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Iodine is not considered essential for land plants; however, in some aquatic plants,

iodine plays a critical role in antioxidant metabolism. In humans, iodine is essential for

the metabolism of the thyroid and for the development of cognitive abilities, and it

is associated with lower risks of developing certain types of cancer. Therefore, great

efforts are made to ensure the proper intake of iodine to the population, for example,

the iodization of table salt. In the same way, as an alternative, the use of different

iodine fertilization techniques to biofortify crops is considered an adequate iodine supply

method. Hence, biofortification with iodine is an active area of research, with highly

relevant results. The agricultural application of iodine to enhance growth, environmental

adaptation, and stress tolerance in plants has not been well explored, although it may

lead to the increased use of this element in agricultural practice and thus contribute

to the biofortification of crops. This review systematically presents the results published

on the application of iodine in agriculture, considering different environmental conditions

and farming systems in various species and varying concentrations of the element, its

chemical forms, and its application method. Some studies report beneficial effects of

iodine, including better growth, and changes in the tolerance to stress and antioxidant

capacity, while other studies report that the applications of iodine cause no response or

even have adverse effects. We suggested different assumptions that attempt to explain

these conflicting results, considering the possible interaction of iodine with other trace

elements, as well as the different physicochemical and biogeochemical conditions that

give rise to the distinct availability and the volatilization of the element.

Keywords: iodide, iodate, antioxidants, oxidative stress, ROS, nutritional quality

This review aims to provide an overview of the biofortification of iodine, presenting the progress in
this important area of agricultural research. Information is included about the possible alternative
use of iodine as an inductor of abiotic and biotic tolerance. In the literature, a series of reviews
focused on human deficiency of iodine resulting from the irregular distribution of the element
and its complex and still not well-understood dynamics is available. This review complements the
information presented by other authors (Whitehead, 1984; Fuge and Johnson, 1986, 2015; Johnson,
2003; Fuge, 2005, 2013; Steinnes, 2009; Charlton and Skeaff, 2011; Küpper et al., 2011; Moreda-
Piñeiro et al., 2011; Pearce et al., 2013) focusing on agronomic efforts and on the comparison of
different methods of biofortification applied.
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IODINE DYNAMICS

The oceans are the largest reservoirs of bioavailable iodine
on the planet; from there, the element is distributed into the
atmosphere and land areas (Fuge, 1996; Venturi, 2011). The
second most important reservoir of iodine is the soil, which
has a higher content than does its parent material as a result of
the activity of the living organisms (Muramatsu and Yoshida,
1999). Approximately 4 × 1011 g year−1 of iodine volatilize
from the ocean into the atmosphere (Miyake and Tsunogai,
1963; Amachi, 2008), with an estimated of 1.14–3.17 × 1011

g year−1 that volatilizes as CH3I (Moore and Groszko, 1999).
In the atmosphere, iodine reaches concentrations of 5–20 ng
m−3 in gaseous forms and 1–5 ng m−3 as particulate iodine
(Moyers and Duce, 1972). This atmospheric iodine, in the
form of I2 and organoiodine compounds (CH3I and iodinated
humic acids), reacts photochemically with O3 and forms radicals
(I2O2, I2O3, and I2O4) that become transformed into I2O5. This
compound forms particles with a nanometric dimension that
induces condensed nuclei for cloud formation (Saunders and
Plane, 2005). Iodine in the form of gas and aerosol is carried by
the wind and rain to land areas, where it is found in soils mainly
in the form of iodide (I−) and iodate (IO−

3 ). In rainwater, the
iodine appears at concentration of 2µg L−1 (Bowley, 2013). Once
found on land, iodine is distributed in different ways: it is again
mobilized by volatilization into the atmosphere by abiotic and
biotic processes, fixed in soil and biomass, or dragged to the ocean
through water streams (Whitehead, 1984; Moreda-Piñeiro et al.,
2011; Saunders et al., 2012; Fuge and Johnson, 2015; Figure 1).

The distribution of iodine between different terrestrial
compartments occurs with the significant participation of
microbiological processes (Amachi et al., 2003; Amachi, 2008).
From a physiological perspective, it is assumed that the flux
of iodine among different organisms is valuable as a source of

FIGURE 1 | The global cycle of iodine. The hydrosphere contains a store of iodine estimated at 7.9 × 1016 g. From there it reaches the atmosphere (which stores

∼5 × 1012 g of iodine) by volatilization (Fuge and Johnson, 1986), forming gases, and aerosols that are brought to land areas and incorporated into terrestrial

ecosystems by deposition, precipitation, or absorption. Through new processes of iodine volatilization and dragging on the surface and through underground streams,

iodine returns to the ocean. These processes involve significant microbial participation. All compartments of iodine storage are dynamic, being under constant

turnover. Adapted from Moreda-Piñeiro et al. (2011).

antioxidant potential (Crockford, 2009; Venturi, 2011), as well
as by the metabolic value of the compounds resulting from
the reaction between the amino acid tyrosine and iodine, such
as thyroxine (T4) and its derivatives (T2 and T3; Eales, 1997;
Heyland and Moroz, 2005). From an ecological standpoint, the
iodine flux between the different layers of the Earth, ecological
compartments, and organisms may be considered part of the
global system of energy dissipation (Karnani and Annila, 2009).

Among the biological processes of iodine mobilization,
one receiving close attention involves iodine metabolism by
seaweeds of the genus Laminaria (Leblanc et al., 2006), which
volatilize iodine through the production of molecular iodine
(I2) and organoiodine compounds (CH3I and CH2I2; Moore
and Groszko, 1999; Carpenter et al., 2000; Leblanc et al., 2006;
Jones et al., 2010), coupling the process with the antioxidant
metabolism to reduce oxidative stress (Küpper et al., 2008;
Nitschke et al., 2013). It has been shown that one iodoperoxidase
enzyme dependent on vanadium (V-IPO) is critical in this
antioxidant system (Figure 2).

The I− that is absorbed from seawater reacts with H2O2,
(catalyzed by V-IPO) to produce hypoiodous acid (HIO; Küpper
et al., 1998). The oxidative process is named peroxide-dependent
diffusion (PDD) and occurs in macroalgae, bacteria, and
animals outside of the chordates (Miller and Heyland, 2013).
The resulting HIO may (i) diffuse into the cytoplasm to be
accumulated, (ii) react to form volatile organoiodine compounds,
or (iii) react in the apoplast with I− to produce I2, which can also
migrate to the cytoplasm and be stored or volatilized (McFiggans
et al., 2004; Leblanc et al., 2006). Figure 2 partially explains the
value of iodine as an antioxidant. Iodide may be a source of
reduction potential to the cellular system, once oxidized it can
be used for metabolic purposes, stored at an intracellular iodine
pool or, to avoid excessive accumulation, dissipated by means of
volatile organoiodine compounds or I2 sublimation.
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FIGURE 2 | Absorption, metabolism, accumulation, and volatilization of iodine in algae of the genus Laminaria. V-IPO, iodoperoxidase enzyme dependent

on vanadium; Org., organic compounds.

It has not been proven that iodine plays a central antioxidant
role in land plants as in the Laminaria macroalgae, although it
has been reported that in the presence of iodine, crop plants
increase their antioxidant levels (Gupta et al., 2015). It is
assumed that during their evolution, land plants decreased their
dependency on iodine as an inorganic antioxidant, developing
a whole new series of organic antioxidants (such as ascorbic
acid, polyphenols, and carotenoids) in response to the low
concentration of available iodine in the emerged areas (Venturi,
2011). Notwithstanding the apparent non-dependency on iodine,
higher plants absorb iodine through their roots and leaves, and
dissipate it (Barry and Chamberlain, 1963; Whitehead, 1979;
Amiro and Johnston, 1989) using halogen methyltransferases
not dependent on vanadium (Landini et al., 2012). Similar to
iodine, the vanadium is an element of low bioavailability in
land areas (Cappuyns and Swennen, 2014); thus it is possible
that iodine oxidases have evolved as a dependent on one-
carbon metabolism. However, the question of whether vanadium
is essential for plants, coupled with the possibility that plant
responses to iodine occur under a context of low bioavailability
of vanadium has not been fully resolved (Pilbeam and Drihem,
2007). Additionally, marine photosynthetic organisms, algae, and
diatoms synthesize analogs to thyroxine (Heyland and Moroz,
2005; Crockford, 2009), and the land plants have transthyretin-
like proteins with sequence homology to transthyretin (TTR),
the protein for thyroxine transport (Eneqvist et al., 2003; Pessoa
et al., 2010); thus, it is possible that iodine may have metabolic

functions that are not yet understood in land plants. In animals,
the evolutionary strategy to address the low iodine availability
in land areas is different: animals are still dependent on iodine
as an indispensable element, and iodine is stored in vertebrates
in the follicular tissue of the thyroid. In other groups, such as
invertebrates and prochordates, iodine is accumulated in other
tissues or specific proteins (Eales, 1997). Animal organisms
obtain iodine mostly from food intake and, to a lesser extent,
through the absorption from drinking water and from gas
exchange during breathing (Vought et al., 1970;Whitehead, 1984;
Fuge and Johnson, 2015).

IODINE AND HUMAN HEALTH

According to the World Health Organization (WHO), iodine
deficiency (Figure 3) is among the most common nutritional
deficiencies, along with those of iron (Fe), zinc (Zn), and vitamin
A (Burlingame, 2013; Prasad, 2013).

From the perspective of human health, iodine is one of the
most studied elements because of its metabolic importance and
because of the complexity associated with the factors that induce
its deficiency. Iodine deficiency occurs in many regions of the
planet; the irregular distribution of iodine on the Earth’s crust
is considered as a primal factor (FAO, 2009). An estimated
2 × 109 people ingest an insufficient amount of iodine (Mottiar,
2013), causing the so-called iodine deficiency disorders (IDDs).
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IDDs refer to illnesses associated with low iodine consumption
(Zimmermann et al., 2008).

The best-known IDD due to its prominent symptom is
goiter. Nevertheless, the presence of less tangible IDDs has
been observed in recent decades, such as an adverse impact
on physical and cognitive development in children, and on
productivity in adults (Lazarus et al., 2012); it has also been
associated with a higher incidence of fetal death, miscarriages,
and congenital anomalies (Zimmermann, 2009). On the other
hand, it was recently demonstrated that iodine is capable of
acting as an antioxidant and as an antiproliferative of malignant
cells (Funahashi et al., 2001; García-Solís et al., 2005; Aranda
et al., 2013; Anguiano and Aceves, 2011). The daily requirement
of iodine, according to the Recommended Dietary Allowances
(RDA;World Health Organization, 2007; Andersson et al., 2012),
is among 90 and 200 µg day−1.

Foods contain different quantities of iodine depending
on their origin, individual characteristics, conservation, and
preparation. A comprehensive study of the literature (Fordyce,
2003) indicated that the geometric mean iodine concentration
in foods is 87 µg kg−1, a small amount when considering the
daily requirements previously mentioned. Data separation by
food type is provided in Table 1.

Except for the sea fishes, nearly all foods have a low iodine
content. The data presented in Table 1 may vary depending on
the site where the foods are collected or produced, but clearly
show the need to increase the iodine amount in foods. As an

example: it has been suggested that lettuce must contain 50–
100 µg of iodine per 100 g of fresh weight (Lawson et al.,
2015), that is, values several times higher than those shown in
Table 1.

Numerous attempts to mitigate the deficit in the consumption
of iodine have been made, mainly since the 1920s through
the universal iodization of table salt (de Caffarelli, 1997;
Zimmermann, 2009; Charlton et al., 2013). However, throughout
the years it has been shown that this technique alone is
insufficient to ensure the total requirement of iodine (de Benoist
et al., 2008), partly because the iodine of table salt is unstable and
is subject to many losses by volatilization (Mottiar and Altosaar,

TABLE 1 | Iodine content in different foods (Fordyce, 2003).

Food I concentration (µg kg−1)

Sea fish 1455.9

Freshwater fish 102.8

Leafy vegetables 88.8

Dairy 83.9

Other vegetables 80.1

Meats 68.4

Cereals 56.0

Fresh fruits 30.6

Water 6.4

FIGURE 3 | Regions where the population presents a high risk of iodine deficiency are marked in orange on the map. Adapted from Burlingame (2013).
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2011). In this regard, the consumption of iodine in organic forms
such as seaweed and biofortified foods and yeast, is considered
more appropriate (Funahashi et al., 2001; Weng et al., 2008a;
Kopeć et al., 2015) because those organic sources are more stable
than inorganic ones.

The maximum recommended dietary dose of iodine ranges
from 1000 µg day−1 (Pennington, 1990) in a daily basis,
to 2000 µg day−1 by not more than 3 weeks (Backer and
Hollowell, 2000). Iodine toxicities are not common under normal
conditions (Gupta and Gupta, 1998), and humans appear to
have a high tolerance to iodine doses <2000 µg day−1 (Bulloch,
2014). Frequently, the toxicity by iodine occurs by genetic or
physiological predisposition (Rose et al., 2002) or by the use of
iodine-based products as disinfectants (Backer and Hollowell,
2000) and medications (Bulloch, 2014).

Therefore, it is necessary to promote the use of techniques,
such as the biofortification of crops, to achieve an adequate iodine
intake from foods, either as a complement or as an alternative to
the inorganic sources of iodine as the table salt.

IODINE APPLICATIONS IN AGRICULTURAL
CROPS

There have been numerous studies on the application of iodine
in various plant species with the purpose of biofortifying crops.
The results reported in the literature are variable according
to the applied concentration, chemical form used and adopted
production system (Tables 2–4). An overview is presented
on the absorption, transport and volatilization of iodine in
plants, followed by summaries reporting the concentrations and
chemical forms of iodine that are used in different production
systems.

Absorption and Metabolism of Iodine
Iodine is an element that can be absorbed by the root and
in aerial structures both by the stomata and by the cuticular
waxes with high degree of unsaturation and great capacity to
take iodine (Shaw et al., 2007; Tschiersch et al., 2009), both in
dissolved form and in gas form as I2 and CH3I. The impact
of the differences among species in the profile and quantity
of cuticular waxes on leaf iodine absorption has not been
verified. This information may be relevant considering that
the cuticular waxes interacting with iodine can be alternatives
for the pre- and post-harvest biofortification of fruits and
seeds.

There is no information to indicate how much of the
element that has been taken up by the plants comes from
the soil and how much from the atmosphere, but it is known
that the absorption of iodine in gas form can be significant
(Barry and Chamberlain, 1963; Nakamura and Ohmomo, 1984;
Whitehead, 1984). In opposite Tsukada et al. (2008) estimated the
atmospheric contribution to the iodine uptake of rice to be only
0.2%. The direct atmospheric contribution would be expected
to be higher in regions near the sea and lower in continental
areas; however, the evidence indicates that the volatilization of
iodine that is fixed in the soil may also be an important factor

in iodine transfer to organisms (Whitehead, 1984; Fuge and
Johnson, 2015).

Once the iodine is absorbed, it is transported through the
xylem, finding that its redistribution through the phloem is low
(Herrett et al., 1962); thus it accumulates in greater amounts in
leaves than in fruits and seeds. However, in lettuce plants treated
with iodine by leaf spray Smoleń et al. (2014a) found evidence of
iodine transport from leaves to the roots. In wheat plants, even
when iodine was applied by foliar spraying, the mobility from the
leaves to the grains (termed the translocation factor) was very low
(0.2–1.1%), but this value appears to be cumulative, i.e., iodine
moves from the leaves to the grain with each application event
(Hurtevent et al., 2013). The observed translocation factors for
radish, potato, and bean range from 0.8 to 2.6%, 0.1 to 2.3%,
and 0.1 to 2.6%, respectively (Henner et al., 2013). On the other
hand, the iodine transfer factor (ITF) refers to the element that
is absorbed by the root, and is defined as the ratio of the iodine
concentration in the plant tissues to its concentration in the
substrate. ITF is higher in leafy crops such as spinach (ITF≥ 2.0),
than in fruits such as tomatoes and nectarines, or cereal grains
(0.0005 ≤ ITF ≤ 0.02; Shinonaga et al., 2001; Lawson, 2014). For
example, starting with a soil concentration of 48mg kg−1, the
distribution of the iodine that is absorbed by a rice plant (dry
weight) is as follows: 53mg kg−1 in the root, 16mg kg−1 in the
leaves, and 0.034mg kg−1 in the polished grain (Tsukada et al.,
2008).

When iodine is applied to plants as IO−
3 it is reduced to

I− by the action of an iodate reductase, which responds to the
availability of iodine in the medium (Kato et al., 2013). This
reductase activity also occurs in microorganisms (Amachi, 2008),
but the magnitude of the microbial contribution in the soil
process is unknown. In soils IO−

3 is more efficient taken up
by plants compared to I− (Lawson et al., 2015), and in soilless
cultures the application of I− induces toxicity more easily in
plants than does IO−

3 (Borst Pauwels, 1962; Umaly and Poel,
1971; Muramatsu et al., 1983; Zhu et al., 2003). The lower toxicity
of IO−

3 could be explained by the iodate as an alternative substrate
to other abundant enzymes, such as nitrate reductase (Barber and
Notton, 1990), or by the activation of iodate reductase through
IO−

3 inducing other responses associated with redox signaling
and iodine metabolism in plants, in addition to the reduction
of IO−

3 .
Since IO−

3 is more thermodynamically stable than I−, it is
hypothesized that it is the most likely form to be available in
agricultural soils. However, because the I−/IO−

3 ratio depends on
biological activity, it is not limited strictly to a thermodynamic
balance (Kaplan et al., 2014), as shown in Figure 4. This fact
makes it difficult to predict the pattern of iodine speciation in a
particular soil.

Plants absorb iodine as I− through ionic channels and
chloride transporters that are energized by proton pumps (White
and Broadley, 2009); therefore, there may occur interference
scenarios with other anions such as nitrate, thiocyanate, and
perchlorate (Voogt and Jackson, 2010). The identity of the I−

transporters is not firmly established, but their activity can
presumably be shared by several families of transporters and
anion channels (White and Broadley, 2009; Landini et al., 2012).
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TABLE 2 | Overall effect of the application of iodine in different crops.

Crop Main result Main effect References

Barley (Hordeum vulgare L.) + Positive effect on growth. Borst Pauwels, 1961

Beet (Beta vulgaris L.) + Positive effect on aboveground biomass. Borst Pauwels, 1961

Cabbage (Brassica oleracea var.

capitata)

− Severe diminution of biomass. Higher iodine accumulation. Mao et al., 2014

Cabbage ± Chlorosis and necrosis occurs at an application rate of 15 kg ha−1. No effects on biomass

or quality when applied via foliar spray.

Lawson et al., 2015

Canola (Brassica napus L.) + Slight positive effect on yield. Mao et al., 2014

Carrot (Daucus carota L.) + Increases glucose, fructose, sucrose, total sugars, and soluble solids. No effect on

biomass.

Smoleń et al., 2014b

Carrot − Plant growth decreases when the iodine concentration exceeds 50mg (kg soil)−1. Hong et al., 2008

Celery (Apium graveolens L.) + Iodine applied to soil increases the biomass in leafy vegetables. Dai et al., 2004b

Ceylon spinach (Basella alba L.) + Higher iodine accumulation at 40 µg L−1. Use of fertigation is recommended. Ujowundu et al., 2010

Chinese cabbage (Brassica rapa

ssp. pekinensis)

+ Iodine applied to soil increases biomass. Dai et al., 2004b

Chinese cabbage + Biomass increases at low doses. Toxic effect at higher doses. Weng et al., 2008c

Chinese cabbage + When not applied to soil in excess, iodine increases its concentration in edible vegetables. Weng et al., 2003

Chinese cabbage − Plant growth decreases when the iodine concentration exceeds 50mg (kg soil)−1. Hong et al., 2008

Lettuce (Lactuca sativa L.) + Higher accumulation of K, Mg, Ca, Mn, and Cd when applying iodine at any dose, form

and/or application method.

Smoleń et al., 2011

Lettuce + KIO3 < 40 × 10−6 M increases SOD, APX, GSH, AA, and antioxidant potential. Improves

response to salinity.

Leyva et al., 2011

Lettuce + Under saline stress iodine increases foliar mass, antioxidant response, and accumulation

of phenolic compounds at 20 and 40 µM KIO3.

Blasco et al., 2013

Lettuce ± KI reduces biomass at 40 µM or higher. KIO3 has no effect. Higher concentration of

antioxidants with KI.

Blasco et al., 2008

Lettuce + KI decreases SOD and increases CAT, ascorbate, and glutathione. KIO3 increases SOD,

APX, CAT, and ascorbate, and has no negative effect on biomass.

Blasco et al., 2011

Lettuce + Increases the content of I. Kopeć et al., 2015

Lettuce − Plant growth decreases when the iodine concentration exceeds 50mg (kg soil)−1. Hong et al., 2008

Lettuce − In combination with selenium, iodine has a negative effect on biomass. Negative

correlation between I content and K, Mg, Ca, S, Na, B, Cu, Fe, Mn, Zn, Cd, and Pb

concentration.

Smoleń et al., 2015b

Lettuce − Chlorosis and necrosis occurs at an application rate of 15 kg ha−1. No effects on biomass

or quality when applied via foliar spray.

Lawson et al., 2015

Lettuce + Se + I had no effect on biomass or mineral composition. Synergic interaction between

both compounds for absorption through leaves via foliar spray.

Smoleń et al., 2014a

Lettuce + No effect on biomass. Iodine concentration in leaves increases with iodine treatment. Voogt et al., 2010

Linseed (Linum usitatissimum L.) + Positive effect on growth. Borst Pauwels, 1961

Maize (Zea mays L.) − Negative effect on biomass. Caffagni et al., 2011

Maize − Iodine reduces yield. Mao et al., 2014

Mustard (Brassica nigra (L.)

W.D.J. Koch)

+ Positive effect on growth. Borst Pauwels, 1961

Nopal (Opuntia ficus-indica (L.)

Mill.)

± Increases ascorbic acid. Decreases fresh and dry weight. Diverse effects on minerals.

Changes in some histologic variables.

García-Osuna et al.,

2014

Oat (Avena sativa L.) − Negative effect on growth. Borst Pauwels, 1961

Onion (Allium cepa L.) + No effect on the biomass of fruit and root vegetables. Dai et al., 2004b

Parsley (Petroselinum crispum

Mill.)

+ Positive effect on growth. Borst Pauwels, 1961

Potato (Solanum tuberosum L.) − Reduction of biomass. Mao et al., 2014

Potato − Negative effect on biomass. Caffagni et al., 2011

Pumpkin (Cucurbita pepo L.) + Higher iodine accumulation at 40 µg L−1. Use of fertigation is recommended. Ujowundu et al., 2010

Radish (Raphanus sativus L.) + Concentration of free amino acids increases. Strzetelski et al., 2010

Radish ± When not applied to soil in excess, iodine increases its concentration in edible vegetables. Weng et al., 2003

Rice (Oryza sativa L.) − KI and KIO3 at 100 µM cause biomass reduction. Mackowiak and Grossl,

1999

(Continued)
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TABLE 2 | Continued

Crop Main result Main effect References

Rice − KI > 0.25% decreases plant height, panicle length, grain number, and yield. Singh et al., 2012

Rice − Negative effect on growth. Kato et al., 2013

Ryegrass (Lolium perenne (Lam.)

Husnot.)

+ Positive effect on the aboveground biomass. Borst Pauwels, 1961

Soybean (Glycine max (L.) Merr.) + Increases biomass. Mao et al., 2014

Soybean + SOD, APX, and GR increased with IO3
−. Gupta et al., 2015

Spinach (Spinacia oleracea L.) + Iodine application to soil increases biomass. Dai et al., 2004b

Spinach + Slight positive effect on aboveground biomass. Borst Pauwels, 1961

Spinach ± When not applied to soil in excess, iodine increases its concentration in edible vegetables. Weng et al., 2003

Spinach + IO3
− increase iodine concentration in leaves. Dai et al., 2006

Spinach − KI ≥ 10 × 10−6 M is toxic. KIO3 slightly affects biomass. Zhu et al., 2003

Spinach + Higher absorption through fertigation. No damage to plants. Smoleń and Sady,

2012

Spinach + KIO3 increases biomass when applied to nutrient solution. It absorbs more than KI. Smoleń et al., 2015a

Tobacco (Nicotiana tabacum L.) − Negative effect on biomass. Caffagni et al., 2011

Tomato (Solanum

lycopersicum L.)

+ Extended shelf life. Limchoowong et al.,

2016

Tomato + Positive effect on aboveground biomass. Borst Pauwels, 1961

Tomato + KIO3 increases soluble solids, fructose, glucose, ascorbic acid, and phenols. Higher

iodine accumulation with salicylic acid.

Smoleń et al., 2015c

Tomato + Decreases plant weight and accelerated flowering with higher yields. Lehr et al., 1958

Tomato − Plant growth decreases when iodine concentration exceeds 50mg (kg soil)−1. Hong et al., 2008

Tomato − Negative effect on biomass. Caffagni et al., 2011

Tomato − Biomass decreases as the concentration of iodine increases. Ascorbic acid decreases. Hageman et al., 1942

Tomato + Significant increase in iodine without damage to fruits. Kiferle et al., 2013

Tomato + Iodine was taken up when supplied with nutrient solution and leaf spray, and stored in

fruits and vegetative tissues.

Landini et al., 2011

Turnip (Brassica rapa ssp. rapa) ± Positive effect on aboveground biomass and negative effect on roots. Borst Pauwels, 1961

Water spinach (Ipomoea

aquatica Forssk.)

+ Positive effect on growth of low doses of iodine. I− increases vitamin C, while IO3
− and

CH2 ICOO
− decreases it. I− and IO3

− increases nitrates.

Weng et al., 2008c

White clover (Trifolium repens L.) + Positive effect on aboveground biomass. Borst Pauwels, 1961

Wheat (Triticum aestivum L.) − Negative effect on biomass. Caffagni et al., 2011

Wheat + Positive effect on growth. Borst Pauwels, 1961

Wheat − Decreases biomass. Mao et al., 2014

Zucchini (Cucurbita pepo var.

melopepo)

+ Higher iodine accumulation at 40 µg L−1. Use of fertigation is recommended. Ujowundu et al., 2010

Main result: (+), positive; (−), negative; (±), mixed results.

Among these are the Na:K/Cl cotransporters belonging to the
CCC family of genes (Colmenero-Flores et al., 2007), which
directly regulate the concentration of ions in the root xylem
(Shabala, 2013; Wegner, 2014; Fricke, 2015). Another group is
the gene family of CLC Cl−-channels permeable to I− (Roberts,
2006; Barbier-Brygoo et al., 2011). Currently, the CLC genes have
been linked to osmotic stress tolerance (Ma et al., 2016; Nguyen
et al., 2016), stomatal movement, nutrient transport, and heavy
metal tolerance (Zifarelli and Pusch, 2010).

Once absorbed, transported, and accumulated in different
plant organs, iodine is not stable; plants volatilize iodine
as methyl iodide (CH3I) using the enzymes halide ion
methyltransferase (HMT) and halide/thiol methyltransferase
(HTMT), with methyl transferase activity dependent on S-
adenosylmethionine (SAM; Redeker et al., 2004; Itoh et al.,

2009). The affinity of these methyl-halide transferase enzymes
to iodine is much greater than that observed in other halogens
or ions such as thiocyanate (Takekawa and Nakamura, 2012).
Volatilization can be faster as iodine increases its concentration
in the substrate (Itoh et al., 2009), and occurs in all organs;
in rice, the iodine foliar concentration decreases exponentially
with a half-life of 14 days (Nakamura et al., 1986). Therefore,
the action of methyltransferases continuously reduces the iodine
store present in plants (Landini et al., 2012). It has been noted
that iodine is a phytotoxic element per se to the plants and
that volatilization is a detoxification mechanism (Saini et al.,
1995) or a by-product of the methyltransferase activity reactions
that occur in plants (Redeker et al., 2004). An alternative
explanation is that the iodine is toxic only depending on the
environmental context: for example, under conditions of high
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TABLE 3 | Overall effect of the application of iodine according to the applied chemical form.

Chemical form Main result Main effect Author(s)

CH2 ICOONa − Decreased vitamin C. Higher absorption than that of I− and IO3
−. Weng et al., 2008c

[0.5pt] Kelp algae based

fertilizer

+ Iodine applied to soil increases its concentration in edible vegetables. Weng et al., 2003

Iodated organic fertilizer + Iodine absorption increased with the application of iodated organic fertilizer. Weng et al., 2013

NaI ± Increases biomass at low doses. Toxic at high doses. Weng et al., 2008a

NaI ± At 0.033 × 10−6 M concentration biomass increases, while at 0.66 × 10−6 M biomass

decreases.

Weng et al., 2008b

NaIO3 + Increases biomass. Weng et al., 2008b

NaIO3 ± Increases biomass at low doses. Toxic at high doses, but less toxic than NaI and KI. Weng et al., 2008a

NaIO3 − Decreases vitamin C and increases nitrates. Weng et al., 2008c

KI ± Increases biomass at low doses. Toxic at high doses. Weng et al., 2008a

KI − Plant growth decreases when iodine concentration exceeds 50mg (kg soil)−1. Hong et al., 2008

KI − Chlorosis and necrosis occurs at an application rate of 15 kg ha−1. No effects on biomass or

quality when applied via foliar spray.

Lawson et al., 2015

KI + No effect on biomass. Iodine concentration in leaves increases with iodine treatments. Voogt et al., 2010

KI + Higher absorption through fertigation. No damage to plants. Smoleń and Sady, 2012

KI − Absorption more difficult than that of KIO3. Smoleń et al., 2015a

KI − KI induces less growth than does KIO3 Borst Pauwels, 1961

KI − KI reduces biomass at 40 µM or higher. Higher concentration of antioxidants. Blasco et al., 2008

KI + Decreases SOD, and increases CAT, ascorbate, and glutathione. Blasco et al., 2011

KI + Higher accumulation of K, Mg, Ca, Mn, and Cd when applying iodine in any dose, form and/or

application method.

Smoleń et al., 2011

KI + Increases I content. Kopeć et al., 2015

KI + Greater accumulation than KIO3. Smoleń et al., 2015b

KI ± Increases ascorbic acid. Decreases fresh and dry weight. Increases Cu and Mn. García-Osuna et al., 2014

KI ± Increases glucose, fructose, sucrose, total sugars, and soluble solids, and decreases biomass.

Higher effect than KIO3.

Smoleń et al., 2014b

KIO3 + KIO3 < 40 × 10−6 M increases SOD, APX, GSH, ascorbic acid, and antioxidant potential.

Improves response to salinity.

Leyva et al., 2011

KIO3 + Increases SOD, APX, CAT, and ascorbate, with no negative effect on biomass. Blasco et al., 2011

KIO3 ± Biomass decreases at all concentrations, but KIO3 has a less negative effect than that of KI. Caffagni et al., 2011

KIO3 ± No damage or biomass diminution at concentrations of 1 and 10 µM, while 100 µM has a

slightly negative effect.

Mackowiak and Grossl,

1999

KIO3 − Slight negative effect on biomass and growth. Zhu et al., 2003

KIO3 + No effect on biomass. Iodine accumulation is independent of dose. Voogt et al., 2010

KIO3 Higher absorption through fertigation. No damage to plants. Smoleń and Sady, 2012

KIO3 + Biofortification without damage to fruits. Kiferle et al., 2013

KIO3 ± Chlorosis and necrosis occurs at an application rate of 15 kg ha−1. No effects on biomass or

quality when applied via foliar spray. More efficient to biofortification than KI.

Lawson et al., 2015

KIO3 + KIO3 increases biomass when applied to nutritive solution. Iodine is better absorbed with KIO3

than using KI.

Smoleń et al., 2015a

KIO3 + KIO3 promotes growth more than does KI. Borst Pauwels, 1961

KIO3 + No effect on biomass. Increased phenols and ascorbic acid at 80 µM and increased antioxidant

potential at 120 µM.

Blasco et al., 2008

KIO3 + Higher iodine accumulation at 40 µg L−1. Adding iodine to soil promotes plant absorption. Ujowundu et al., 2010

KIO3 + Under saline stress iodine increases foliar mass, antioxidant response and the accumulation of

phenolic compounds at 20 and 40 µM KIO3.

Blasco et al., 2013

KIO3 + IO3
− is recommended as a beneficial compound to cadmium stress. Gupta et al., 2015

KIO3 + KIO3 increases soluble solids, fructose, glucose, ascorbic acid, and phenols. Higher iodine

accumulation in combination with salicylic acid.

Smoleń et al., 2015b

KIO3 + Increases ascorbic acid. Decreases fresh and dry weight. Increased P, K, Mg, and Fe. Changes

in xylem and mucilage.

García-Osuna et al., 2014

KIO3 + Increases glucose, fructose, sucrose, total sugars, and soluble solids and decreases biomass.

Less effect than KI.

Smoleń et al., 2014b

KIO3 + Se + I has no effect on biomass or mineral composition. Synergic interaction between both

compounds for absorption through leaves via foliar spray.

Smoleń et al., 2014a

Main result: (+), positive; (−), negative; (±), mixed results.
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TABLE 4 | Overall effect of iodine application according to the application method.

Via Main result Main effect Author(s)

Fertigation + Significant increase in iodine accumulation without damage to fruits. Kiferle et al., 2013

Fertigation + Higher iodine accumulation in leaves. Smoleń et al., 2015a

Fertigation + Iodine applied to soil increases the biomass in leafy vegetables. Dai et al., 2004b

Fertigation + Higher iodine accumulation at 40 µg L−1. Use of fertigation is recommended. Ujowundu et al., 2010

Fertigation + Higher absorption through fertigation. No damage to plants. Smoleń and Sady, 2012

Fruit + Extended shelf life. Limchoowong et al., 2016

Leaf spray − Plants accumulate less iodine through foliar application than in nutrient solution. Landini et al., 2011

Leaf spray + Concentration of free amino acids increases in radish. Strzetelski et al., 2010

Leaf spray + Higher accumulation of K, Mg, Ca, Mn, and Cd when applying iodine at any dose, form, and/or

application method.

Smoleń et al., 2011

Leaf spray + Se + I has no effect on biomass or mineral composition. Synergic interaction between both

compounds for absorption through leaves via foliar spray.

Smoleń et al., 2014a

Leaf spray + No effect on biomass or quality. Higher iodine accumulation in lettuce than when applied to soil. Lawson et al., 2015

Nutrient solution + Decreases plant weight and accelerated flowering with higher yields. Lehr et al., 1958

Nutrient solution + KIO3 promotes growth more than KI at early development stages. Borst Pauwels, 1961

Nutrient solution − KI at concentrations of 10 and 100 µM causes biomass reduction. Mackowiak and Grossl,

1999

Nutrient solution − KI causes severe damage. KIO3 has a slight effect on biomass. Higher iodine concentration in

nutrient solution improves iodine accumulation in plants.

Zhu et al., 2003

Nutrient solution + Increasing levels from 0 to 1mg L−1 linearly increases the absorption of iodine in the three

chemical species. A linear correlation between the iodine content in the roots and in the

aboveground part is observed.

Weng et al., 2008c

Nutrient solution + Biomass increases at low doses of iodine. Toxic effect at higher doses. Weng et al., 2008a

Nutrient solution + Plants accumulate more iodine when applied in nutrient solution than through foliar spray. Landini et al., 2011

Nutrient solution + KIO3 < 40 × 10−6 M increases SOD, APX, GSH, ascorbic acid, and antioxidant potential.

Improves response to salinity.

Leyva et al., 2011

Nutrient solution + KIO3 increases SOD, APX, CAT, and ascorbic acid. Not phytotoxic. Blasco et al., 2011

Nutrient solution + Increases foliar mass, antioxidant response, and phenolic compounds at 20 and 40 µM. Blasco et al., 2013

Nutrient solution ± Increases ascorbic acid. Decreases fresh and dry weight. Diverse effects on minerals. Changes

in some histologic variables.

García-Osuna et al., 2014

Nutrient solution + In combination with salicylic acid the iodine content in fruits increases. KIO3 increases soluble

solids, fructose, glucose, ascorbic acid, and phenols.

Smoleń et al., 2015c

Nutrient solution − Biomass decreases at all concentrations used. Caffagni et al., 2011

Nutrient solution − Biomass decreases as the concentration of iodine increases. Ascorbic acid decreases. Hageman et al., 1942

Soil − Plant growth decreases when the iodine concentration exceeds 50mg kg soil)−1. Hong et al., 2008

Soil − Chlorosis and necrosis occurs at an application rate of 15 kg ha−1. Lawson et al., 2015

Soil ± Biomass increases at low doses. Toxic effect at higher doses. Weng et al., 2008b

Soil ± Higher accumulation of nitrates in leaves. No damage to plants. Smoleń and Sady, 2012

Soil + High efficiency in biofortification when iodine is applied mixed with humic and fulvic acids. Smoleń et al., 2015a

Soil ± When not applied to soil in excess, iodine increases its concentration in edible vegetables. Weng et al., 2003

Soil + Concentration of free amino acids increases. Strzetelski et al., 2010

Soil + Iodine absorption increased with the application of iodated organic fertilizer. Weng et al., 2013

Soil + Iodine application to soil increased iodine accumulation in cabbage leaves. Mao et al., 2014

Soil + SOD, APX, and GR increases with IO3. IO3 is recommended as a beneficial compound to treat

cadmium stress.

Gupta et al., 2015

Soil + Increases glucose, fructose, sucrose, total sugars, and soluble solids. No effect on biomass. Smoleń et al., 2014b

Main result: (+), positive; (−), negative; (±), mixed results.

solubilization or little fixation, as previously mentioned (Yuita,
1994); when a deficiency of some elements such as Fe or
Cu (perhaps vanadium) occurs; or merely as a result of the
intrinsic differences between plant species to metabolize iodine
(Saini et al., 1995).

There is little information about the differences between
vegetable species and the environmental factors that affect the
activity of enzymes that dissipate iodine, but it is known that
the activity increases with temperature and changes in different
developmental phases, peaking during the reproductive stage
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FIGURE 4 | Stability diagram of the chemical species iodide and iodate

concerning the potential of hydrogen (pH) and oxidoreductive potential

(Eh) in volts. The graph is centered on thermodynamic considerations and

displays the stability of the different iodine species in the Eh-pH plot. Under

conditions of low redox potential (Eh ≤ 0.65), independently of pH, iodine is

available in the form of iodide; under low pH and 0.65 < Eh < 0.85, I2 will be

the predominant form. When Eh > 1.0, the oxidized forms of iodine are

observed, with IO−

3 being the most abundant in a wide pH range. Adapted

from Vinogradov and Lapp (1971).

(Muramatsu and Yoshida, 1995; Redeker et al., 2004). This
activity is also positively associated with the iodine absorption
rate of the nutrient solution and the irradiance; in addition,
the stomata partially regulate the flow of iodine from the
mesophyll into the atmosphere (Amiro and Johnston, 1989).
It has been reported that in bacteria, the iodine volatilization
activity increases under stress (Li et al., 2012, 2014). This
metabolic activity of iodine volatilization by plants contributes
to the overall activity of volatilization that occurs in soils and
inland waters and is part of the global flow of iodine. In
soils, both I− as IO−

3 are volatilized as HI, HIO3, and HIO4

(Sheppard et al., 1994). In soil-plant systems, the emission
of iodine into the atmosphere occurs both by abiotic soil
components and by plants and soil microorganisms (Ban-nai
et al., 2006), but the total activity increases with the presence
of vegetation (Muramatsu and Yoshida, 1995). The estimated
amount of iodine that is volatilized for soil-plant system range
from 0.28 to 0.62 kg ha−1 season−1, with an average of 0.40 kg
ha−1 season−1 (Redeker et al., 2002). If we consider this value
alongside the global average iodine content in soil (2.6mg
kg−1; Watts et al., 2010), and consider that topsoil represents
1.5 × 106 kg ha−1, then without exogenous iodine inputs the
volatilization activity will exhaust the soil iodine reservoir in 9
years.

The success of the biofortification of crops depends on more
than the iodine application technique (Sheppard et al., 1994;
Fuge and Johnson, 2015). Iodine is a dynamic element that is
under constant turnover by living organisms, including plants
and humans (Küpper et al., 2011), as well as by the ecological
systems components (Kaplan et al., 2014). The ideal effort would
pay direct attention not only to plants but also to the entire
system of which they are a part. Iodine is metabolized by the
complete ecological system, possibly under an overall control
scheme that is not yet well understood, and it is advisable
to consider other biotic and abiotic factors as part of the
biofortification strategy. For example, the role of the rhizosphere
as a complex and dynamical environment where interacts the
roots, microorganisms, and inorganic soil components have been
little explored regarding the absorption of iodine (Terzano et al.,
2015), but has proven to be an useful approach in the case of
Fe and Si (Pii et al., 2015; Gattullo et al., 2016). In the same
way, there is a notable absence of studies on the biofortification
of cultivated fungi or the use of mycorrhizae or plant growth-
promoting rhizobacteria to modify the absorption of iodine,
although this approach has proven its value for other elements,
such as Fe and Zn (He and Nara, 2007; Pellegrino and Bedini,
2014; Rana et al., 2015). Mycorrhizae further decrease the toxicity
of certain elements to plants (Leung et al., 2013), an issue that has
not been reported for iodine.

An additional point is that other factors, climatic, ecological,
phytochemical, and cultural (e.g., food preparation and storage),
may decrease the bioavailability or stability of iodine and avoid
the correlation between iodine distribution and its presence in
the human population (Stewart et al., 2003; Kotwal et al., 2007;
Longvah et al., 2012; Zia et al., 2015).

Speciation and Complexation of Iodine in
Soil
The iodine content of soil is the result of the complex dynamic
balance of three processes: incorporation from the atmosphere,
fixation, and volatilization, resulting in an enormous range of
variation of iodine contents in the soil, from <0.1 to 150mg
(kg soil)−1 (Moreda-Piñeiro et al., 2011). The interaction of
iodine with soil organic and inorganic components increases
the fixation, decreases the rate of volatilization, and reduces its
bioavailability. The complexation of iodine with organic matter,
metal oxides and clays causes a strong fixation of iodine in soil
and modifies the concentration of water-soluble iodine available
to plants (Whitehead, 1974). The soluble iodine content of soils
is usually<10% of the total iodine fixed in soil. The availability of
soluble iodine is higher with a low oxidoreductive potential (Eh)
(with I− as the dominant chemical form of iodine) and lower
under oxidizing conditions (with IO−

3 as the most abundant
form; Fuge and Johnson, 2015).

The Eh of soil changes the iodine speciation, which
is expressed as the dynamic ratio [IO−

3 ]/[I
−] (Figure 4).

In the soil, organic matter, flooding, excessive irrigation
and inorganic sources of reductor potential, such as the
sulfides, Fe+2, and FeS induce low Eh, for which the
expected form of iodine would be I−, generated from the
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reaction IO−
3 + 6e− + 6H+ → I− +H2O

1. This reaction can be
developed abiotically with IO−

3 and organic matter producing
HIO and I2, the latter of which is reduced to I- (Steinberg et al.,
2008). By contrast, under high Eh (e.g., low amount of organic
matter or low water content in the soil pores), IO−

3 will be the
most abundant form. The difference between IO−

3 and I− is that
the former is less subjected to volatilization (Guido-Garcia et al.,
2015).

It has been observed in experiments on different types of soil
that IO−

3 tends to be more adsorbed to soil components than I−,
also showing less leaching and toxicity toward crops (Hong et al.,
2012; Lawson et al., 2015). In soils with >10% organic matter, it
has been observed that the humic substances can fix the I− and
IO−

3 from aerosols and rain, whereas in soil with <6% organic
matter, the IO−

3 is adsorbed to metal oxides [Fe(OH)3, Al(OH)3,
Mn4O2]. With a low pH, or with the Eh to the reducing side,
these same metals act as reducers and accelerate the I− reaction
with organic matter (Bowley, 2013). In acidic soils (pH < 7), the
balance between chemical species of iodine leans toward I−; while
under pH > 7, the predominant form is IO−

3 . The ITF values for
cereal grains do not change in the pH interval 5.4–7.6 (Shinonaga
et al., 2001), however, toward the extremes of pH (pH< 5 and pH
> 8), more adsorption of I− and IO−

3 will occur (Yoshida et al.,
1992; Dai et al., 2009), probably decreasing the bioavailability of
iodine for plants.

Among the different physicochemical factors that modify
the availability and immobilization of iodine in the soil, the
amount of organic matter is the most widely studied (Whitehead,
1978; Sheppard and Thibault, 1992; Yu et al., 1996; Dai et al.,
2006). Humified soil matter has been identified as an important
reservoir that decreases the iodine dissipation rate (Shetaya et al.,
2012) through the formation of covalent bonds between carbon
atoms and iodine (Stavber et al., 2008). This reaction mechanism
of iodine with organic matter is an electrophilic substitution of H
by iodine in a phenolic ring (Reiller et al., 2006). Soil microbes
can accelerate this process through the action of laccase enzymes
that oxidizes I− to I2 and HOI (Shimamoto et al., 2011; Seki et al.,
2013), which in a subsequent step are incorporated into organic
matter.

The association of iodine and organic matter is not
permanent; it is known that iodine in soil is subjected to
absorption and desorption processes. Under reducing conditions,
such as those in rice paddy fields, soil suffers high iodine
desorption promoted by low Eh (−0.1 V), the addition of straw or
glucose, root exudates, and microbial metabolism. The desorbed
iodine is volatilized by organic matter (especially with a low level
of humification), either directly by abiotic halogenation or by
the intervention of haloperoxidases of microorganisms (Wever,
2012; Leri and Ravel, 2015). The initial reaction with organic
matter is faster for I− and slower for IO−

3 , but after a time
of ∼60 days or more, both forms participate in a process of
transformation in volatile organoiodine compounds, occurring
in the presence of organic matter in the soil, with or without
the participation of microorganisms (Yamaguchi et al., 2010).
Volatilization is dependent on both Eh and pH, with the lowest

1The reverse reaction is less favorable and less likely in soils.

levels of volatilization in oxic alkaline soils, where the most
abundant form of iodine is the non-volatile IO−

3 ; in contrast, in
waterlogged and organic soils occur higher rates of volatilization
resulting from the predominance of I− that is oxidized to I2 and
CH3I. It has been suggested that in inland areas, the contribution
of atmospheric iodine depends significantly on the volatilization
of the iodine in the soil (Fuge and Johnson, 2015).

Impact on Productivity and Yield
The use of iodine in the nutrient solution in concentrations
from 10−6 M (equivalent to 0.13mg L−1) in soilless culture
typically produces an increase in biomass in leafy vegetables, such
as Chinese cabbage, spinach, and lettuce (Borst Pauwels, 1961;
Whitehead, 1973; Weng et al., 2003, 2008c; Zhu et al., 2003; Dai
et al., 2004b; Blasco et al., 2013). The iodine concentration can
be increased to 10−5 M (equivalent to 1.3mg L−1), to produce
biofortified leafy vegetables using I−, IO−

3 , or iodoacetic acid
(CH2ICOOH

−; Weng et al., 2008c). While Lehr et al. (1958)
obtained higher yields of tomato when applying 2mg L−1 KI,
Hageman et al. (1942) could not observe any effect on the
biomass of tomato when applying 3.2× 10−5 MKI (equivalent to
4mg L−1). Meanwhile, in tomato, Kiferle et al. (2013) used high
concentrations of 1 to 5 × 10−3 M of KI and 0.5 to 2 × 10−3 M
KIO3 in the nutrient solution once a week (eight times, starting
with the fruit set of the first cluster), obtaining remarkable results,
with an accumulation of iodine in the fruit of up to 10mg of
iodine per kg of fresh weight of fruit with little phytotoxicity. In
strawberry plants, iodine increases plant biomass and fruit quality
(Li et al., 2016). On the other hand, a decrease in biomass has
been reported in tomato and potato (Caffagni et al., 2011), as
well as in carrot (Smoleń et al., 2014b) and in Opuntia (García-
Osuna et al., 2014), although in other plants where the vegetative
reserve organs are also harvested, such as onion, iodine seems
to have no effect on the weight of the plant (Dai et al., 2004b).
Moreover, in rice, decreases in weight (Mackowiak and Grossl,
1999) and plant height (Singh et al., 2012) occur when applying
potassium iodide. This negative effect does not seem to be general
for grasses, considering that null or positive effects on biomass
have been reported in wheat and corn (Borst Pauwels, 1961; Mao
et al., 2014). Furthermore, when iodine is applied to the soil
where plants are growing, the results are either mixed, showing
positive, null, and negative effects (Dai et al., 2004b), or, as in
tomato, are less efficient in terms of iodine bioaccumulation in
the fruits compared to the soilless system (Caffagni et al., 2012).

It has also been observed that the effect of the application
of iodine on biomass was directly dependent on the amount
applied. Globally, the average concentration of iodine in the soil is
2.6mg kg−1 (Watts et al., 2010). Contributions of up to 10mg (kg
soil)−1 promote plant growth, whereas values greater than 50mg
(kg soil)−1, which are used to increase the iodine concentration
significantly in plant tissues, produce varying results depending
on the plant species (Cui et al., 2003; Lawson, 2014). In some
species, such as Chinese cabbage, the application of more than
25mg (kg soil)−1 decreases the plant biomass (Hong et al., 2008).
On the other hand, iodine concentrations higher than 100 µM in
the nutrient solution revealed an adverse effects on rice biomass
(Mackowiak and Grossl, 1999; Singh et al., 2012), and in lettuce
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the same negative effect was observed by adding 40 µM of
iodine (Blasco et al., 2008; Table 2). In strawberry plants, iodine
in nutrient solution at concentrations of up to 1.97 × 10−6 M
(0.25mg L−1) of I− and 2.86 × 10−6 M (0.50mg L−1) of IO−

3
increased the plant biomass and iodine concentration in fruits (Li
et al., 2016). Thresholds for beneficial concentrations and toxicity
of iodine are different between species, as a result of the inherent
variability found among species and of the specific interaction
of each plant species with edaphic, climatic, and biotic variables
(Hageman et al., 1942; Mackowiak et al., 2005; Caffagni et al.,
2012).

The results in the literature indicate that neither the
chemical species applied nor the form of iodine application (i.e.,
fertigation, foliar spray, nutrient solution) has a consistent effect
between different crops (Tables 3, 4). It has been reported that the
application of iodine as IO−

3 is favorable to that of I−, especially
for the synthesis of antioxidant compounds (Leyva et al., 2011;
Blasco et al., 2013), although in some species such as strawberry,
clover, and perennial ryegrass, I− is more efficient than IO−

3
(Whitehead, 1973; Li et al., 2016). In lettuce, KIO3 applied to
the soil at up to 7.5 kg ha−1 IO3 is more effective than KI, as it
gave a better result in terms of biofortification (50–100 µg I per
100 g FW) and does not affect biomass negatively. In contrast,
by leaf spraying the best result was obtained when applying KI
at 0.5 kg ha−1 iodide (Lawson et al., 2015). The above indicates
that each species will respond in a different way and under the
context of the culture system. The difference between IO−

3 and I−

becomesmore complicated in the case of cultivation in soil due to
the different stability, residuality, and form of interaction of each
chemical species with biotic and abiotic soil components (Dai
et al., 2004a, 2009). A possible alternative for the biofortification
of crops grown in soil is the use of marine algae applied to
soil (Fuge and Johnson, 2015), or mixtures of marine algae and
diatomite, with the algae being the source of iodine and diatomite
an adsorbent that provides a constant supply of the element. The
mixture achieves a good result in terms of the biofortification
of different crop species (Weng et al., 2013, 2014). A second
alternative would be the application of iodine in plantlets, using
enriched peat, perhaps iodine complexed with biopolymers or
porous materials, or leaf spray. This biofortification technique in
the pre-transplanting stage has worked well in case of cucumber
biofortified with selenium (Businelli et al., 2015).

Considering the form of iodine application (Table 4),
biofortification has been successful with the application of 5%
KIO3 solution, dripped into irrigation canals (Cao et al., 1994;
Ren et al., 2008). Other authors suggest the use of fertigation
as a means of iodine application because their results show
that adding iodine to the soil increases its absorption by plants
(Ujowundu et al., 2010; Kiferle et al., 2013) especially if it is
applied together with humic substances or organic acids (Smoleń
et al., 2015a,c). The application of iodine through fertigation
has shown other positive effects, such as increased biomass
in leafy vegetables (Dai et al., 2004b). Foliar spray is another
effective method of biofortification of plants with iodine; in
lettuce (Smoleń et al., 2014a) and alfalfa (Altınok et al., 2003) this
method was more efficient than the application of iodine in the
nutrient solution (Figure 5).

Antioxidant Content
Iodine applications have shown mixed effects on the antioxidant
potential in several crop species, depending on the sources of
iodine, concentration, and type of application. In a study of
soybean grown in containers with soil and compost, it was found
that the KIO3 at concentrations of 20, 40, and 80 µM increased
the enzyme activities of SOD and APX (Gupta et al., 2015). In
tomato, it was reported that applying IO−

3 at 7.88 µM increased
the content of ascorbic acid and total phenolic compounds
(Smoleń et al., 2015c). Similarly, an increase was reported in the
content of ascorbic acid in Opuntia ficus-indica, grown in soil
under low tunnels by applying 10−4 MKIO3 andKI by fertigation
(García-Osuna et al., 2014). In Ipomoea aquatica, I− induced
a higher amount of ascorbic acid, while IO−

3 and iodoacetic
acid (CH2ICOO

−) had the opposite effect (Weng et al., 2008c).
Whereas, in tomato grown in sand, I− at a concentration of 4mg
L−1 (3.2× 10−5 M) decreased the concentration of ascorbic acid
in the foliage of plants (Hageman et al., 1942).

Blasco and collaborators have extensively studied the impact
of iodine on antioxidant metabolism in lettuce grown in
hydroponics. In their first study, it was found that the application
of KI increases the accumulation of phenols and ascorbic
acid, as well as the antioxidant potential (Blasco et al., 2008).
Subsequently they reported that the application of KI (20, 40,
and 80 µM) and KIO3 (20 µM) increased the concentration
of ascorbic acid and the enzymatic activity of catalase (CAT)
but decreased the GSH concentration and activity of SOD. The
APX activity was increased more effectively by KIO3 than by
KI (Blasco et al., 2011). The positive effect occurred even when
applying low concentration (<40 µM) of KIO3, increasing the
activity of enzymatic antioxidants, such as superoxide dismutase
(SOD) and ascorbate peroxidase (APX), as well as that of non-
enzymatic antioxidants such as glutathione (GSH) and ascorbic
acid (AA) (Leyva et al., 2011). In a more recent study, they
found an increase in the antioxidant response and a greater
accumulation of total phenolic compounds using KIO3 at
concentrations of 20 and 40 µM (Blasco et al., 2013).

As shown in Table 3, most of the cited studies used as a source
of iodine KI or KIO3. There are more reports of negative effects
when applying KI, while there are more reports of positive effects
when applying KIO3, especially in the generation of antioxidant
compounds. The difference in effects between the chemical forms
of iodine is possible related to the function of IO−

3 as growth
promoter by inducing reductase activity in the root (Kato et al.,
2013), while the iodide reduction ability perhaps modifies the
redox balance and cell-associated methyltransferase metabolism,
making more likely metabolic adjustments that slow the growth
and yield. Unfortunately, there is not much research on the effect
of iodine on the metabolic processes of plants. In lettuce, the
application of iodide and iodate (20, 40, and 80 µM) altered N
metabolism and photorespiration. Positive effects were observed
on biomass and N uptake with the use of iodate, whereas iodide
decreased plant biomass and N concentration (Blasco et al.,
2010). In marine plants, iodide does not cause these effects
because it is rapidly oxidized by the V-IPO enzyme (Küpper et al.,
1998), which has not been found active in land plants (Pilbeam
and Drihem, 2007).
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FIGURE 5 | Graphic summary on the results of different methods of application of iodine. On the left side, the methods recommended based on the

information presented in the review (indicated with red directional arrows): it includes organic sources of iodine applied to the soil and foliar spray with inorganic iodine,

and the use of iodine fixed in polymers as a potentially useful method. On the right side, the most widely used application methods with the addition of KI and KIO3 to

soil or nutrient solution. In this case, the concentration used determines the outcome. The blue arrows indicate a low concentration of iodine with adequate results on

biofortification and plant growth. The orange arrows indicate a high concentration of iodine that may lead to biofortification but accompanied by plant toxicity.
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On the other hand, the possibility that many of the effects
that have been observed when applying iodine modify the
behavior and profile of the plant microbiome should not be
ignored. Bacteria and fungi dissipate halogens with a metabolic
system that includes a V-IPO enzyme (Wever, 2012; Fournier
et al., 2014). It is possible that the response of the plant
microbiome and, indirectly, the responses of plants to iodine
application depend on the characteristics of the soil and irrigation
water, including the concentrations of vanadium, sulfur, and
organic matter. The importance of the microbiome as a possible
determinant of plant responses to iodine has been poorly
explored, but its significance has become evident regarding the
adaptability and susceptibility of plants to stress (Porras-Alfaro
and Bayman, 2011; Berg et al., 2014).

Stress Tolerance
Most of the factors that induce stress increase the concentration
of reactive oxygen species (ROS) at the cellular level.
Consequently, the induction of antioxidants is considered
an important facet of the adaptive responses leading to stress
tolerance in plants (Gill and Tuteja, 2010). It has been proposed
that iodine was one of the first (inorganic) antioxidants,
that allowed the organisms to resist oxidative stress once the
atmospheric O2 concentration began to increase after the origin
of oxygenic photosynthesis (Crockford, 2009; Küpper et al.,
2011; Venturi, 2011). This function of iodine was proven in
marine algae, where the element inactivates superoxide (O−

2 ),
hydroxyl (OH.), singlet oxygen (1O2), and hydrogen peroxide
(H2O2) (Küpper et al., 2008). In some studies, it was found
that iodine increased the amount of antioxidants and allowed
greater resistance to certain types of abiotic stress, such as
salinity and heavy metals (Leyva et al., 2011; Gupta et al., 2015).
The treatment of soybean and sunflower seeds with a dry
dressing of iodine and calcium carbonate reduced physiological
deterioration under high temperature and humidity. Treated
seeds exhibited lower levels of membrane damage, reflected
in better germination and seedling growth [Dey(née Pathak)
and Mukherjee, 1984]. The short-term pre-treatment of oilseed
rape seeds with iodine considerably improved the survival of
individuals in deterioration tests (Powell et al., 2005). Seed
deterioration is primarily associated with oxidative stress (Sun
and Leopold, 1995); therefore the above studies demonstrate
the induction of tolerance by iodine, functioning perhaps as
an antioxidant. Analogous results were obtained by pretreating
peanut seeds with zinc, leading to the improvement in the
response to the pathogen Aspergillus niger (Jajda and Thakkar,
2012).

More research is needed on the potential of iodine to induce
tolerance to stress. The adoption of the use of iodine by the
commercial agricultural sector will be fastest if the application
of the element is presented to producers and companies as an
alternative to mitigate damage from biotic and abiotic stresses
and to promote plant growth. The advantage of this approach is
that it is more attractive from an economic standpoint, reaching
in parallel the goal of crop biofortification. To our knowledge,
there are no published studies on the impact of iodine on
plant pathogens, although it was reported that iodine is effective

(0.7mg L−1) in killing fungi in recirculating water in soilless
cultures (Runia, 1995). The problem with the direct use of iodine
as a microbicide is that it rapidly induces resistance and forces
the use of higher concentrations than are suitable for plants and
beneficial microorganisms (Mackowiak et al., 2005). Instead we
considered the possibility that iodine is an inductor of tolerance
to certain pathogens by activating or by modifying the plant’s
defense systems through redox signals or through chemical
changes in the cuticle (Shaw et al., 2007), which is essential for the
induction of systemic acquired resistance (SAR; Xia et al., 2009).
The same modifications on cuticular waxes induced by iodine
may change the pattern of interactions of plants with pathogens,
such as germination and the formation of appressoria (Gniwotta
et al., 2005; Silva-Moreno et al., 2016). If it is shown that iodine
has this function, the element could be applied as a tool to control
crop pathogens.

Interactions with Other Elements
The conversion of iodine in its different chemical species, the
mobilization andmetabolism, depends on the factors that modify
Eh and pH. Iodine per se has a significant impact on the redox
state of the system that absorbs the element (Venturi, 2011);
therefore, it interacts with other chemical components of the
system, such as organic compounds and metal ions (Fe, Cu, Mn,
V), modifying the oxidation state and bioavailability (Hageman
et al., 1942). These components in turn give rise to changes in the
chemical form, bioavailability and rate of volatilization of iodine
in the biomass, water, and soil (Whitehead, 1984), as well as
possible changes in the bioavailability of other elements (Terzano
et al., 2015).

An iodine biofortification program must occur ideally in
absence of restrictions on other mineral elements (White and
Broadley, 2009). The interactions between mineral elements can
be either synergistic or antagonistic. Synergisms refer to the
increased absorption, transport, uptake or metabolism of an
element in the presence of iodine. Antagonisms occur when any
of the listed activities is diminished in the presence of iodine.
In lettuce, it was found that the soil application of KI (0.5–
2.0 kg ha−1) and leaf spraying with KIO3 (0.02–2 kg ha

−1) do not
substantially change the mineral composition of lettuce. From
a statistical point of view, there occurred significant changes in
plants in both macronutrients N, P, K, Mg, Ca, S, and Na, and
microelements B, Cu, Fe, Mn, Zn, and Mo, including Al, Cd, and
Pb, but the changes were not significant from a functional point
of view (Smoleń et al., 2011). It has been verified in hydroponics
that the combined application of KIO3 and SeO−2

4 in lettuce
plants does not affect the biomass or mineral composition,
showing a synergistic effect resulting in the increased absorption
of both elements in the leaves (Smoleń et al., 2014a). The above
does not seem to cause any significant antagonism between
iodine and other elements, at least for lettuce. However, in a more
recent study of the same crop (Smoleń et al., 2015b), a negative
correlation was found between the contents of iodine and of K,
Mg, Ca, S, Na, B, Cu, Fe, Mn, Zn, Cd, and Pb. Moreover, an
increase in P, K, Mg, and Fe was reported when applying KIO3,
along with an increase in Cu and Mn when using KI in Opuntia
ficus-indica (García-Osuna et al., 2014). Unfortunately for other
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species there is little information about the impact of iodine on
other mineral elements (Smoleń et al., 2014a).

In biofortification experiments with tomato, where iodine was
applied in a range of 10−6–10−5 M, a positive correlation was
found between iodine concentration and Cu and Mn in leaves
(Hageman et al., 1942). In lettuce, applying KI to the soil and
KIO3 by leaf spray produced the same effect on Mn but not on
Cu (Smoleń et al., 2011).

Bacteria living in iodine-rich groundwater have proteins called
IoxA, which are capable of oxidizing I− to I2. These proteins
have been characterized as multicopper oxidases, i.e., oxidases
with several Cu cofactors (Suzuki et al., 2012; Shiroyama et al.,
2015). Another possible explanation regarding the relationship
between copper and iodine has to do with the ability of copper
oxidases to oxidize I− to I2 or HOI (Xu, 1996). It is possible
that a greater amount of iodine present in plant tissues induces
increased activity in the systems that dissipate the element, such
as copper oxidases and possibly other oxidases with Fe and Mn
(Klebanoff, 1982; Schlorke et al., 2016). This increased activity
could induce changes in the concentration of Cu, Fe, and Mn in
tissues that actively dissipate iodine.

Hageman et al. (1942) proposed that changes in the mineral
composition of plants that occur when applying iodine relate
to a redox phenomenon, explaining that the oxidation of I−

to I2 provides a reducing potential of −0.535 V. Iodate may
cause a similar effect by the induction of reductase activity in
the root (Kato et al., 2013). This redox effect of iodine will have
a more or less impact on the bioavailability of other elements
depending on the complexity and number of components in
the interaction. There are fewer of these components in soilless
production systems but much more in a soil system with
interacting biological, organic and inorganic components in both
the exchange matrix and soil solution (Jones, 1998). It is possible
that these differences in the complexity of interactions between
the components of each production system (soil and soilless)
could help to explain the diversity of results obtained with iodine
application in crops. The study of ionome in plants might be used
to deal with this complexity, as a tool for explain and predict
the nutritional profile, considering both essential as non-essential

elements. This approach has been successful in the case of iron
(Pii et al., 2015; Gattullo et al., 2016), but so far has not been used
with iodine.

CONCLUSIONS

The dynamic behavior of iodine is modified by multiple
environmental factors that change its flow rate and mobilization
among different compartments of the ecosystems. It is necessary
to consider more closely themicrobial contribution to these flows
and to the functions of iodine in ecological systems, in addition
to their mere presence or potential role in crop plants.

The variability of the effects of iodine, when applied to crops,
can be partially explained when considering the possible impact
onNmetabolism, photorespiration, and one-carbonmetabolism.
Additionally, it is necessary to consider interactions with other

elements, such as Fe, Mn, Cu, and V, either directly in the plant
metabolism or indirectly through the microbiome of the plant.

In general, the effect of iodine is positive on the growth of
plants. Good results are obtained regarding biofortification when
applied to the soil as KIO3 in concentrations of 7.5 kg ha

−1, 10mg
(kg soil)−1 in pots, or 10−6–10−5 M in the nutrient solution.
Leaf spray with KI at 0.5 kg ha−1 gave good results. With higher
concentrations, the response is variable: negative, neutral, or
positive, depending on the plant species.

Positive results have been obtained when applying 10−3 M
iodine in the nutrient solution but only when doing so on
a weekly basis. The use of seaweed applied to the soil also
increased the availability of iodine. More research is needed
on the use of biopolymers to form complex with iodine to
enhance bioavailability and decrease volatilization in soil and
pots and on the potential of iodine to induce a higher stress
tolerance.
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Strzetelski, P., Smoleń, S., Rozek, S., and Sady, W. (2010). The effect of diverse

iodine fertilization on nitrate accumulation and content of selected compounds

in radish plants (Raphanus sativus L.). Acta Sci. Pol. Hortorum Cultus 9,

65–73. Available online at: https://www.infona.pl/resource/bwmeta1.element.

dl-catalog-15502fac-cba9-4081-b367-847faf1bc05f

Sun, W. Q., and Leopold, A. C. (1995). The Maillard reaction and oxidative stress

during aging of soybean seeds. Physiol. Plant. 94, 94–104. doi: 10.1111/j.1399-

3054.1995.tb00789.x

Suzuki, M., Eda, Y., Ohsawa, S., Kanesaki, Y., Yoshikawa, H., Tanaka, K.,

et al. (2012). Iodide oxidation by a novel multicopper oxidase from the

alphaproteobacterium strain Q-1.Appl. Environ. Microbiol. 78, 3941–3949. doi:

10.1128/AEM.00084-12

Takekawa, Y., and Nakamura, T. (2012). Rice OsHOL1 and OsHOL2 proteins

have S-adenosyl-L-methionine-dependent methyltransferase activities toward

iodide ions. Plant Biotechnol. 29, 103–108. doi: 10.5511/plantbiotechnology.

12.0207a

Terzano, R., Cesco, S., and Mimmo, T. (2015). Dynamics, thermodynamics and

kinetics of exudates: crucial issues in understanding rhizosphere processes.

Plant Soil 386, 399–406. doi: 10.1007/s11104-014-2308-1

Tschiersch, J., Shinonaga, T., and Heuberger, H. (2009). Dry deposition of gaseous

radioiodine and particulate radiocaesium onto leafy vegetables. Sci. Total

Environ. 407, 5685–5693. doi: 10.1016/j.scitotenv.2009.06.025

Tsukada, H., Takeda, A., Tagami, K., and Uchida, S. (2008). Uptake and

distribution of iodine in rice plants. J. Environ. Qual. 37, 2243–2247. doi:

10.2134/jeq2008.0010

Ujowundu, C., Ukoha, A., Agha, C., Nwachukwu, N., Igwe, K., and Kalu, F.

(2010). Effects of potassium iodate application on the biomass and iodine

concentration of selected indigenous nigerian vegetables. Afr. J. Biotechnol. 9,

7141–7147. doi: 10.4314/ajb.v9i42

Umaly, R. C., and Poel, L. W. (1971). Effects of lodine in various formulations on

the growth of barley and pea plants in nutrient solution culture. Ann. Bot. 35,

127–131.

Venturi, S. (2011). Evolutionary significance of iodine. Curr. Chem. Biol. 5,

155–162. doi: 10.2174/2212796811105030155

Vinogradov, A. P., and Lapp, M. A. (1971). Use of iodine haloes to search for

concealed mineralisation. Vestn. -Lemngradskii Univ. Seriia Geol. Geogr. 24,

70–76.

Vought, R. L., Brown, F. A., and London, W. T. (1970). Iodine in

the environment. Arch. Environ. Heal. An Int. J. 20, 516–522. doi:

10.1080/00039896.1970.10665632

Voogt, W., Holwerda, H. T., and Khodabaks, R. (2010). Biofortification of lettuce

(Lactuca sativa L.) with iodine: the effect of iodine form and concentration

in the nutrient solution on growth, development and iodine uptake of lettuce

grown in water culture. J. Sci. Food Agric. 90, 906–913. doi: 10.1002/jsfa.3902

Voogt, W., and Jackson, W. A. (2010). Perchlorate, nitrate, and iodine uptake and

distribution in lettuce (Lactuca sativa L.) and potential impact on background

levels in humans. J. Agric. Food Chem. 58, 12192–12198. doi: 10.1021/

jf101227d

Watts, M. J., O’Reilly, J., Maricelli, A., Coleman, A., Ander, E. L., and Ward,

N. I. (2010). A snapshot of environmental iodine and selenium in La Pampa

and San Juan provinces of Argentina. J. Geochem. Explor. 107, 87–93. doi:

10.1016/j.gexplo.2009.11.002

Wegner, L. H. (2014). Root pressure and beyond: energetically uphill water

transport into xylem vessels? J. Exp. Bot. 65, 381–393. doi: 10.1093/jxb/ert391

Weng, H., Hong, C., Xia, T., Bao, L., Liu, H., and Li, D. (2013). Iodine

biofortification of vegetable plants—An innovative method for iodine

Frontiers in Plant Science | www.frontiersin.org 19 August 2016 | Volume 7 | Article 1146

https://search.informit.com.au/documentSummary;dn=939538551491567;res=IELENG
https://search.informit.com.au/documentSummary;dn=939538551491567;res=IELENG
http://www.acta.media.pl/pl/full/7/2015/000070201500014000060009700114.pdf
http://www.acta.media.pl/pl/full/7/2015/000070201500014000060009700114.pdf
https://www.infona.pl/resource/bwmeta1.element.dl-catalog-15502fac-cba9-4081-b367-847faf1bc05f
https://www.infona.pl/resource/bwmeta1.element.dl-catalog-15502fac-cba9-4081-b367-847faf1bc05f
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Medrano-Macías et al. Iodine and Crop Biofortification

supplementation. Chin. Sci. Bull. 58, 2066–2072. doi: 10.1007/s11434-013-

5709-2

Weng, H.-X., Hong, C.-L., Yan, A.-L., Pan, L.-H., Qin, Y.-C., Bao, L.-T., et al.

(2008a). Mechanism of iodine uptake by cabbage: effects of iodine species and

where it is stored. Biol. Trace Elem. Res. 125, 59–71. doi: 10.1007/s12011-008-

8155-2

Weng, H.-X., Liu, H.-P., Li, D.-W., Ye, M., Pan, L., and Xia, T.-H. (2014). An

innovative approach for iodine supplementation using iodine-rich phytogenic

food. Environ. Geochem. Health 36, 815–828. doi: 10.1007/s10653-014-9597-4

Weng, H.-X., Weng, J.-K., Yan, A.-L., Hong, C.-L., Yong, W.-B., and Qin, Y.-C.

(2008b). Increment of iodine content in vegetable plants by applying iodized

fertilizer and the residual characteristics of iodine in soil. Biol. Trace Elem. Res.

123, 218–228. doi: 10.1007/s12011-008-8094-y

Weng, H.-X., Weng, J.-K., Yong, W.-B., Sun, X.-W., and Zhong, H. (2003).

Capacity and degree of iodine absorbed and enriched by vegetable from soil.

J. Environ. Sci. (China) 15, 107–111.

Weng, H.-X., Yan, A.-L., Hong, C.-L., Xie, L.-L., Qin, Y.-C., and Cheng, C. Q.

(2008c). Uptake of different species of iodine by water spinach and its effect

to growth. Biol. Trace Elem. Res. 124, 184–194. doi: 10.1007/s12011-008-8137-4

Wever, R. (2012). “Structure and function of vanadium haloperoxidases,” in

Vanadium: Biochemical and Molecular Biological Approaches, ed H. Michibata

(Dordrecht: Springer), 97–125.

White, P. J., and Broadley, M. R. (2009). Biofortification of crops with seven

mineral elements often lacking in human diets–iron, zinc, copper, calcium,

magnesium, selenium and iodine. New Phytol. 182, 49–84. doi: 10.1111/j.1469-

8137.2008.02738.x

Whitehead, D. C. (1973). Uptake and distribution of iodine in grass and

clover plants grown in solution culture. J. Sci. Food Agric. 24, 43–50. doi:

10.1002/jsfa.2740240108

Whitehead, D. C. (1974). The influence of organic matter, chalk, and sesquioxides

on the solubility of iodide, elemental iodine, and iodate incubated with soil. J.

Soil Sci. 25, 461–470. doi: 10.1111/j.1365-2389.1974.tb01141.x

Whitehead, D. C. (1978). Iodine in soil profiles in relation to iron and

aluminium oxides and organic matter. J. Soil Sci. 29, 88–94. doi: 10.1111/j.1365-

2389.1978.tb02035.x

Whitehead, D. C. (1979). Iodine in the U.K. environment with particular reference

to agriculture. J. Appl. Ecol. 16, 269–279. doi: 10.2307/2402746

Whitehead, D. C. (1984). The distribution and transformations of iodine in the

environment. Environ. Int. 10, 321–339. doi: 10.1016/0160-4120(84)90139-9

World Health Organization (2007). Assessment of the Iodine Deficiency Disorders

and Monitoring their Elimination. A Guide for Programme Managers. Geneva.

Xia, Y., Gao, Q.-M., Yu, K., Lapchyk, L., Navarre, D., Hildebrand, D., et al.

(2009). An intact cuticle in distal tissues is essential for the induction of

systemic acquired resistance in plants. Cell Host Microbe 5, 151–165. doi:

10.1016/j.chom.2009.01.001

Xu, F. (1996). Catalysis of novel enzymatic iodide oxidation by fungal laccase.Appl.

Biochem. Biotechnol. 59, 221–230. doi: 10.1007/BF02783566

Yamaguchi, N., Nakano, M., Takamatsu, R., and Tanida, H. (2010). Inorganic

iodine incorporation into soil organic matter: evidence from iodine K-edge

X-ray absorption near-edge structure. J. Environ. Radioact. 101, 451–457. doi:

10.1016/j.jenvrad.2008.06.003

Yoshida, S., Muramatsu, Y., and Uchida, S. (1992). Studies on the sorption of I-

(iodide) and IO3- (iodate) onto Andosols. Water Air Soil Pollut. 63, 321–329.

doi: 10.1007/BF00475499

Yu, Z., Warner, J. A., Dahlgren, R. A., and Casey,W. H. (1996). Reactivity of iodide

in volcanic soils and noncrystalline soil constituents. Geochim. Cosmochim.

Acta 60, 4945–4956. doi: 10.1016/S0016-7037(96)00305-5

Yuita, K. (1994). Overview and dynamics of iodine and bromine in the

environment, 2: iodine and bromine toxicity and environmental hazards. JARQ

28, 100–111.

Zhu, Y.-G., Huang, Y.-Z., Hu, Y., and Liu, Y.-X. (2003). Iodine uptake by spinach

(Spinacia oleracea L.) plants grown in solution culture: effects of iodine species

and solution concentrations. Environ. Int. 29, 33–37. doi: 10.1016/S0160-

4120(02)00129-0

Zia, M. H., Watts, M. J., Gardner, A., and Chenery, S. R. (2015). Iodine status

of soils, grain crops, and irrigation waters in Pakistan. Environ. Earth Sci. 73,

7995–8008. doi: 10.1007/s12665-014-3952-8

Zifarelli, G., and Pusch, M. (2010). CLC transport proteins in plants. FEBS Lett.

584, 2122–2127. doi: 10.1016/j.febslet.2009.12.042

Zimmermann, M. B. (2009). Iodine deficiency in pregnancy and the effects of

maternal iodine supplementation on the offspring: a review. Am. J. Clin. Nutr.

89, 668S–672S. doi: 10.3945/ajcn.2008.26811c

Zimmermann, M. B., Jooste, P. L., and Pandav, C. S. (2008). Iodine-deficiency

disorders. Lancet 372, 1251–1262. doi: 10.1016/S0140-6736(08)61005-3

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Medrano-Macías, Leija-Martínez, González-Morales, Juárez-

Maldonado and Benavides-Mendoza. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) or licensor are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 20 August 2016 | Volume 7 | Article 1146

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

	Use of Iodine to Biofortify and Promote Growth and Stress Tolerance in Crops
	Iodine Dynamics
	Iodine and Human Health
	Iodine Applications in Agricultural Crops
	Absorption and Metabolism of Iodine
	Speciation and Complexation of Iodine in Soil
	Impact on Productivity and Yield
	Antioxidant Content
	Stress Tolerance
	Interactions with Other Elements

	Conclusions
	Author Contributions
	References


