alterations
have been found. Integrative approaches to these genome-scale data sets allow multiple
pieces of salient information to be combined in a manner that may yield novel and powerful
new insights into cancer biology [6]. One prominent example of the utility of these
integrative genetic approaches led to finding the oncogene MITF in melanoma via
application of two genome-scale datasets (array SNP and expression microaray). This gene
may represent a new class of “lineage addiction oncogenes”-- a fundamental tumor survival
mechanism with important therapeutic implications[7] . Other examples of integrative
genomic approaches have also improved the genetic understanding of other cancers [8-11]

Tumor suppressor inactivation is associated with loss or inactivation of both genomic copies
of DNA. This has been associated with epigenetic[1, 2] and cytogenetic mechanisms in
malignant melanoma. Identifying genes that demonstrate inactivation by multiple
mechanisms may serve to more intelligently enrich a search for putative tumor suppressors
in melanoma. We hypothesize that genes whose expression is decreased in melanoma
relative to benign nevi and have evidence of methylation and deletion are potential tumor
suppressor genes in this disease.

We report a study utilizing high throughput genomic and informatic techniques to identify a
set of putative tumor suppressor genes whose expression is regulated by methylation and
whose expression is decreased in primary melanomas utilizing a set of previously published
microarray data[12]. This information was combined with aCGH data identifying areas of
known deletion in melanoma. Genes found to be regulated by methylation and found in
areas of known deletion were analyzed in melanoma samples collected from an independent
cohort to determine the incidence and coincidence of hypermethylation and deletion. Genes
validated in this manner were transfected into melanoma cell lines to determine if growth
suppression was induced.
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Methods
Public datasets

The public databases used in this study were the University of California Santa Cruz
(UCSC) Human Genome reference sequence and the annotation database from the May
2004 freeze (hg17). Array Comparative Genome Hybridization (aCGH) data for 178
malignant melanomas and tumor derived cell lines were obtained from progenetix.com[13].
Progenetix collects information about the genomic copy number profiles of cancer cases. It
consists mainly of a compilation of published data from chromosomal and array/matrix
Comparative Genomic Hybridization (aCGH) experiments. Gene Expression Omnibus
(GEO) repository was utilized to locate microarray expression data for 45 melanoma and 18
benign melanocytic nevi [12]

5Aza-dC Treatment of Cells
These in vitro techniques employ treatment of cultured cells with 5-aza-deoxycytidine (a
cytosine analog which cannot be methylated) and subsequent expression array analysis with
validation of tumor suppressor gene targets. We treated melanoma cell lines with 5Aza-dC
as described previously[14]. Briefly, cells were split to low density (1 × 106 cells/T-75 flask)
24 hours before treatment. Stock solutions of 5Aza-dC (Sigma, St. Louis, MO) were
dissolved in DMSO (Sigma). Cells were treated with 5 μM 5-Aza-deoxycytidine for 2 days.
Baseline expression was established by mock-treated cells with the same volume of DMSO.

Integrative analysis
For target discovery we employed three data sets. aCGH dataset from progenetix.com was
utilized to identify detailed loci of DNA/chromosomal loss in melanoma (>10% incidence).
Gene RNA expression microarray analysis of RNA extracted from 4 5′-Aza treated
melanoma derived cell lines was conducted on the Affymetrix U133A and U133B platforms
(33,000 genes). Genes, which were significantly upregulated by Aza treatment utilizing the
techniques described previously, were identified. Publicly available data sets, published
through GEO, which contained U133A data regarding gene expression in 45 melanoma
tumors relative to 18 benign nevi [12]. Microarrays were studied with dChip and invariant-
set normalized. Median tumor expression and median normal expression were calculated. P
values were determined by STATA 9.0 utilizing Mann-Whitney U test (StataCorp LP,
College Station, Texas). Genes which demonstrated significantly decreased median
expression in melanomas as compared to melanocytic nevi were identified (p <.05). The
intersection of the sets of genes found in areas of deletions, those upregulated by Aza
treatment, and those with diminished expression in melanoma relative to nevi was identified.
The list was ranked by equal weight of the ranking of the relative median expression
difference and fold upregulation by Aza treatment. These sources of information were
combined by using a rank product. These rankings were combined to rank all targets with a
significance threshold of α = 0.005. Subsequent random permutation of our rank list resulted
in 47 genes deemed significant. Validation of targets was based upon identification of
targets with known CpG Island, and subsequent bisulfite sequencing, followed by qPCR for
precise validation of gene amplification or deletion, and/or sequencing. (Supplemental
Figure 1)

Oligonucleotide microarray analysis
Total cellular RNA was isolated using the RNeasy kit (Qiagen, Valencia, CA) according to
the manufacturer’s instruction. We carried out oligonucleotide microarray analysis using the
GeneChip U133 A and U133B Affymetrix expression microarray that assays 33,000 genes
(Affymetrix, Santa Clara, CA). Samples were converted to labeled, fragmented, cRNA per
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the Affymetrix protocol for use on the expression microarray. Signal intensity and statistical
significance was established for each transcript using dChip version 2006. Default settings
for dChip were used including the PM/MM difference model; invariant set normalization,
check single/probe/array outlier algorithm.

DNA sample source and extraction
Tumor samples and lymphocyte DNA were obtained from 14 melanoma patients who had
undergone enrolment in institutional review board approved protocols after obtaining
informed consent. This population consisted of 13 men and one woman. (Table 1) Resected
primary or metastatic melanoma lesions were collected in the operating room and
immediately snap frozen with liquid nitrogen. Tumor specimens were microdissected on a
cryostat so that the samples used for mutational analysis contained greater than 70%
neoplastic cells. Samples were centrifuged and digested in a solution of detergent (sodium
dodecylsulfate) and proteinase K, for removal of proteins bound to the DNA. Samples were
first purified and desalted with phenol/chloroform extraction. Digested sample was
subjected twice to ethanol precipitation, and subsequently resuspended in 500 μL of LoTE
(EDTA 2.5 mmol/L and Tris-HCl 10 mmol/L) and stored at −80°C.

Bisulfite Treatment
DNA derived from tumor specimen was subjected to bisulfite treatment, as described
previously[14]. In short, 2 μg of genomic DNA was denatured in 0.2 M NaOH for 30
minutes at 50°C. This denatured DNA was then diluted into 500 μL of a solution of 10
mmol/L hydroquinone and 3 M sodium bisulfite. This was incubated for 3 hours at 70°C.
After the DNA sample was purified with a sepharose column (Wizard DNA Clean-Up
System; Promega, Madison, WI). Eluted DNA was treated with 0.3 M of NaOH for 10
minutes at room temperature, and precipitated with ethanol. This bisulfite-modified DNA
was subsequently resuspended in 120 μL of LoTE (EDTA 2.5 mmol/L and Tris-HCl 10
mmol/L) and stored at −80°C.

Bisulfite Sequencing
Bisulfite sequence analysis was performed to check the methylation status in primary tumors
for putative tumor suppressors identified by integrative methods. Bisulfite-treated DNA was
amplified using primers designed by MethPrimer to span areas of CpG islands in the
promoter or first intron [15].Primer sequences were designed to not have CG dinucleotides.
Detailed primer sequences and PCR conditions are available upon request. The PCR
products were gel-purified using the QIAquick Gel Extraction Kit (Qiagen), according to the
manufacturer’s instructions. Each amplified DNA sample was applied with nested primers
to the Applied Biosystems 3700 DNA analyzer using BD terminator dye (Applied
Biosystems, Foster City, CA).

qPCR
Total DNA was measured and adjusted to the same amount for each tissue sample. The
DNA was used as the templates for quantitative real-time PCR with primers designed to
specifically measure the DNA copy number of each candidate gene. Three genes (LRTM4,
Pelo, Bid) were identified which were not located in areas of loss or gain. These were
quantitated and relative amounts averaged to ensure accurate relative quantitation of copy
number in qPCR. Detailed PCR conditions and primer sequences are available upon request.

Transfection
Full-length ORF cDNAs in expression vectors of zinc finger protein 22 (KOX15),
lipoprotein lipase (LPL), chordin-like 1 (CHRDL1), secreted frizzled related protein 1
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(SFRP1), transmembrane protein 47 (TMEM47), Phosphatidylinositol-specific
phospholipase C, X domain containing1 (PLCXD1), and Retinoic acid receptor responder 1
(RARRES1) were obtained for transient transfections from Invitrogen (Carlsbad, CA). Cell
lines were plated at 1 × 105/well using 96-well plates and simultaneously transfected with
either empty vector (created by restriction digest removal of ORF and blunt end ligation) or
gene of interest using the FuGene 6 Transfection Reagent (Roche, Basel, Switzerland)
according to the manufacturer’s protocol.

Cell Count
Calcein florescence was measured by the Spectramax M2e 96-well fluorescence plate reader
Molecular Devices (Sunnyvale, California). Live cells are distinguished by the presence of
ubiquitous intracellular esterase activity, determined by the enzymatic conversion of the
virtually nonfluorescent cell-permeable calcein AM to the intensely fluorescent calcein. The
polyanionic calcein dye is well retained within live cells, producing an intense uniform
green fluorescence (excitation/emission ~495 nm/515 nm).

Statistical analysis
All statistical computations were made with STATA SE version 9.0 (STATACORP, College
Station, TX).

Results
Integrative approaches identifying potential tumor suppressors in melanoma

In order to identify novel tumor suppressor genes in malignant melanoma, we hypothesized
that those genes that were differentially expressed in melanoma relative to benign
melanocytic nevi were candidate tumor suppressor genes. Furthermore, we postulated genes
that had a higher propensity for inactivation were more likely to be tumor suppressors.
While there are a variety of mechanisms of gene inactivation, we focused on deletion and
methylation as a basis for our investigation.

We chose to adapt prior methods of epigenetic screening using 5-aza/TSA treatment that
have been found to be successful in defining candidate tumor suppressor genes. Four
malignant melanoma derived cell lines were treated with 5μM 5-aza deoxycytidine for three
days prior to harvesting total RNA for expression array analysis using Affymetrix U133 AB
array and dChip analysis software.

Concurrently, we performed a comparative approach utilizing microarray data utilizing 46
primary melanoma and 18 benign nevi assayed for mRNA expression on the Affymetrix
U133A mRNA expression microarray platform (16,383 probe sets) compiled from prior
work[12].

Additionally, we identified known loci of deletions in melanomas compiled from previous
study of cytogenetic alterations in melanoma[16] and a public repository of CGH data from
176 melanoma samples (progenetix.com).

We determined gene ranks in two ways: 1) Based upon degree of disparity of median
expression between melanomas and benign nevi, ranking higher those genes which
demonstrated decreased expression in tumors, and 2) Upfold regulation after pharmacologic
demethylation in cell lines. Only genes located in known loci of deletion with an incidence
of greater than 10% in primary melanoma were included in this analysis. An integrative rank
product was calculated. Using a significance threshold (α= 0.005) and subsequent random
permutation of our rank-lists, we identified 47 genes that were significantly differentially
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upregulated (Supplemental Table 1). Twenty-nine of 47 genes contained promoter-
associated CpG islands for which primers could be designed utilizing the MethPrimer
software [15]. These were selected for further studies.

Tumor specific promoter methylation of target genes
CpG islands in the promoter region of the 29 selected gene targets with CpG islands were
bisulfite sequenced in fourteen melanoma tumor samples (Figure 1). Eight genes were
identified containing some degree of tumor DNA promoter methylation. These were: SFRP1
(4/14 methylated, 28.6%), CHRDL1 (4/14 methylated, 28.6%), TMEM47 (8/14 methylated,
57.1%), KOX15 (1/14 methylated, 7.1%), LPL (1/14 methylated, 7.1%), ZEB1 (8/14
methylated, 57.1%), PLCXD1 (13/14 methylated, 92.9%), RARRES1 (5/14 methylated,
35.7%). (Table 2)

Tumor specific deletion of target genes
Quantitative PCR (qPCR) was performed on the 14 melanoma samples tested for
methylation for the eight genes previously investigated. Copy number was calculated by
comparison to the average quantitation of three housekeeping genes that are not found in
areas of deletion or amplification in melanoma. This value was taken as the baseline amount
corresponding to 2 alleles and utilized as a denominator to divide the quantitation of the
genes of interest. A threshold of 1.5 alleles for somatic genes and 0.75 alleles for X linked
genes in males was utilized to determine presence of a deletion. 7/8 (87.5%) genes studied
demonstrated some evidence of deletion (Table 3). Incidences were: SFRP1 (3/14 deleted,
21.4%), CHRDL1 (3/14 deleted, 21.4%), TMEM47 (7/14 deleted, 50.0%), KOX15 (3/14
deleted, 21.4%), LPL (1/14 deleted, 7.1%), ZEB1 (0/14 deleted, 0.0%), PLCXD1 (1/14
deleted, 7.1%), RARRES1 (4/14 deleted, 28.6%). (Figure 2). ZEB1 demonstrated no
evidence of deletion in the tumor samples assessed and was not analyzed further.

Incidence of tumor specific gene methylation and deletion
Seven genes identified by our analysis demonstrated evidence of methylation and deletion.
When combined, deletion or methylation in the fourteen primary melanoma assayed is
present with high incidence for the genes identified by our analysis (Table 3), implying a
significant role for these mechanisms in silencing of expression. Combined incidences were:
SFRP1 (6/14, 42.9%), CHRDL1 (6/14, 42.9%), TMEM47 (12/14, 85.7%), KOX15 (3/14,
21.4%), LPL (2/14, 14.2%), PLCXD1 (14/14, 100%), RARRES1 (8/14, 57.1%). Co-
incidence of methylation and deletion are shown in Supplemental Figure 2.

Candidate genes demonstrate growth suppression of melanoma derived cell lines
Transient transfections were performed to evaluate growth-suppressive effects in seven
targets that show tumor-specific promoter hypermethylation and allele deletion (Figure 2).
Four melanoma derived cell lines (HTB-66, HTB-70. HTB-72, and A375) were transfected
with full-length cDNA ORFs for the seven genes of interest and empty vector controls to
demonstrate the effects of constituitive overexpression by the putative tumor suppressors.
Cell lines were selected based upon disparate derivation techniques and tumor stages in
order to test tumor suppressor ability of genes of interest. Cell counts were performed on
post transfection day 3 utilizing calcein fluorescence. Experiments were performed in
multiples of 8. Statistically significant decreases in cell count were seen in 1 cell line with
KOX15, in 2 cell lines with SFRP1, TMEM47 and PLCXD1, in 3 cell lines with RARRES1
and CHRDL1and in all 4 cell lines transfected with LPL. All genes showed growth
inhibition in at least one cell line, confirming the validity of our approach.
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Discussion
Using an integrative epigenetic/cytogenetic screening analysis, we identified 29 genes in
malignant melanoma that are significantly decreased in expression relative to benign
melanocytic nevi, are expression-responsive to demethylation, and found in areas of known
deletion in melanoma. Of these genes, eight were validated by bisulfite sequencing of
primary melanomas to demonstrate promoter hypermethylation. Seven of these genes were
found to have some evidence of allelic deletion in primary melanoma. The expression of the
validated targets in benign nevi relative to melanoma is shown in Supplemental Figure 3.
Methylation and deletion appear to happen in an independent fashion that is not coordinated.
All of these genes CHRDL1, SFRP1, TMEM47, LPL, RARRES1, PLCXD1, and KOX15
demonstrated some evidence of in vitro growth suppressive effects in melanoma derived cell
lines. The heterogeneity and varying degree of growth suppression seen by transient
transfection is likely a reflection of the genetic variability in the melanoma derived cell lines
and the relative strength of the identified tumor suppressor genes.

The technique employed in this study to screen for potential tumor suppressor genes is a
variation of techniques previously employed by our group to perform high throughput
screening analysis[17, 18]. This approach is, in our estimation, a very stringent one. Its
major drawbacks include the likelihood of exclusion of potential targets and the lack of
multiple testing controls which limits precision of target identification. These limitations are
minimized through the exhaustive validation employed in this study which eliminates false
positive targets.

These seven genes are candidate tumor suppressor genes in malignant melanoma and are
potential targets for further functional analysis to determine their role in tumorigenesis.
Three of these 7: SFRP1, LPL, and RARRES1 have been identified as potential tumor
suppressors in previous studies of different cancer types. The additional finding that
RARRES1 has been recently reported to have significant methylation in melanoma by a
group using disparate genome wide screening approach serves to validate further our
approach[19].

CHRDL1 is an X-linked gene whose function is the source of ongoing investigation.
Originally described as a BMP antagonist in retinal development[20], it has recently been
found to be induced by hypoxia in a HIF 1α dependent fashion in retinal pericytes[21], as
well as differentially expressed in colonic crypts[22]. This report is first describing a
potential role CHRDL1 in any tumor type.

TMEM47 encodes a member of the PMP22/EMP/claudin protein family. The encoded
protein is localized to the ER and the plasma membrane. Its expression has been noted in
Ewing family tumor[23], but no functional studies have addressed its potential role in
carcinogenesis. A microarray analysis melanoma cell lines and tumors has identified
TMEM47 as one of a cluster of genes associated with aggressiveness in melanoma
metastases[24]. This finding in association with its high rate of allelic loss in our validation
studies (12/14 tumors with deletion or methylation, 85.7%), make it a compelling target for
further investigation.

PLCXD1 is a pseudoautosomal gene located on both the X and Y chromosomes. It contains
a PI-PLC X-box domain and its protein sequence and projected folding modeling suggest
phospholipase C activity and possible role in intracellular transduction. No previous studies
have assessed or analyzed its role in human cancer.

KOX15 is a zinc finger protein which has been implicated as a regulator of early tooth
formation and amelogenesis[25]. It has been mapped to a locus of familial deficiency of

Mithani et al. Page 7

Melanoma Res. Author manuscript; available in PMC 2012 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



permanent tooth development [26]. No previous studies have assessed or analyzed its role in
human cancer.

SFRP1 is a member of the SFRP family that contains a cysteine-rich domain homologous to
the putative Wnt-binding site of Frizzled proteins. SFRPs act as soluble modulators of Wnt
signaling. Functionally, it may play a role in promotion of apoptosis[27-29]. Its loci is
associated with LOH and deletion in a variety of human cancers [30]. Decreased expression
of SFRP1 is demonstrated in breast cancer progression[31-33], but does not always correlate
with deletion[34]. Promoter hypermethylation of SFRP1 has been demonstrated in colon[35,
36], prostate[37], ovarian[38], bladder[39], and gastric cancer[40]. Studies in non small cell
lung cancer indicate that concomitant genetic and epigenetic events lead to expression
silencing of SFRP1[41]. The role of SFRP1 as a possible tumor suppressor in melanoma has
not previously been reported. Compelling evidence is present in other organ systems for a
synergistic role of cytogenetic and epigenetic mechanisms in SFRP1 inactivation that makes
it an appealing candidate for a tumor suppressor gene in melanoma.

LPL encodes lipoprotein lipase, which is expressed in heart, muscle, and adipose tissue. LPL
functions as a homodimer, and has the dual functions of triglyceride hydrolase and ligand/
bridging factor for receptor-mediated lipoprotein uptake. Severe mutations causing
deficiency result in type I hyperlipoproteinemia. LPL has been implicated as a tumor
suppressor. LPL expression may be regulated in an APC directed manner with upregulation
of LPL mRNA decreasing the tumorigenic phenotype in APC −/− mice [42, 43]. Multiple
mechanisms may be involved in the role of LPL in human carcinogenesis. LPL treatment has
been shown to inactivate nuclear factor kappa B [NF-κB) [44], and trigger apoptosis[45].
LPL, was reported as one of the most frequently deleted loci in prostate cancer with LOH
and deletion in up to 68% of prostate cancers[46] LPL deletion was reported in many other
types of human cancers as well, including gastric, colon and oral cancer [47-49]. A recent
study has also identified a role for synergistic hypermethylation and deletion of LPL in
prostate cancer [50].

RARRES1 was identified as a retinoid acid (RA) receptor-responsive gene[51].. It encodes a
type 1 membrane protein. The expression of this gene is upregulated by tazarotene as well as
by retinoic acid receptors. The expression of this gene is found to be downregulated in
prostate cancer, which is caused by the methylation of its promoter and CpG island. It has
been shown to be methylated in human melanoma with concomitant decrease in mRNA
expression [19]. Its expression has been associated with spontaneous regression of
melanoma in an animal model[52]. RARRES1 is a putative tumor suppressor in prostate
cancer [53]and demonstrates promoter hypermethylation in gastric carcinoma [54]. Down-
regulation of expression in different cancer cell lines is related to hypermethylation of the
promoter [55] It is posited that silencing of RARRES1 by promoter hypermethylation is
common in human cancers and may contribute to the loss of retinoic acid responsiveness in
some neoplastic cells[55]. RARRES1 demonstrates promise as a potential tumor suppressor
in melanoma. Our findings of significant allelic loss due to deletion (4/14, 28.6%) and an
overall 57.1% (8/14) incidence of allelic loss by either methylation or deletion underscore
the potential importance of this gene as a tumor suppressor.

Several studies have been published in the interim since the initiation of our study which
have utilized microarray analysis of primary melanoma and nevi to elucidate genetic
differences between these lesions[56, 57]. These have revealed a spectrum of genes
associated with different histopathologic characteristics. Other studies have similarly shown
links between tumor invasiveness[24]or clinical outcomes[58] and a variety of gene
expression profiles. As well, other studies have assessed epigenetic changes associated with
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melanoma[59]. The raw data from these studies would undoubtedly increase the power of a
gene screening algorithm and should be employed in future iterations.

Our study attempts to include these disparate analyses in a single integrated approach,
designed to identify genes whose downregulation may be multifactorial. As such, the
discovery of a mostly novel set of putative tumor suppressor genes not previously identified
in melanoma is an unsurprising outcome of our investigation.

Although much work remains to elucidate possible contributors to that malignant phenotype
of melanoma, we did find 7 genes that are solid candidates for tumor suppressor genes that
were associated with silencing by cytogenetic and epigenetic mechanisms. One pitfall of
integrative genomic approaches is the problem of identifying true signal from the substantial
baseline noise generated by such large amounts of data. In addition to utilizing stringent
statistical criteria in our discovery phase, we utilized separate discovery and validation
cohorts and complementary experimental techniques, in order to bolster the validity of our
findings. This approach represents the attempted discovery and validation of genes in
melanoma that are potential tumor suppressors. Future work to explore the implications of
this study would include functional studies of CHRDL1, SFRP1, TMEM47, LPL,
RARRES1, PLCXD1, and KOX15 in melanoma derived cell lines.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Bisulfite sequencing of methylated candidate genes identified by integrative analysis. TSS=
Transcriptional start site. ○ Unmethylated CpG ● Methylated CpG.
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Figure 2.
Gene copy number analysis. Asterisk (*) indicates statistically significant decrease in copy
number (relative to 2 for autosomal genes and 1 for X-linked genes) suggestive of deletion
(p<.05). Error bars represent standard deviation.
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Figure 3.
Transient transfection of melanoma derived cell lines with genes of interest. Cells harvested
72 hours after transfection. Cellular signal was quantitated with calcein fluorescence. Y axes
represent the relative ratio of the detector signal absorption. Experiments performed in
octuplicate. * indicates statistically significant difference from empty vector transfection
(p<.05). Error bars represent standard deviation. A Transfection of LPL, RARRES1, and
CHRDL1 results in growth inhibition of the HTB-72 cell line. B Transfection of LPL,
KOX15, PLCXD1, TMEM47, RARRES1, and CHRDL1 results in growth inhibition of the
HTB-70 cell line. C Transfection of LPL, PLCXD1, TMEM47, RARRES1, SFRP1 and
CHRDL1 results in growth inhibition of the HTB-66 cell line. D Transfection of LPL, and
SFRP1 results in growth inhibition of the A375 cell line.
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Table 3

Incidence of deletion and methylation

Gene Deleted Methylated Deleted or Methylated

CHRDL1 3 4 6 42.9%

SFRP1 3 4 6 42.9%

TMEM47 7 8 12 85.7%

ZEB1 0 8 8 57.1%

LPL 1 1 2 14.3%

RARRES1 4 5 8 57.1%

PLCXD1 1 13 14 100.0%

KOX15 3 1 3 21.4%

Total Samples 14
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