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Abstract: Parkinson’s disease (PD) is an incurable neurodegenerative disorder which affects over
10 million people worldwide. Early detection and correct evaluation of the disease is critical for
appropriate medication and to slow the advance of the symptoms. In this scenario, it is critical to
develop clinical decision support systems contributing to an early, efficient, and reliable diagnosis
of this illness. In this paper we present a feasibility study for a clinical decision support system
for the diagnosis of PD based on the acoustic characteristics of laughter. Our decision support
system is based on laugh analysis with speech recognition methods and automatic classification
techniques. We evaluated different cepstral coefficients to identify laugh characteristics of healthy
and ill subjects combined with machine learning classification models. The decision support system
reached 83% accuracy rate with an AUC value of 0.86 for PD–healthy laughs classification in a
database of 20,000 samples randomly generated from a pool of 120 laughs from healthy and PD
subjects. Laughter could be employed for the efficient and reliable detection of PD; such a detection
system can be achieved using speech recognition and automatic classification techniques; a clinical
decision support system can be built using the above techniques. Significance: PD clinical decision
support systems for the early detection of the disease will help to improve the efficiency of available
and upcoming therapeutic treatments which, in turn, would improve life conditions of the affected
people and would decrease costs and efforts in public and private healthcare systems.

Keywords: machine learning; Parkinson´s disease; PD; biomarker; laugh; clinical decision support systems;
automatic classification techniques; artificial intelligence

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder, the main pathological char-
acteristic of which is degeneration of the cells of the substantia nigra (SN) that produce
dopamine. The drop in the level of dopamine causes the onset of typical motor symptoms
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(Figure 1) [1,2]. PD is characterized by a wide range of clinical features which include
both motor and non-motor symptoms [3]. Regarding motor symptoms, PD patients ex-
press bradykinesia/akinesia, rigidity, postural instability, and rest tremor. Akinesia is the
difficulty of initiating a movement; it causes a decrease of the voluntary acts, and it is
often associated with bradykinesia, a slowdown of the speed of movements. PD is the
most common neurodegenerative disease after Alzheimer’s, with over 10,000,000 cases
worldwide, and high associated social and economic burdens that reached $52 billion in the
USA and €14 billion in the EU. Male patients’ incidence rate is twice as high as females’ [4].

Figure 1. Simplified representation of how Parkinson’s disease affects speech and laughter.
Speech/laughter decision-making cortical areas activate the motor commands–execution circuit
(arrow 1a) as well as the basal ganglia–thalamus circuit (arrow 1b), which modulates the activity
of these commands (arrow 3). Motor commands–execution areas send their output (arrow 4) to
the motor nuclei which control muscles that generate speech/laughter sounds (arrow 5). In green,
excitatory neuronal activity; in red, inhibitory neuronal activity; in grey, activity of dopaminergic
neurons. Intense color indicates high neuronal activity; light color indicates low neuronal activity. In
healthy subjects (left scheme), SNc-produced dopamine excites striatum neurons that inhibit SNr-GP
inhibitory neurons. Low inhibitory input to the thalamus (arrow 2) is the ideal condition for the
correct modulation of the motor commands (arrow 3), as well as the coordination of the motor nuclei
(arrow 4) and of the corresponding muscles (arrow 5). In Parkinson’s disease (right scheme), the
reduced SNc dopamine slows down striatum neurons, increasing SNr-GP inhibitory output (arrow 2).
The inhibited thalamus fails in the modulation of cortical nuclei (arrow 3), losing the coordination of
the motor nuclei (arrow 4) and provoking motor disorders (arrow 5). SNc, substantia nigra compacta;
SNr, substantia nigra reticulata; GP, globus pallidus.

Clinical decision support systems for the evaluation of neural PD damages are based on
biomarkers like motor, functional, and behavioral alterations of the patient [4,5]. However,
PD motor symptoms are not only limited to upper and lower limb movements; they also
affect mouth articulation and laryngeal muscles coordination [6]. Indeed, throughout
the course of the disease, 90% of patients develop “hypokinetic dysarthria”, a disorder
characterized by volume and pitch variation in their voice, inconstant speech rate, imprecise
articulation of the consonants, presence of breath noise, as well as lack of coordination
or even paralysis of speech mechanisms, which in turn affect phonation, articulation,
and prosody [7]. Thanks to the powerful signal processing technology, very fine speech
alterations have been identified in PD patients: articulation abnormalities [8,9], phonation
variations, reduction of fundamental frequency variability, etc. [10,11].

However, speech alterations by themselves cannot be used as PD biomarkers since
several studies reported their ineffectiveness for the detection of the disease [12,13]. Perfor-
mances can improve by using more complex features to parametrize speech signals, also
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combined with machine learning techniques, similar to those used in speaker recognition
problems [11,14,15]. However, none of these clinical decision support systems is oriented
to the accurate detection of the disease.

Laughter carries a significant amount of information [16], has long been considered a
depression biomarker, and has been postulated as a candidate for the detection of other
neurological disorders [17]. Furthermore, laughter is differentially affected by the diverse
neurological disorders [18,19], which could make it useful in the discrimination of common
syndromes (e.g., PD dementia) [20].

Based on the primitivity of laughter, we hypothesize that laughter-based systems could
be more effective than speech-based ones for accurate detection of PD. Since laughter is a
more primitive and less elaborate sound expression than speech, we expect subtle changes,
normally covered by the complexity of the speech signals, to be detected. Indeed, we know
from anatomical and physiological data that, for sound expression, speech and laughter
processes share the same laryngeal, respiratory, abdominal, and maxillofacial muscles and
joints [21], and that laughter is a primitive sound expression, less complex and less subject
to voluntary control than speech [21,22]. Therefore, PD-originated motor dysfunctions will
cause laughter alterations similar to speech ones. On the other hand, laughter has been
proved to be a valid biomarker for decision support systems in diagnosis and evaluation
of diseases involving motor syndromes, like depression [23]. Some speech recognition
techniques have been used in PD patient identification with over 80% success rate [24–26].
Based on these premises, we hypothesize that PD-originated laughter alterations can be
detected by means of speech recognition techniques.

In the present paper, we provide evidence for the feasibility of clinical decision support
systems for the accurate diagnosis of Parkinson’s disease based on the acoustic characteris-
tics of laughter, analyzed with speech recognition methods, and categorized with automatic
classification techniques. Following the scheme of Figure 2, laughs are preprocessed, and
a database of laugh signals is created. Each laugh is framed (divided into small, partially
overlapping windows) and power spectra are obtained by means of a Fourier transform.
Then, each laugh is associated with a set of coefficients, real numbers representing specific
changes in the frequencies of this laugh obtained by passing the signal through a set of
simple filters. Part of the laughs dataset (laughs now represented by their corresponding
coefficients) is used to train an automatic classification system and divide laughs as PD or
non-PD. The performance of the automatic classification system is tested using the rest of
the laughs in the dataset, that is, laughs not employed in the phase of training.

Figure 2. Temporal representation of one of the signals used in the study, followed by the steps of the
analysis pipeline. DFT, digital Fourier transform. “Filter Banks” include Mel, Human Factor, and
Bark filters.

2. Materials and Methods
2.1. Laughter Recordings and Preprocessing

Individual laughs (N = 120), 60 corresponding to healthy subjects and 60 corresponding
to PD-suffering patients (equally divided between sexes), were extracted using Audacity [27]
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from recording sessions in which subjects were watching humoristic videos. Original
audios were sampled at 44.1 KHz, then digitized at 16 bits and downsampled at 16 KHz.
All subjects gave detailed consent to participate in this study, which was conducted in
accordance with the guidelines established by the Ethics Committee of the Miguel Servet
Hospital and based on the principles of the Declaration of Helsinki. The experimental
protocol was approved by the local Ethics Committee (CEICA: Ethic Committee of Clinical
Research of Aragon, Spain). Laughs were obtained from a clinical trial performed by
the Aragon Institute of Health Science (IACS), Zaragoza, Spain. The Ethics Committee
of Aragon revised and approved the clinical protocol of the study. The diagnosis of PD
was based on standard clinical and neuroimaging criteria [28] and information about
disease severity using the Hoehn Yahr scale [29]. Disease duration and treatment were
recorded. Disease duration in the group of patients at the beginning of the study was
13.56 years (SD = 6.22). The median Hoehn Yahr stage at the beginning of the study was
2.68 (SD = 0.69). These are patients with early or moderate disease duration and severity.

2.2. Laughter Characterization Using Speech Recognition Techniques

Each laught was characterized by means of a vector of cepstral coefficients, i.e., math-
ematical identifiers containing information about signal changes in different spectrum
bands [30]. The use of cepstral coefficients is very popular and commonly used in speech
recognition problems [31]. The main advantage of audio characterization by cepstral coeffi-
cients is that we can separate the signal into two components, one corresponding to the
source (vocal cavities, glottis, mandible, etc.) and the second to the speaker, without any
a priori knowledge about the source [32]. Before cepstral coefficient analysis, signals are
passed through non-linear scaled filters to mimic human pitch perception.

2.3. Cepstral Coefficients

Mel frequency cepstral coefficients (MFCCs) are one of the most frequent represen-
tations of a sound in speech recognition techniques. They are based on a linear cosine
transform of a log power spectrum on a nonlinear Mel frequency scale, which resembles
the psychoacoustic behavior of the human ear.

MFCCs are obtained by means of a bank of triangular band-pass filters which convert
the linear power spectrum on a logarithmic scale, the Mel scale [33].

To build our decision support system we have evaluated the performance of the classi-
cal MFCCs as well as two very common variations, Mel human factor cepstral coefficients
(HFCCs) and Bark frequency cepstral coefficients (BFCCs) [33,34]. The three types have
been employed in speech recognition-based PD decision support systems [25,33]. HFCCs
are extracted using a Mel scale filter bank, the bandwidth of which varies according to
the expression of the equivalent rectangular bandwidth (ERB). BFCCs employ a combined
frequency representation of the acoustic signal, linear below 500 Hz and logarithmic above.
Furthermore, unlike MFCCs, BFCCs employ a greater bandwidth for the higher frequencies.

All coefficients were extracted from laugh signals, both from healthy people and from
people with PD, using the generic extraction method and different banks of 26 filters.
Normally the number of filters used varies between 20 and 40, with 24 and 26 being the
most used [34].

2.4. Laughter Processing

The calculation of the different cepstral coefficients was carried out in seven steps,
implemented in Matlab R2019a [35].

Pre-Emphasis. The objective of this step is to compensate for the filtering effects exerted by the
glottis and the vocal tract on the signal by enhancing the value of the higher frequencies. For this, a
high-pass FIR filter (1) is applied to the original signal

H(z) = 1− kz−1, 0 < k < 1 (1)
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where H(z) is the amplitude difference between the output and the input of the filter, expressed in
terms of Z-Transform. At higher k-values the attenuation of the low frequencies is greater. Here we
have used k-values between 0.95 and 0.98 to attenuate DC offset, electrical noise, etc. Pre-emphasis
filter corresponds to a first order high-pass filter. For C1 = k filter modifications, cut-off frequency
(in this case 1840 Hz) is maintained; maximum attenuation is being modified for lower frequencies
while increasing “k”.

Framing–Windowing. To process an acoustic signal that is continuously changing with time, the
original signal is divided into very short segments in which we can assume that its characteristics
are static. Further, we employ window overlapping to avoid large variations between the segments to
be analyzed, this overlap being less than the size of the selected windows. In a preliminary analysis
we have shown that laugh signals can be considered invariant in intervals of duration less than
30 ms. For our study we have used 25 ms-long windows with 10 ms inter-window overlap.
Discrete Fourier Transform (DFT). After framing, the power spectrum of each window is calcu-
lated using Equation (2).

Xk =
N−1

∑
n = 0

xn ∗ e−j( 2π
N )kn (2)

To reduce edge effects during DFT (distortions at the edges of the signal generated by the convolution
of finite duration/length signals) we previously applied a Hanning window which reduces side lobe
level amplitude.

Filter banks. We have used different filter banks, one for each type of cepstral coefficients. In the
case of Mel scale filters, the scale of the power spectrum is transformed into a non-linear scale (Mel
scale). For this, the power spectrum is multiplied with the Mel scale filter bank. This transformation
is given by Equation (3).

f(mel) = 1125 ∗ ln
(

1 +
f(Hz)

700

)
(3)

In the case of human-factor filters, the power spectrum of the signal is transformed to the Mel scale
as above but, in this case, the relationship between bandwidth and the central frequency of each
filter is corrected through the expression of the equivalent rectangular bandwidth (ERB) given by
Equation (4) as a function of the central frequency (fc).

ERB(fc) = 6.23fc
2 + 93.39fc + 28.52(Hz) (4)

In the case of Bark scale filters, the power spectrum of the signal is transformed into the Bark
spectrum by passing the DFT through a series of filters corresponding to the Bark scale. The change
in scale is given by Equation (5).

f(Bark) = 13 ∗ tan−1
(

0.00076∗f(Hz)
1000

)
+ 3.5 ∗ tan−1

((
f(Hz)
7500

)2
)

(5)

Discrete cosine transform (DCT). Cepstral coefficients are calculated by computing the DCT of
the log-spectrum of the signal obtained after passing through the corresponding filter bank given by
Equation (6).

c(n) =
M−1

∑
m =0

log10(s(m)) ∗ cos
(
πn(m− 0.5)

M

)
(6)

with s(m) being the power spectrum of the signal after passing through the filter, “m” the m-st filter
(m = 0 to M), and “n” the n-st coefficient (n = 0 to N). For speech recognition, 12 to 20 coefficients
are used, with 13 being the most used since more coefficients provide redundant information and
adds complexity to the systems [34]. In our study we employed 26 filters (M = 26).

Laugh characterization. With the above procedure we obtain 13 cepstral coefficients for each of
the T frames we divide each laugh into, with T being a high number that depends on the duration
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of the record. To characterize the laugh, we calculate the mean (µi) and the standard deviation of
the mean (SDi) of each of the 13 coefficients for the whole record (i = 1 to 13). However, cepstral
coefficients only represent static characteristics of the signal since the T frames of the signal are
assumed to be static. To include dynamic information, we additionally calculate ∆c and ∆∆c,
the first- and second-order variations of the extracted coefficients for each of the T frames using
Equations (7) and (8) [36].

∆c(n) =
c(n + 1)− c(n− 1)

2
(7)

∆∆c(n) =
∆c(n + 1)− ∆c(n− 1)

2
(8)

Following what we did with the cepstral coefficients we calculated the mean (µi) and the standard de-
viation of the mean (SDi) of each of the 13 coefficients ∆ci and ∆∆ci for the whole record (i = 1 to 13).
This way, each laugh signal is finally identified by a unique 78 component-long vector whose values
are the means and the standard deviations of the 13 cepstral coefficients, the 13 ∆c and the 13 ∆∆c
of this signal or by the 176 if also kurtosis and skewness are added (see Figure 3).

Figure 3. (a) Representation of 6 filters corresponding to each bank, with lower M corresponding to
filters with lower central frequency. At lower frequencies, the Bark and HFCC filters have a lower
bandwidth; this bandwidth increases in relation to the filter’s central frequency, which is higher
for higher frequencies. The bandwidth of the MFCC corresponds to [ f cm−1, f cm+1]. The center
frequencies of the filters correspond to those of Table 1. (b) Relation between bandwidth and central
frequency of the filters in a logarithmic scale. Points correspond to filter M = 1:26.

Laughter classification using automatic classification techniques. For the identification of
PD laughs for our decision support system, we have tested the performance of three supervised
learning-based classification techniques: (1) Random Forest (RF) model based on the generation of T
decision random trees [37]. We execute it 100 times, without pruning. (2) Classification method,
kNN [38]. Input elements are represented as vectors and for each one of them the Euclidean distance
with each of its k closest neighbors is calculated. Here we tested k = 1 to 10. (3) Support Vector
Machine (SVM) [39]. This separates the two classes to be predicted by means of a hyperplane. In
this case, we have used a linear kernel, based on previous studies in which this method has been
used with MFCC coefficients with successful results. We have used ν-SVC [40] as the SVM type,
in such a way that there is a margin of error, upper bound and lower bound, between the examples
that may fall into the opposite plane in training: this value has been set at 0.5. Several kernels have
been tested: linear, polynomial 3rd degree, radial basis, ν-linear, ν-polynomial 3rd degree, ν-radial
basis (Figure 4, left). The 156 component-long characteristic vectors of the laughs were employed
as input vectors for these classification methods using the function implemented in WEKA [41].
Models need to be trained to tune up their parameters and then to be validated for the evaluation of
their performance. For training and validation, we used subject-wise k-fold cross-validation. This
method is based on splitting the dataset in k segments; at every iteration, k-1 segments are used for
training and one for validation (Figure 4, right).
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Overall performance of cepstral coefficients. The performance of the three different types of
cepstral coefficients in the machine learning models was evaluated according to the accuracy rate
(AR), validated through the Mathews correlation coefficient (MCC). Overall performance of the laugh
identification-and-classification procedure, expressed by the AR, which represents the percentage of
correct predictions given by Equation (9):

AR(%) =
Number o f correct predicted examples

Total examples
∗ 100 (9)

The highest score was obtained by the RF when fed with MFCC with AR = 83%. In the second place
we find the SVM fed with HFCC with AR = 83%. The kNN algorithm performs worse (76% AR,
with MFCC) and for this reason it has been excluded from further consideration for implementation
in our decision support system. However, kNN behaves in a very stable way, showing AR values
over 66% (over 70% with MFCC) with k = 1 to 5.

We validated AR results through the Mathews correlation coefficient (MCC), a very good measure
method employed in machine learning techniques [1]. MCC is the Pearson’s (or Yule’s) ϕ coefficient
which measures the accuracy of a binary classification [42]. It is calculated from the confusion matrix,
and it takes values between 0 and 1, with 0 a random prediction and 1 a perfect prediction [43].
MCC results are in agreement with AR results: the highest score was obtained by RF fed with
MFCC, MCC = 0.66 and in the second place we find the SVM fed with HFCC, MCC = 0.64.
Sensitivity of the classification algorithms. A good overall performance, a high AR, is a
necessary but not sufficient condition for the development of a clinically useful decision support
system. One of the fundamental requirements is to minimize the percentage of false negative
predictions (ill persons classified as healthy), thus, reducing the number of PD patients that could
not be detected and, consequently, would not receive early medical care. For this reason, in addition
to AR, we evaluated the sensitivity of the system, which means the capacity of the system to classify
true PD patients as having PD, by means of the receiver operating characteristics curve (ROC,
Figure 5). ROC is a probability curve that relates the true positive rate (TPR), i.e., PD subjects
correctly classified as PD patients, with the false positive rate (FPR), i.e., healthy subjects erroneously
classified as PD ones, at various threshold settings. One of the most important metrics of the ROC
curve is the area under the curve (AUC) that measures the degree of separability between the two
classes (healthy and PD) [44].

Figure 4. (a) SVM performance as a function of kernel selection. (b) kNN performance as a function
of k, k = 1,5. AR with 90% confidence interval in both cases (Blue, MFCC. Yellow, BFCC. Red, HFCC).
(c) Graphic representation of the RF model. Training data set is split into N different data subsets that
feeds into the N generated decision trees (N = 100 in our study). Decision is taken following the final
prediction, obtained by majority voting of the N decision trees, weighting the models according to
their performance.



Int. J. Environ. Res. Public Health 2022, 19, 10884 8 of 15

Table 1. Central frequencies corresponding to each of the 26 filters for the three scales employed in
this study: Mel, Human Factor, and Bark.

Filter Nr Mel (MFCC) Human Factor
(HFCC) Bark (BFCC)

1 62.50 31.25 62.50
2 156.25 125.00 156.25
3 218.75 187.50 218.75
4 312.50 281.25 312.50
5 406.25 375.00 375.00
6 531.25 468.75 468.75
7 656.25 593.75 562.50
8 781.25 718.75 656.25
9 937.50 843.75 750.00
10 1093.75 1000.00 875.00
11 1250.00 1156.25 1000.00
12 1437.50 1343.75 1156.25
13 1656.25 1531.25 1281.25
14 1875.00 1781.25 1468.75
15 2125.00 2000.00 1656.25
16 2406.25 2281.25 1843.75
17 2718.75 2562.50 2093.75
18 3062.50 2875.00 2343.75
19 3437.50 3250.00 2656.25
20 3812.50 3625.00 3000.00
21 4281.25 4031.25 3406.25
22 4750.00 4500.00 3875.00
23 5281.25 5031.25 4406.25
24 5875.00 5537.50 5093.75
25 6531.25 6187.50 5937.50
26 7218.75 6875.00 6906.25

Figure 5. Representation of the receiver operating characteristics (ROC) curve for the three cepstral
coefficients (MFCC, HFCC and BFCC) with the best performances. ROC relates the true positive
rate (TPR) with the false positive rate (FPR) and the area under the curve (AUC) that measures the
degree of separability between the two classes. Blue line represents an SVM with a ν-polynomial
kerne, BFCC filter bank. Red line corresponds to an RF, MFCC filter bank. Yellow line corresponds to
a kNN, k = 5, MFCC filter bank. 10-fold validation.
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3. Results

A good clinical decision support system should not commit errors in the identification of
true PD or, at least, they should minimize the number of such errors (high sensitivity—TPR).
On the other hand, if we must choose between a low rate of false positive and a low rate of
false negative identifications (healthy subjects classified as PD and PD subjects classified as
healthy, respectively), for a clinically useful support system, the second choice is mandatory.
Following these criteria, we chose to build the clinical decision support system by coupling
the cepstral coefficients with an RF classification procedure.

Finally, we evaluated the performance of the clinical decision support system on a
dataset of 20,000 laughs of both sexes, randomly generated from healthy and PD subject
laughs. None of these laughs was employed in the cepstral coefficients selection nor in
the training or testing of the decision support systems. Random laughs of each type were
generated with the same M and STD of the corresponding real laughs. Random laughs
are generated by means of the “mvnrnd” function from Matlab, which generates normal
multivariable random numbers. This function, represented as R = MVNRND(µ,σ,N),
returns the N × D R matrix, where N represents the population and D the extracted
features of randomly chosen vectors from the multivariate normal distribution with mean
vector→

µ
and covariance matrix generated by means of the variance of each feature. →

µ
is a

1 × D vector and σ is a D × D symmetric matrix. For the generation of the laughs,→
µ

and

σ are obtained from the original post-processed laughs, which means from the statistical
values of their coefficients. A numerous second data set of real laughs could be used.

Results are exposed in Tables 2–4.

Table 2. Evaluation of the RF model with MFCC, HFCC and BFCC filters, by individually employing
the first four moments of their distributions (mean-µ, standard deviation-STD, skewness-skew and
kurtosis-kurt), their ∆ and their ∆∆. 10-cross-validation with 20,000 laughs (18,000 training and
2000 test in 10 epochs). AR, accuracy rate; TP, true positive; FP, false positive; TN, true negative; FN,
false negative; Sens, sensitivity; Spec, specificity. Best performance per column is highlighted in bold.

Results by employing µ, STD, skewness and kurtosis of the coefficients

Inputs AR (%) TP FP TN FN Sens Spec AUC
µ(MFCC) 72 0.72 0.28 0.68 0.32 0.69 0.71 0.722
STD(MFCC) 68 0.67 0.33 0.69 0.31 0.68 0.67 0.695
skew(MFCC) 59 0.58 0.42 0.61 0.39 0.6 0.59 0.615
kurt(MFCC) 60 0.62 0.38 0.59 0.41 0.6 0.61 0.625
µ(HFCC) 72 0.72 0.28 0.69 0.32 0.7 0.71 0.725
STD(HFCC) 70 0.7 0.3 0.69 0.31 0.7 0.7 0.721
skew(HFCC) 65 0.65 0.35 0.65 0.35 0.65 0.65 0.67
kurt(HFCC) 70 0.71 0.29 0.68 0.32 0.69 0.7 0.715
µ(BFCC) 73 0.72 0.28 0.7 0.3 0.71 0.71 0.733
STD(BFCC) 70 0.7 0.3 0.69 0.31 0.69 0.69 0.712
skew(BFCC) 57 0.57 0.43 0.58 0.42 0.57 0.57 0.599
kurt(BFCC) 63 0.65 0.35 0.62 0.39 0.63 0.63 0.654

Results by employing µ, STD, skewness and kurtosis of the delta (∆) of the coefficients

Inputs AR (%) TP FP TN FN Sens Spec AUC
µ(∆(MFCC)) 67 0.69 0.31 0.65 0.35 0.66 0.68 0.692
STD(∆(MFCC)) 74 0.7 0.3 0.65 0.35 0.66 0.68 0.694
skew(∆(MFCC)) 64 0.65 0.35 0.64 0.36 0.64 0.65 0.665
kurt(∆(MFCC)) 62 0.64 0.36 0.6 0.4 0.62 0.63 0.645
µ(∆(HFCC)) 69 0.7 0.3 0.68 0.32 0.69 0.69 0.712
STD(∆(HFCC)) 70 0.68 0.32 0.67 0.33 0.67 0.68 0.695
skew(∆(HFCC)) 70 0.7 0.3 0.71 0.29 0.7 0.7 0.72
kurt(∆(HFCC)) 64 0.67 0.33 0.61 0.39 0.63 0.65 0.664
µ(∆(BFCC)) 63 0.65 0.35 0.62 0.38 0.63 0.64 0.657
STD(∆(BFCC)) 71 0.68 0.32 0.69 0.31 0.69 0.69 0.71
skew(∆(BFCC)) 68 0.69 0.31 0.67 0.33 0.68 0.68 0.701
kurt(∆(BFCC)) 63 0.66 0.35 0.6 0.4 0.62 0.64 0.656
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Table 2. Cont.

Results by employing µ, STD, skewness and kurtosis of the delta-delta (∆∆) of the coefficients

Inputs AR (%) TP FP TN FN Sens Spec AUC
µ(∆∆(MFCC)) 69 0.72 0.28 0.65 0.35 0.68 0.7 0.712
STD(∆∆(MFCC)) 71 0.78 0.22 0.75 0.25 0.71 0.72 0.735
skew(∆∆(MFCC)) 61 0.8 0.2 0.77 0.23 0.61 0.61 0.634
kurt(∆∆(MFCC)) 66 0.79 0.21 0.77 0.23 0.66 0.66 0.685
µ(∆∆(HFCC)) 69 0.71 0.29 0.66 0.34 0.68 0.7 0.713
STD(∆∆(HFCC)) 71 0.73 0.27 0.69 0.31 0.7 0.72 0.734
skew(∆∆(HFCC)) 66 0.65 0.35 0.66 0.34 0.66 0.65 0.675
kurt(∆∆(HFCC)) 61 0.63 0.37 0.6 0.4 0.61 0.62 0.635
µ(∆∆(BFCC)) 63 0.65 0.35 0.62 0.38 0.63 0.64 0.655
STD(∆∆(BFCC)) 73 0.74 0.26 0.73 0.27 0.73 0.73 0.754
skew(∆∆(BFCC)) 70 0.7 0.3 0.69 0.31 0.69 0.7 0.715
kurt(∆∆(BFCC)) 60 0.58 0.42 0.62 0.38 0.6 0.6 0.626

Table 3. Evaluation of the RF model with MFCC, HFCC and BFCC filters, by incrementally employing
the first four moments of their distributions (mean-µ, standard deviation-STD, skewness-skew and
kurtosis-kurt), their ∆ and their ∆∆. 10-cross-validation with 20,000 laughs (18,000 training and
2000 test in 10 epochs). AR, accuracy rate; TP, true positive; FP, false positive; TN, true negative; FN,
false negative; Sens, sensitivity; Spec, specificity. Best performance per column is highlighted in bold.

Results by employing µ, STD, skewness and kurtosis of the coefficients

Inputs AR (%) TP FP TN FN Sens Spec AUC
µ(MFCC) 72 0.72 0.28 0.68 0.32 0.69 0.71 0.71
µ+STD(MFCC) 74 0.75 0.25 0.73 0.27 0.73 0.74 0.75
µ+STD+skew(MFCC) 75 0.76 0.24 0.74 0.26 0.74 0.75 0.76
µ+STD+skew+kurt(MFCC) 76 0.77 0.23 0.76 0.24 0.76 0.77 0.78
µ(HFCC) 72 0.72 0.28 0.69 0.31 0.70 0.71 0.72
µ+STD(HFCC) 74 0.74 0.26 0.73 0.27 0.74 0.74 0.76
µ+STD+skew(HFCC) 76 0.77 0.23 0.75 0.25 0.76 0.76 0.78
µ+STD+skew+kurt(HFCC) 77 0.79 0.21 0.76 0.24 0.77 0.78 0.80
µ(BFCC) 73 0.72 0.28 0.70 0.30 0.71 0.71 0.73
µ+STD(BFCC) 74 0.75 0.25 0.73 0.27 0.73 0.74 0.76
µ+STD+skew(BFCC) 75 0.76 0.24 0.74 0.26 0.75 0.75 0.77
µ+STD+skew+kurt(BFCC) 76 0.77 0.23 0.75 0.25 0.76 0.76 0.79

Results by employing µ, STD, skewness and kurtosis of the delta (∆) of the coefficients

Inputs AR (%) TP FP TN FN Sens Spec AUC
µ(∆(MFCC)) 67 0.69 0.31 0.65 0.35 0.66 0.68 0.69
µ+STD(∆(MFCC)) 72 0.73 0.27 0.72 0.28 0.72 0.73 0.75
µ+STD+skew(∆(MFCC)) 73 0.75 0.25 0.72 0.28 0.73 0.74 0.76
µ+STD+skew+kurt(∆(MFCC)) 75 0.76 0.24 0.75 0.25 0.75 0.76 0.78
µ(∆(HFCC)) 69 0.7 0.3 0.68 0.32 0.69 0.69 0.71
µ+STD(∆(HFCC)) 72 0.71 0.29 0.72 0.28 0.72 0.71 0.74
µ+STD+skew(∆(HFCC)) 73 0.73 0.27 0.73 0.27 0.73 0.73 0.75
µ+STD+skew+kurt(∆(HFCC)) 76 0.76 0.24 0.76 0.24 0.76 0.76 0.78
µ(∆(BFCC)) 63 0.65 0.35 0.62 0.38 0.63 0.64 0.66
µ+STD(∆(BFCC)) 67 0.67 0.33 0.68 0.32 0.67 0.67 0.69
µ+STD+skew(∆(BFCC)) 69 0.69 0.31 0.70 0.30 0.69 0.69 0.71
µ+STD+skew+kurt(∆(BFCC)) 71 0.72 0.28 0.72 0.28 0.72 0.72 0.74

Results by employing µ, STD, skewness and kurtosis of the delta-delta (∆∆) of the coefficients

Inputs AR (%) TP FP TN FN Sens Spec AUC
µ(∆∆(MFCC)) 69 0.72 0.28 0.65 0.35 0.68 0.70 0.71
µ+STD(∆∆(MFCC)) 76 0.78 0.22 0.75 0.25 0.76 0.77 0.79
µ+STD+skew(∆∆(MFCC)) 78 0.79 0.21 0.77 0.23 0.78 0.79 0.81
µ+STD+skew+kurt(∆∆(MFCC)) 78 0.80 0.20 0.77 0.23 0.78 0.79 0.81
µ(∆∆(HFCC)) 69 0.71 0.29 0.66 0.34 0.68 0.70 0.71
µ+STD(∆∆(HFCC)) 75 0.76 0.24 0.73 0.27 0.74 0.75 0.77
µ+STD+skew(∆∆(HFCC)) 75 0.77 0.24 0.74 0.26 0.75 0.76 0.78
µ+STD+skew+kurt(∆∆(HFCC)) 76 0.77 0.23 0.75 0.25 0.75 0.77 0.78
µ(∆∆(BFCC)) 63 0.65 0.35 0.62 0.38 0.63 0.64 0.66
µ+STD(∆∆(BFCC)) 72 0.73 0.27 0.72 0.28 0.72 0.72 0.74
µ+STD+skew(∆∆(BFCC)) 73 0.73 0.27 0.73 0.27 0.73 0.73 0.75
µ+STD+skew+kurt(∆∆(BFCC)) 74 0.75 0.26 0.74 0.26 0.74 0.74 0.76
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Table 4. Evaluation of the RF model with MFCC, HFCC and BFCC filters, by incrementally employing
the first four moments of their distributions (mean-µ, standard deviation-STD, skewness-skew
and kurtosis-kurt), together with their ∆ and their ∆∆. 10-cross-validation with 20,000 laughs
(18,000 training and 2000 test in 10 epochs). AR, accuracy rate; TP, true positive; FP, false positive;
TN, true negative; FN, false negative; Sens, sensitivity; Spec, specificity. Best performance per column
is highlighted in bold.

Inputs AR (%) TP FP TN FN Sens Spec AUC

µ(MFCC+∆(MFCC)+∆∆(MFCC)) 74 0.77 0.23 0.71 0.29 0.73 0.76 0.75
µ+STD(MFCC+∆(MFCC)+∆∆(MFCC)) 82 0.83 0.17 0.82 0.18 0.82 0.83 0.84
µ+STD+skew(MFCC+∆(MFCC)+∆∆(MFCC)) 83 0.84 0.16 0.82 0.18 0.82 0.84 0.85
µ+STD+skew+kurt(MFCC+∆(MFCC)+∆∆(MFCC)) 83 0.84 0.16 0.82 0.18 0.83 0.84 0.86
µ(HFCC+∆(HFCC)+∆∆(HFCC)) 75 0.77 0.23 0.73 0.27 0.74 0.76 0.76
µ+STD(HFCC+∆(HFCC)+∆∆(HFCC)) 81 0.82 0.18 0.81 0.19 0.81 0.82 0.83
µ+STD+skew(HFCC+∆(HFCC)+∆∆(HFCC)) 82 0.83 0.17 0.82 0.18 0.82 0.82 0.84
µ+STD+skew+kurt(HFCC+∆(HFCC)+∆∆(HFCC)) 82 0.83 0.17 0.82 0.18 0.82 0.83 0.85
µ(BFCC+∆(BFCC)+∆∆(BFCC)) 72 0.74 0.26 0.70 0.30 0.74 0.71 0.76
µ+STD(BFCC+∆(BFCC)+∆∆(BFCC)) 80 0.80 0.20 0.80 0.20 0.80 0.80 0.82
µ+STD+skew(BFCC+∆(BFCC)+∆∆(BFCC)) 81 0.81 0.19 0.81 0.19 0.81 0.81 0.84
µ+STD+skew+kurt(BFCC+∆(BFCC)+∆∆(BFCC)) 82 0.82 0.18 0.81 0.19 0.82 0.81 0.85

Both, RF- and SVM-based clinical decision support systems reached 81–83% AR
with the three filters (Tables 5 and 6) with 0.85–0.86 AUC values, suggesting that cepstral
coefficients are generally good for classification, regardless of the employed algorithm
(RF or SVM). This is especially important because one can gain much interpretability using,
for example, a linear SVM (by examining the weights of the classifier), without incurring a
greater rate of false negatives.

Table 5. Results of the variation of the kernel in the SVM model with MFCC, HFCC and BFCC
filters, by employing the first four moments of their distributions (mean-µ, standard deviation-STD,
skewness-skew and kurtosis-kurt). 10-cross-validation with 20,000 laughs (18,000 training and 2000
test in 10 epochs). AR, accuracy rate; TP, true positive; FP, false positive; TN, true negative; FN, false
negative; Sens, sensitivity; Spec, specificity. Best performance per column is highlighted in bold.

Results of Mel filters: µ + STD + skew + kurt (MFCC + ∆(MFCC) + ∆∆(MFCC))

Kernel variation AR (%) TP FP TN FN Sens Spec AUC
Linear 74 0.74 0.26 0.73 0.27 0.73 0.74 0.76
Polynomial 73 0.75 0.25 0.72 0.28 0.73 0.74 0.76
Radial Basis 65 0.86 0.14 0.45 0.55 0.61 0.76 0.72
ν-Linear 81 0.81 0.19 0.81 0.19 0.81 0.81 0.85
ν-Polynomial 82 0.82 0.18 0.83 0.17 0.82 0.82 0.86
ν-Radial Basis 73 0.85 0.15 0.60 0.40 0.68 0.80 0.79

Results of Human Factor filters: µ + STD + skew + kurt (HFCC + ∆(HFCC) + ∆∆(HFCC))

Kernel variation AR (%) TP FP TN FN Sens Spec AUC
Linear 74 0.74 0.26 0.73 0.27 0.74 0.74 0.78
Polynomial 74 0.75 0.25 0.73 0.27 0.73 0.74 0.78
Radial Basis 66 0.86 0.14 0.45 0.55 0.61 0.76 0.73
ν-Linear 81 0.81 0.19 0.81 0.19 0.81 0.81 0.85
ν-Polynomial 83 0.83 0.17 0.83 0.17 0.83 0.83 0.86
ν-Radial Basis 73 0.85 0.15 0.61 0.39 0.69 0.81 0.79

Results of Bark filters: µ + STD + skew + kurt (BFCC + ∆(BFCC) + ∆∆(BFCC))

Kernel variation AR (%) TP FP TN FN Sens Spec AUC
Linear 71 0.71 0.29 0.72 0.28 0.72 0.71 0.76
Polynomial 72 0.72 0.28 0.72 0.28 0.72 0.72 0.76
Radial Basis 63 0.85 0.15 0.41 0.59 0.59 0.73 0.69
ν-Linear 80 0.80 0.20 0.80 0.20 0.80 0.80 0.85
ν-Polynomial 82 0.82 0.18 0.82 0.18 0.82 0.82 0.86
ν-Radial Basis 66 0.85 0.15 0.47 0.53 0.62 0.76 0.72
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Table 6. Summary of the results of the RF model with MFCC, HFCC and BFCC filters, by employing
the first four moments of their distributions (mean-µ, standard deviation-STD, skewness-skew and
kurtosis-kurt), ∆ and ∆∆. 10-cross-validation with 20,000 laughs (18,000 training and 2000 test in
10 epochs). AR, accuracy rate; TP, true positive; FP, false positive; TN, true negative; FN, false
negative; Sens, sensitivity; Spec, specificity. Note that the three rows correspond to the 4th, 8th and
12th row of Table 4.

AR (%) TP FP TN FN Sens Spec AUC
MFCC 83 0.84 0.16 0.82 0.18 0.83 0.84 0.86
HFCC 82 0.83 0.17 0.82 0.18 0.82 0.83 0.85
BFCC 81 0.82 0.18 0.81 0.19 0.82 0.81 0.85

To determine to which extent our classification is affected by laugh’s pitch characteris-
tics (power spectra), we employed it instead and in addition to the cepstral coefficients as
an input to our classification system. In both cases, pitch information is not a determinant
for the correct classification of the laughs, as AR is very low when pitch statistics (mean,
standard deviation, etc.) were employed as input attributes (AR < 50%).

4. Discussion

In the present paper we provided evidence for the feasibility of a clinical decision
support system for the detection of Parkinson’s disease which employs laugh as a biomarker
of the illness. Such a decision support system would be composed by two sub-systems:
one for laugh identification and one for laugh classification.

For the first, we tested the suitability of 13 cepstral coefficients, together with their
delta and delta-delta components, employing three different filter banks (Mel, Bark and
Human), each of which is composed by 26 filters. For the second, we tested three automatic
classification techniques (kNN, RF and SVM). Each of them was tested three times; one for
each of the three coefficients.

We proved that classical speech-recognition techniques like cepstral coefficients can be
used to identify and label laugh signals and that such coefficients can be used by automatic
classification techniques to decide if laughs belong to a PD or non-PD subject. All of
them reached very good AR scores, the highest (83) obtained through the clinical decision
support system based on the RF classification model using the Mel cepstral coefficients.
This model has been used for the final test due to the lower computational cost compared
to the SVM. As mentioned in the Results section, SVM performed similarly. High AR scores
have been obtained using both Bark and Human Frequency cepstral coefficients in the
final test, proving the consistency of our approach. Mathews correlation coefficient (MCC),
an independent measure of the accuracy of the classification, corroborates the best AR
performance of RF and SVM models, allowing them 0.66 and 0.64 points over 1.0 scores,
respectively. A limitation of the study is that testing has not been performed on a data set
of real laughs.

The similar and high AR values obtained by the RF, when combined with Human
Factor or Bark frequency cepstral coefficients, prove the consistency of the approach, and
suggest the models are comparable. Metrics displayed in Tables 2–5 indicate that, on one
hand, individual moments do not carry enough information for a correct classification
of the subjects and, on the other, we constantly improve classification performance if we
consider these moments in an incremental manner.

In SVM data obtained with the three kernels, we observe that linear and polynomial
kernels achieve similar ARs, higher than AR of the radial one, which suggests that clusters
are not formed by partially intermingled clouds and that they can easily be separated by
simple planes.

Pitch contribution in the correct classification of the laughs was also tested. Laugh
presents a high fundamental frequency variation [35]. This variability is present in all
groups and sexes, making fundamental frequency non-suitable as a feature for laugh-based
PD classification (AR < 50% when pitch statistics were employed as the sole input attributes).
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However, pitch does not provide relevant information for classification performance,
since classification systems do not improve their AR. This is possibly due to a very low
contribution of vibrational components in the characterization of laugher signals, contrary
to what occurs in speech ones. Power spectra represent the vibrational components of the
signal, which, in our case, are generated by the vocal apparatus during sound production.
In neural circuits terms, these results could indicate that laugh analysis primarily detects
the degeneration of specific motor nuclei and the reduction of the precise control they
exercise to the muscles through the laryngeal reflexogenic control systems [45,46] instead
of the degeneration of higher brain areas, like basal ganglia, thalamus or cortex and the
global control each of them exercises to the next one (Figure 1), which would also include
significant deterioration of the vibrational components. Other not mutually exclusive
interpretations are possible, as for example the PD-independent influence of sex on pitch.

Our results are consistent with automatic Parkinson’s disease detection systems using
speech analysis with MFCC that have obtained AR values higher than 80% [25]. The
interest of laugh-based clinical decision support systems we propose could be useful for
early detection of the disease, where motor symptoms are not yet detectable by neurologists
and early detection of neurodegenerative diseases could facilitate treatments to slow down
the evolution of the illness.

From a computational point of view, we could highlight that, a priori, the decision
support system does not display significant AR differences depending on the selection of
the filter bank. This provides relevant information for future studies in laughter-based
PD detection since the development of MFCC algorithms is very extended and numerous
libraries with their implementations can be easily found. Open-source libraries are available,
like Librosa for Python or OpenSmile, where the Mel filter bank is applied by default. On
the other hand, Matlab’s Audio Toolbox provides an MFCC extraction function, with an
approximate cost of less than 700€ for an annual license.

However, the study of the coefficients themselves should be expanded, by evaluating
the number of employed filters as well as the number of coefficients, to achieve a compro-
mise between optimal results and computational cost penalty. Furthermore, the adjustment
and evaluation of SVM hyper-parameters would be of interest for future studies to further
understand input features. Possibly, neural networks and deep learning techniques, would
help to build the decision support system for clinical use.

In future studies the variability of the humoristic videos and the psychological condi-
tions of the subjects should also be considered, as well as the possible high variability in
laughter production, and even that some of the subjects could not feel comfortable during
the recording. The possible combination of speech and laugh analysis to improve PD
detection performance could facilitate the implementation of a system for the telematic
detection of PD. Also, the possibility of evaluating the process of the disease would be of
interest, trying to estimate the UPDRS (Unified Parkinson’s Disease Rating Scale) scale of
PD patients through speech and laughter, with a more continuous evaluation of the disease
and a consequent reduction of health costs. Smartphone apps could be useful for allowing
people to perform the test in privacy, thus improving the above-mentioned aspects.

5. Conclusions

Our paper provides evidence that (1) laughter can be used as a biomarker for PD
detection, (2) laughter-based support systems are feasible, and (3) laughter-based support
systems perform at least as well as speech-based ones, thus giving PD specialists the possi-
bility to perform a prospective study of laughter recordings from people who eventually
develop PD. As demonstrated in our experiments, the feature extraction methods (cepstral
coefficients) and machine learning algorithms derived from speech processing field can
provide promising results for PD detection from laughs.

The main contributions of our study are to have proven the feasibility of using laughter
as a possible biomarker to detect Parkinson’s disease and having used speech analysis
techniques on much more primitive signals such as laughter.
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