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Abstract 

During preliminary delineations of an Ordinary High Water Mark 

(OHWM) boundary, LiDAR data or products may be used to view the 

OHWM signature across a project area and to estimate the height and 

location of two primary OHWM indicators: changes in vegetation and 

breaks in slope. At this time, most LiDAR data or products cannot detect 

changes in sediment texture. The point spacing, horizontal resolution, and 

vertical accuracy of the data or products determine if landscape features, 

such as the OHWM break in slope, can be measured with sufficient accu-

racy. All information gathered from LiDAR data or products should be 

verified in the field. During the preliminary, data-gathering stage of wet-

land delineations, LiDAR data and products may be used to view vegeta-

tive, topographic, and hydrologic patterns across a project area and to 

focus the investigation on transitional areas. They cannot provide evidence 

of hydrophytic vegetation or hydric soils. Although LiDAR intensity data 

may provide information on inundation extent, they contain no infor-

mation regarding inundation frequency or duration and should not be 

used as a primary hydrology indicator. Intensity data collected during the 

growing season could be used as a secondary indicator of wetland hydrolo-

gy. LiDAR data or products are not an adequate substitute for a field inves-

tigation. 
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1 Introduction 

Waters of the United States (WoUS), including wetlands, provide a num-

ber of benefits, including, but not limited to, channeling and storing storm 

waters, recharging aquifers, improving water quality, irrigating crops, 

providing habitat for wildlife, and providing areas for recreation (Mitsch 

and Gosselink 2000; Lichvar and Wakeley 2004). Under Section 404 of 

the Clean Water Act (33 U.S.C. 1344) (US Congress 1977), the US Army 

Corps of Engineers (USACE) is responsible for regulating the dredging and 

filling of WoUS and wetlands. To avoid or minimize impacts to channels, 

the lateral extent of federal jurisdiction—the Ordinary High Water Mark 

(OHWM) boundary—is delineated in the Arid West, for example, using 

procedures described in A Field Guide to the Identification of the Ordi-

nary  High W ater Mark (OHW M) in the Arid W est Region of the W estern 

United States (Lichvar and McColley 2008). Likewise, the boundaries of 

three-factor wetlands are delineated using procedures in the Corps of 

Engineers W etlands Delineation Manual (Environmental Laboratory 

1987) and the appropriate regional supplement. Our review, requested by 

the Wetland Regulatory Assistance Program, investigates the feasibility of 

using LiDAR data for delineation purposes in WoUS and wetlands. 

Section Two begins with a general description of Light Detection and 

Ranging (LiDAR) systems and recognizes the rapidly advancing state of 

this technology. To develop an understanding of what LiDAR data repre-

sent and which data may be useful for delineation purposes, it discusses 

data collection and processing methods and common geospatial products. 

Additionally, it reviews current federal guidelines for LiDAR data collec-

tion and processing, with the acknowledgement that this field is still evolv-

ing and that it is currently guided by minimum specification documents 

but few standards. To determine the feasibility of using LiDAR in regulato-

ry applications, the following sections review ecological research that uses 

LiDAR data and products. Section 3 examines the use of LiDAR data or 

products in preliminary delineations of the OHWM boundary with regard 

to mapping vegetation patterns, topographic patterns, and changes in 

sediment texture. Section 4 describes possible uses for LiDAR data or 

products in preliminary wetland delineations, particularly for mapping 

topographic, hydrologic, and vegetation patterns. Throughout the report, 



ERDC/CRREL TR-14-3 2 

 

vascular plant scientific names used in vegetation discussions follow 

Kartesz (2009).  

Since it is not typically cost effective to collect original LiDAR data for 

regulatory purposes, Appendices A and B describe some sources of LiDAR 

data and products and some freely available LiDAR software and geo-

graphic information systems (GIS) packages for viewing and analysis. The 

figures in this manuscript, created with some of this software, illustrate 

the different types of LiDAR data and products discussed in this review.  

Because LiDAR technology is advancing rapidly, there are temporal limita-

tions to this project. Therefore, we provide specific details on the spatial 

resolution of the data and the classification accuracy of the LiDAR-derived 

products used in each study. These details may help investigators gauge 

the utility of a LiDAR dataset or product, given its spatial resolution.  
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2 Overview of LiDAR Systems, 

Data, and Products 

The main objective of this review is to discuss the use of LiDAR as it re-

lates to the delineation of WoUS and wetlands, so a basic understanding of 

what the data represent and how to evaluate data and products is critical. 

This section provides a brief summary of LiDAR systems, types of data and 

products, and current accuracy standards so that investigators can assess 

whatever is available. It begins with a general description of LiDAR sys-

tems and the physical properties of electromagnetic radiation as they 

relate to the amount of spatial detail in a dataset. (For an in-depth review 

of LiDAR systems, see Deems et al. [2013].) It also describes differences 

among point clouds, LiDAR models, LiDAR-derived products, and sec-

ondary products. Finally, this section discusses metrics for evaluating the 

spatial resolution of LiDAR data and products and for assessing the accu-

racy with which LiDAR-derived products classify environmental group-

ings, such as vegetation or land cover types. Throughout, this section pro-

vides current federal standards for LiDAR data accuracy and accuracies 

reported from the literature.  

2.1 LiDAR systems and data collection methods 

LiDAR point clouds represent the surface of the Earth and objects across 

the landscape as a collection of points with associated x, y, and z location 

data. Each point is also associated with an intensity value. Before using a 

point cloud for delineation purposes, it is important to have a basic under-

standing of how these data are collected and processed because these 

factors can affect how useful the data may be in regulatory applications. A 

wide variety of instruments and methodologies are used to collect LiDAR 

data, and systems are constantly being improved and updated as technolo-

gy rapidly evolves. A typical aerial or mobile LiDAR system consists of five 

primary components: a mounting platform, a laser and scanning mirror, 

an inertial measurement unit (IMU), a global positioning system (GPS) 

antenna and receiver, and a data collection and processing computer. 

There are three general categories of platforms: Aerial Laser Scanning 

(ALS), Mobile Laser Scanning (MLS), and Terrestrial Laser Scanning 

(TLS). ALS most commonly uses fixed-wing aircraft or helicopters to col-

lect data although blimps and satellite-based systems are also used. MLS 
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uses watercraft and land vehicles, such as automobiles, all-terrain vehicles, 

and snowmobiles. TLS systems are typically mounted on a survey tripod 

and result in static surveys.  

For ALS and MLS systems, the laser is aimed at a scanning mirror, which 

rotates or oscillates on its center axis, changing the scan angle of the puls-

es. GPS systems calculate the exact locations of the platform and the laser 

pulses striking an object or the ground while the scanner measures the 

angle of the laser pulse. The distance to the target is calculated using a 

simple formula: 

(rate × time)/2 = distance. 

The IMU measures platform movements so that roll, pitch, or yaw will not 

affect the true location of the data. The processing computer records the 

time and the intensity of the return signals and integrates this information 

with exact position information calculated from the IMU and GPS data. 

The distance information for every return pulse is converted to geographic 

data with x, y, z coordinates that represent latitude, longitude, and eleva-

tion (NOAA 2008). 

Different LiDAR systems emit laser pulses from different distinct regions 

of the electromagnetic spectrum. Electromagnetic radiation—charged 

particles without mass—travels in wave-like patterns. Different types of 

electromagnetic radiation, such as visible light, microwaves, or radio 

waves, are characterized by different wavelengths (the length of one com-

plete wave) and frequencies (the number of complete waves that cycle past 

a fixed point in a given time period). Wavelength and frequency are in-

versely related; therefore, high-frequency gamma rays (10 21 Hz) have short 

wavelengths (10 – 4 nm). Conversely, low-frequency radio waves (10 7 Hz) 

have much longer wavelengths (10 10 nm). LiDAR systems that emit pulses 

from the infrared (1064 or 1550 nm) or visible (532 nm) portions of the 

electromagnetic spectrum are most common.  

When a laser pulse strikes an object, it may be reflected, absorbed, or 

scattered, depending on its wavelength and the composition of the object. 

When laser pulses are reflected in a single direction, the reflection is de-

scribed as specular. When reflection is specular, the processing computer 

in a LiDAR system records a single, high-intensity return signal. Intensity 

is the ratio of the strength of reflected light to emitted light (Chust et al. 
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2008). In contrast, absorption occurs when the energy in the pulse is 

transferred to electrons of the object’s surface. When pulses are absorbed, 

the processing computer records a very low intensity return signal or none 

at all. Reflection is described as diffuse or scattered when pulses are scat-

tered in many directions after striking a surface. Back scattering sends 

low-intensity return signals back toward the LiDAR system that generated 

them.  

The type of processor used to record return signals greatly affects the 

amount of spatial detail in LiDAR data because some processors cannot 

detect backscattered returns. Older, discrete return LiDAR systems gener-

ate data by emitting a pulse from the platform and recording several dis-

crete returns. For example, a pulse travels toward the target surface and is 

reflected from the first surface it hits, such as the branch in Figure 1. A 

portion of the energy from the pulse returns to the platform and is record-

ed as a first return, based on the time it took to return and its intensity. 

The remainder of the pulse continues through the canopy and hits another 

branch, and a second return is generated. This process continues until the 

final surface, the Earth, is reached or the pulse lacks sufficient energy to 

register a return. However, in complex environments, discrete return 

systems may not detect all surfaces present. Other LiDAR systems use full 

waveform LiDAR, also shown in Figure 1. These processors record numer-

ous elevation points for each laser pulse (Mallet et al. 2009). Full wave-

form LiDAR is particularly well suited for vegetation mapping because it 

provides a precise reconstruction of the vegetation structure through digit-

ization of the entire backscattered illumination. Because waveform sys-

tems digitize the entire returned energy pulse, data collected using these 

systems provide more spatial detail than data collected using a discrete 

return system.  

The pulse spacing and the size of the laser’s footprint on the surface of the 

Earth also affects the amount of spatial detail in LiDAR data. Landscape 

features, such as a point bar or a vernal pool, cannot be discerned or 

measured if they are smaller than the distance between pulses on the 

ground. Both ALS and TLS use multiple overlapping scans to increase the 

pulse density, to decrease the distance between pulses on the ground, and 

to increase the spatial resolution of the data. The amount of spatial detail 

in LiDAR data is also affected by laser footprint size. The footprint size 

represents the area of the Earth’s surface that is sampled with each pulse. 

Some ALS systems, such as those on satellite platforms, emit widely 
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spaced laser pulses that produce a very large circular footprint, up to 10–

25 m in diameter. Other ALS systems emit more closely spaced, narrower 

pulses with much smaller footprints, approximately 0 .5– 1.0  m in diame-

ter. TLS can emit pulses with a 4.0  mm laser footprint and a 1.2 mm pulse 

spacing over distances up to 50  m (Hodge et al. 2009b). 

Figure 1.  Comparison of discrete return and full waveform airborne laser measurements for 

different target situations. The target is illuminated with a short laser pulse, and when the 

pulse interacts diffusely with a target, a fraction of the signal is reflected back to the 

instrument. Multiple surfaces are well characterized using a full waveform system whereas a 

discrete return system often fails to detect all surfaces in complex or cluttered target 

environments. (Adapted from Riegl Lasar Measurement Systems [2012].) 

 

Multiple overlapping scans of the target area reduce line-of-sight limita-

tions and better represent the viewing scene. LiDAR data may be displayed 

from many points of view, not just from that of the collecting instrument. 

Areas not visible to the collection instrument, such as the area directly 

underneath a terrestrial scanner, may leave “holes” in the dataset. Other 

spots within the collection area where the LiDAR pulse was not able to 

penetrate or return are known as LiDAR “shadows.” The location of these 

shadows varies with the platform type and the location of the collection 

instrument. Data collected by aerial platforms may have shadows under-

neath the roof of a building; data collected using TLS may depict shadows 
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extending behind a building. The algorithms used to create models or 

products out of raw point clouds use different methods to fill or represent 

areas with low point densities.  

Holes in LiDAR data may also result from the pulse wavelength used in a 

LiDAR survey. Terrestrial ecosystems are commonly surveyed using 1064 

or 1550 nm laser pulses from the near-infrared portion of the electromag-

netic spectrum. These longer-wavelength, lower-frequency pulses reflect 

off terrestrial surfaces, such as buildings or vegetation, producing high-

intensity return signals. Because near-infrared laser pulses tend to be 

absorbed or scattered by water, water bodies and inundated wetlands 

often produce fewer, weaker returns or none at all. These holes and areas 

of low-intensity returns are used to map water bodies, wetlands, and in-

undated areas (Brennan and Webster 2006; Chust et al. 2008; Lang and 

McCarty 2009). However, water bodies may sometimes reflect near-

infrared LiDAR pulses. When water is turbid or when the surface is rough 

or covered with oil or organic debris, reflection may be specular. In these 

instances, the return signal intensity is similar to that of terrestrial sys-

tems (Milan et al. 2010), so differences among terrestrial systems, water 

bodies, and wetlands are less apparent. Section 4.3 discusses in greater 

detail the use of intensity data to map water bodies and wetlands.  

Green or bathymetric LiDAR systems provide greater spatial detail in 

coastal, estuarine, and some riverine ecosystems than do near-infrared or 

terrestrial LiDAR. These green or bathymetric systems emit shorter-

wavelength, higher-frequency laser pulses from the blue-green section of 

the electromagnetic spectrum. Because these 532 nm pulses are transmit-

ted through standing water to depths of up to 25 m, they generate more 

spatial detail when the standing water is fairly shallow than does infrared 

LiDAR. Green LiDAR is used to survey complex benthic habitats, such as 

coral reefs (USGS 2011). In these systems, pulses reflect off underwater 

structures, submerged debris, and marine animals and plants, and the 

underlying substrate produces strong returns (Kinzel et al. 2007; Klemas 

2011). Some bathymetric LiDAR systems use green LiDAR pulses in  con-

junction with near-infrared pulses to produce returns from both the water 

surface and underwater structures. A combination of infrared and green 

LiDAR is also used to map snow depth (Deems et al. 2013), a significant 

water source for ephemeral and intermittent streams in  many USACE 

regions. Older, high-energy green LiDAR systems caused eye damage 
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(Milan et al. 2010), but newer systems require less energy per pulse and 

are considered eye safe at specified distances (USGS 2011). 

2.2 Processing LiDAR data: point clouds, models, 
and LiDAR-derived products 

The x, y, and z location data from all return signals form a cloud of points 

that represents the surface of the Earth and the objects on it at a particular 

location. Each point is also associated with the intensity value for that 

return. Raw LiDAR data are processed to remove points thought to repre-

sent outliers or erroneous data, created by birds, planes, marine mam-

mals, certain  reflective surfaces, or false ground points produced by low 

vegetative cover. Holes in the data, created by scanner locations or water 

bodies, may also be filled in at this time. Processed LiDAR data are repre-

sented as three-dimensional point clouds. Subsections of the original point 

cloud created by filtering are used to create Digital Terrain Models (DTMs) 

or Digital Surface Models (DSMs) after further processing. Algorithms are 

used to filter or classify points into subsections based on return type (e.g., 

the first or the last returns). When three-dimensional LiDAR models are 

processed even further and are represented in  two dimensions, they are 

described as LIDAR-derived products. Products are available in both vec-

tor (contour lines) and raster format (Digital Elevation Models [DEMs]). 

Secondary products, such as Topographic Wetness Indices (TWI), use 

LiDAR-derived products, such as a DEM, to calculate values for other 

variables that were not directly measured by the LiDAR system. Point 

clouds, models, LiDAR-derived products, and secondary products may be 

useful to investigators during OHWM or wetland delineations. 

Point clouds contain more spatial detail than models and products, so they 

may be the most useful for delineation purposes. Processed point clouds 

are downloaded in ASCII or LAS (Log ASCII Standard) formats or as a 

compressed LAZ file. These files are most easily imported, displayed, and 

measured using LiDAR software, such as Quick Terrain Reader 7.1.6 (Ap-

plied Imagery 2012). This program can handle models composed of up to 

200  million points and point-cloud data composed of up to 100  million 

points. Differences in elevation or return intensity are typically displayed 

using different colors and can be measured and evaluated. Although more 

difficult to use, some GIS have specialized toolbars that enable them to 

display and evaluate LiDAR data in three dimensions. The LAS dataset 

toolbar, a software extension for ArcMap 10 .1, is one example. One draw-

back to working with point clouds is that they require considerable storage 
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space because they are three dimensional and consist of millions of data 

points. For example, the processed point cloud in Figure 2, collected by the 

National Aeronautics and Space Administration’s Airborne Topographic 

Mapper and a waveform digitizer, consists of 442,977 points and requires 

8 ,364 kB of space. Datasets collected using TLS may be even larger. The 

unprocessed point cloud in Figure 3b, collected using a terrestrial platform 

and a waveform digitizer, consists of 5,780 ,445 points and requires 

144,526 kB of space.  

Figure 2.  Point cloud from Mission Creek, CA,* collected using an aerial platform and a 

waveform digitizer, the National Aeronautics and Space Administration’s Airborne 

Topographic Mapper. In the legend, elevation is measured in meters. The point cloud is 

displayed using Quick Terrain Reader 7.1.6 (Applied Imagery 2012). 

 

LiDAR models, such as DTMs and DSMs, are three-dimensional subsets of 

the original point cloud, which will also be useful for delineating OHWM 

boundaries and wetlands. Model creation involves classifying the points in 

a data cloud into groups, such as first returns, last returns, etc. Specialized 

algorithms select one group of points to model, such as those representing 

the last return. Models consisting of the lowest points in a data cloud, 

known as DTMs, are commonly used to map topography as these lowest 

points are thought to represent only the Earth’s surface. Unless specified 

as a bathymetric model, DTMs map only the top surface of water bodies, 

excluding underwater terrain. The DTM in Figure 3a displays the height of 

only the Earth’s surface, contains about one quarter of the points, and 

requires one quarter of the storage space used by the original point cloud 

(Figure 3b), which displays the heights of vegetation and other objects in 

addition to the Earth’s surface.  
                                                                 

* D. Finnegan, unpublished LiDAR data. USACE ERDC-CRREL, 2006. 
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Figure 3.  Comparison of (a) a 37,706 kB DTM (1,509,218 points) and (b) a 144,526-kB point 

cloud (5,780,445 points). Both images were produced from the same data collected from a 

terrestrial platform with a waveform digitizer in Ascutney, VT.* The data are colorized by 

elevation. The legends are displayed in meters. The data are displayed using Quick Terrain 

Reader 7.1.6 (Applied Imagery 2012).  

 

 

DSMs represent different subsets of the original point cloud and are creat-

ed in one of two ways. The first method uses a specialized algorithm to 

subtract the last return from the rest of the LiDAR point cloud, leaving a 

profile of the vegetation. An alternative method for creating a DSM is to 

remove from a LiDAR point cloud all points except for the first returns so 

that the data represent the heights of the top of the vegetation layer. 

Reutebuch et al. (2003) provide examples of DSMs and DTMs created 

from a LiDAR survey of a conifer forest. LiDAR models are available in the 

same type of files as point clouds and are viewed using the same software. 

                                                                 

1 D. Finnegan and A. LeWinter, unpublished LiDAR data. USACE ERDC-CRREL, 2012 

b. 

 

a.. 
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One potential drawback to working with models is that they contain fewer 

data than point clouds, so much spatial information is lost. Loss of infor-

mation may or may not be problematic, depending on the investigator’s 

objective. For example, if the sole objective is to identify geomorphic 

breaks in slope associated with the OHWM, points representing vegetation 

are of little importance.  

LiDAR-derived products may also be useful for regulatory purposes. These 

two-dimensional products are created from three-dimensional DTMs and 

DSMs after still further processing. LiDAR-derived products are displayed 

in vector or raster geographic representations, sometimes after being 

combined with other types of data. Vector representations, such as high-

resolution contour lines and Triangulated Irregular Networks (TINs), may 

be downloaded in many formats, including geodatabases or shapefiles. 

Contour lines, derived from DTMs, consist of a series of isobars that repre-

sent fairly small changes in elevation. These two-dimensional representa-

tions of the last returns of a LiDAR point cloud provide less spatial infor-

mation than a DTM but require far less storage space. For example, the 

1.0  m LiDAR-derived contour lines (represented as black isobars) in Fig-

ure 6a require 856 kB of space (Nayegandhi et al. 2010). Because contour 

lines are created from many sources, users should check metadata to en-

sure that their file was created from LiDAR data.  

TINs are a second type of vector representation that can be derived from 

DTMs or DSMs and may be useful for delineation purposes. TINs use 

points, lines, and triangles to model objects and the Earth’s surface. TINs 

are created by drawing lines to connect three adjacent points in a model, 

transforming it into a network of adjacent triangles that do not overlap. 

Variables, such as height or return intensity, are assumed to vary linearly 

within the triangles. The density and size of the triangles can be adjusted 

to better represent heterogeneous areas in the landscape. TINs are par-

ticularly useful for representing surfaces or for displaying streams, ridges, 

and peaks in the landscape because they add perspective to the visualiza-

tion capabilities of the GIS and contain precise coordinates. Unlike point 

clouds, TINs are not three-dimensional data although they take on a three-

dimensional appearance when select triangles are shaded or an aerial 

photograph is overlain. Often, data from another source are added to 

LiDAR-derived TINs. These data may be linear features, such as contour 

lines from a topographic map; wetland or stream boundaries from geo-

graphically referenced aerial photographs; or data from a field survey, 
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such as thalweg measurements. LiDAR-derived TINs enhanced with hy-

dro-breaklines created from field surveys of stream cross sections are 

often used to model stream flow or erosion in channels (Perroy et al. 

2010). This type of LiDAR-derived product could be extremely useful for 

OHWM delineations. Whenever a TIN is used for delineation purposes, it 

is important to determine all sources of data used to produce it. Although 

some TINs are created from LiDAR data, others are constructed from 

geographically referenced aerial photographs, the contour lines of topo-

graphic maps, or data from field surveys. The literature suggests that TINs 

created from LiDAR data are better able to model discharge and the eleva-

tion of the water surface and to delineate flooded areas than are TINs 

made from other sources. LiDAR-derived TINs are also more sensitive to 

changes in Manning’s roughness coefficient (Casas et al. 2006). 

Other LiDAR-derived products, represented in raster format, may also be 

useful for delineation purposes. Raster images display continuous varia-

bles across a landscape, such as changes in  elevation or intensity. The 

format is similar to a digital photograph in that it is composed of a regular 

grid of small cells or pixels, which are usually square. Each pixel in the 

image represents an equivalent portion of the study area, such as 1.0  m 2. 

Elevation or intensity values are assigned to each pixel based on the re-

turns from its area. Algorithms are used to predict values for areas where 

explicit LiDAR returns do not exist (e.g., areas of shadow or low intensity). 

Raster products are available in many file types, including but not limited 

to TIFF, ASC, IMG, and KML files or compressed as a KMZ file. These files 

are quickly imported and viewed using GIS such as Google Earth Pro (Ter-

ra Metrics 2010) or Global Mapper 13.0  (Blue Marble Geographics 2012). 

Both programs can be operated by users without extensive background in 

GIS. Because raster images are two-dimensional representations of three-

dimensional LiDAR models, they provide less spatial information than the 

model itself, but they often require less storage space. For example, the 

1.0  m bare earth DEM represented as a colored gradient in Figure 6a re-

quires 15,690  kB of space (Nayegandhi et al. 2010).  

Three types of rasters derived from LiDAR models may be useful for delin-

eation purposes: DEMs, canopy height models (CHMs), and secondary 

products. Bare-earth DEMs, which display the height of the Earth’s sur-

face, are two-dimensional representations of DTMs. Color gradients are 

used to illustrate differences in elevation or return intensity among pixels. 

See the previously mentioned example in Figure 6a (Nayegandhi et al. 
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2010). Investigators should examine metadata to determine if a DEM was 

derived from LiDAR data as DEMs can be constructed from many sources, 

including GPS surveys, geographically referenced aerial photographs, and 

topographic maps (Figure 4a). The literature suggests that for mapping 

wetlands and for assessing and modeling hydrologic variables, such as 

watershed area, connectivity and continuity of drainage networks, water-

shed elevation, and slope, LiDAR-derived DEMs are better than DEMs 

derived from topographic maps or from aerial photography (Hopkinson et 

al. 2009). Likewise, DEMs created from LiDAR data are better able to 

model and predict the presence of wetlands and uplands (Hogg and Hol-

land 2008) and better able to model relationships between vegetation and 

elevation (Moeslund et al. 2011) than DEMs created from other sources. 

CHMs or canopy altitude models (CAMs) are a second type of LiDAR-

derived product distributed in raster format. These two-dimensional 

products use first returns from a LiDAR point cloud to classify vegetation 

into categories. Common categories include trees, tall shrubs, short 

shrubs, broad-leaf herbaceous vegetation, grasses, and aquatic vegetation 

(Hopkinson et al. 2004; Farid et al. 2006; Bork and Su 2007). For an 

example, see Nayegandhi et al. (2010) in Figure 6b. These LiDAR-derived 

products are often fused with other types of remote sensing data, such as 

multispectral or hyperspectral imagery, to improve classification accuracy. 

Multispectral imagery uses broad band frequencies in the visible light 

range (i.e., red, green, and blue bands) and in  the near-infrared range to 

capture image data at high (less than 1.0  m) spatial resolution (aerial plat-

forms) or lower (several meters) spatial resolution (satellite platforms). 

LiDAR data are often collected in conjunction with multispectral images 

(Lichvar et al. 2006; Anderson et al. 2010). Fusing multispectral imagery 

with LiDAR data improves the overall classification accuracy of floodplain 

vegetation (Geerling et al. 2007) and wetlands (Chust et al. 2008; J enkins 

and Frazier 2010) by as much as 40 .0%. A second type of remotely sensed 

data—hyperspectral imagery—captures image data at narrow band fre-

quencies across the electromagnetic spectrum, including near-infrared, 

shortwave infrared, and visible light, at a high spatial resolution. Fusions 

of hyperspectral imagery and LiDAR data improved the overall classifica-

tion accuracy of wetland graminoids by 11.0% (Onojeghuo and Blackburn 

2011). 

Investigators may also find useful for delineation purposes secondary 

products or indices that are derived from LiDAR data and displayed in 
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raster format. Secondary products use LiDAR-derived products, such as 

the topographic data in a bare-earth DEM, to calculate values for variables 

that were not directly measured by the LiDAR sensor. Soil wetness indices, 

which predict the degree of moisture in the soil from watershed area and 

slope, are one example that investigators may find useful. Other examples 

of secondary products derived from LiDAR products include slope, curva-

ture, aspect (Shaeffer 2008), lagg width, lateral slope, and peatland topo-

graphic indices (Richardson et al. 2010). These indices are discussed in 

greater detail in Section 4.3. 

2.3 Metrics for evaluating LiDAR data 

Before using LiDAR data in delineations, investigators should examine the 

metadata to ensure that the data are adequate for regulatory purposes. 

High-resolution data are strongly recommended although the term “high-

resolution” becomes relative as LiDAR technologies evolve and the spatial 

resolution of the data increases. Regardless, spatial resolution is extremely 

important for regulatory purposes because it determines the features that 

can be discerned; the smallest length or height that can be accurately 

measured; and most importantly, the conclusions that can be drawn from 

a dataset. The amount of spatial detail in point clouds and LiDAR-derived 

products is described using the concepts of point spacing, horizontal reso-

lution, and vertical accuracy. 

The degree of spatial detail in an unprocessed LiDAR point cloud is quan-

tified using two metrics: point density and point spacing. Point density 

refers to the spacing of the return signals recorded per unit area (e.g., 6 

points/ m 2). Point spacing describes the number of return signals recorded 

in a given unit of length (e.g., 1 point/ m). ALS can produce data clouds 

with point densities ranging from 4 to 12 points/ m 2 (Lang and McCarty 

2009; Frazier et al. 2012). TLS datasets contain more spatial detail and 

more points than data collected using ALS.  For example, Milan et al. 

(2010) used TLS to collect two point clouds with densities of 1300 and 

2528 points/ m 2.  

Likewise, the degree of spatial detail in processed point clouds, DTMs, and 

DSMs is quantified using post density (points/ m 2) and post spacing 

(points/ m). The horizontal resolution of a LiDAR model, such as a DTM, is 

typically lower than that of the point cloud it was created from because 

data are removed during model creation. For example, a point cloud of 37 

million points collected in an upland conifer forest had an initial point 
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density of 4.2 points/ m 2. After points representing vegetation were filtered 

out, 4 million bare-earth points remained. The post density of the DTM 

was 0 .58 points/ m 2, and the post spacing was 1.3 m (Reutebuch et al. 

2003). Because more data are collected using TLS, more points are re-

tained after processing. In a riparian substrate study, point clouds that 

initially contained 35 and 54 points/ cm 2 prior to filtering had post densi-

ties of 17 and 30  points/ cm 2, respectively, after processing (Hodge et al. 

2009a).  

The horizontal resolution of a LiDAR-derived DEM is most commonly 

stated as the length that a pixel side actually represents (e.g., 1.0  m). The 

horizontal resolution of a LiDAR-derived product is lower than that of the 

original point cloud or model because many points are averaged or inter-

polated to create the product, so that groups of points represent planar 

surfaces or pixels. For instance, the previously described data cloud from 

the conifer forest with the post spacing of 1.3 m was processed further to 

create a 1.52 m DEM (Reutebuch et al. 2003). In the riparian substrate 

study, point clouds with post densities of 17 and 30  points/ cm 2 were fur-

ther processed to create 1.0  mm DEMs. 

Because LiDAR data and products are representations of x, y, and z coor-

dinates, their horizontal resolution determines how well landscape fea-

tures are represented. If the distance between points is less than the length 

of the feature, then it can be discerned and measured. For instance, a 

terrain feature that is 2.0  m in length, such as a sloping channel bank or 

gravel bar, could be discerned and measured using a LiDAR point cloud 

with point density of 4.2 points/ m 2, a DTM with a post spacing of 1.3 

points/ m, or a LiDAR-derived 1.52 m DEM because, in all three cases, the 

distance between points or the horizontal resolution is less than the length 

of the feature. However, none of these could measure an abrupt break in 

slope 0 .3 m in length, regardless of its height. 

The high horizontal resolution of LiDAR data and products clearly pro-

vides an advantage over the topographic data that traditionally have been 

available for preliminary delineations, such as 10  m resolution DEMs 

available from the National Elevation Dataset (NED) (Gesch 2007). Be-

cause many features that affect watershed drainage are less than 10  m in 

length (NOAA 2008), lower-resolution data are less useful for OHWM 

determinations and wetland delineations because they cannot accurately 

represent these small features. To illustrate, compare two floodplain maps 
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of the Humboldt River Valley in northwestern Nevada. In Figure 4a, a 

10  m DEM from NED (http://nationalmap.gov/) is used to model the active 

channel and the surrounding floodplain. The 10  m DEM shows an ex-

tremely sinuous, 30  to 40  m wide channel with one small tributary. The 

widest portion of the channel, at the southwestern end, is 83 m across. The 

floodplain also appears to be quite wide, ranging from 185 m in the north-

east to 1016 m in the southwest. In Figure 4b, the same area is represented 

in two dimensions using a 1.0  m resolution LiDAR-derived DEM, collected 

by the National Center for Airborne Laser Mapping (NCALM) 

(http://ncalm.org). In this figure, the channel appears much thinner, about 20–

25 m wide in the northeast and 62.5 m wide at the southwestern end. In 

addition, these data suggest different channel morphologies; the main flow 

path appears much less sinuous in the 1.0  m LiDAR data than in the 10  m 

DEM. Also, a number of tributaries that cannot be discerned in the 10  m 

image are apparent in the LiDAR image. Certainly horizontal resolution is 

one explanation for these differences. However, differences could also be 

temporal as channel morphology can change over time. The LiDAR data 

were collected in 2010 while the NED data were digitized in 2001 from a 

1972 7.5-minute topographic map. Sections 3 and 4 discuss in more detail 

the importance of acknowledging the temporal resolution of LiDAR data. 

  

http://ncalm.org/
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Figure 4.  Comparison of two floodplain maps of the Humboldt River Valley in northwestern 

NV. 

a. 10.0 m resolution DEM was digitized in 2001 from a 7.5-minute topographic map 

published by the USGS in 1972. The DEM was obtained from the National Elevation Dataset 

(Gesch 2007) and is displayed using ArcMap 10.1 (ESRI 2011). 

 

b. 1.0 m LiDAR point cloud collected by the National Center for Airborne Laser Mapping 

(DOI: 10.5069/G98G8HMJ) on 7 August 2010. The point cloud was obtained from the 

OpenTopography Facility (2011). It is displayed in two dimensions using Quick Terrain Reader 

(Applied Imagery 2012). 

 

b. 

 

a. 

 

http://nationalmap.gov/
http://dx.doi.org/10.5069/G98G8HMJ
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Vertical accuracy also limits the conclusions that can be drawn from 

L i  DAR data or products. Most often, vertical accuracy is determined by 

ground truthing. The elevation of bare-earth points is remeasured using a 

different method, such as a differential GPS device. At each point, the 

LiDAR-derived elevations are compared to the GPS-derived elevations. 

Sometimes, other methods, such as gauge data in riparian systems (Hall et 

al. 2009) or image interpretation-based point counting in inaccessible 

terrain (J enkins and Frazier 2010), are used to check the vertical accuracy 

of LiDAR data. Two metrics—root mean square error (RMSE) and funda-

mental vertical accuracy (FVA)—are used to quantify vertical resolution 

(NOAA 2008; USGS 2010). The RMSE represents the squared average 

difference between the elevations measured using LiDAR and the eleva-

tions measured using another technique, such as GPS. It is similar to one 

standard deviation. The FVA represents a 95% probability that the accura-

cy of a bare earth point will be greater than or equal to a specific value. The 

FVA is calculated by multiplying the RMSE by 1.96. It is similar to two 

standard deviations. For example, one TLS-derived DEM of western can-

yons reported an RMSE of 0 .025 m and an FVA of 0 .049 m (Perroy et al. 

2010). When the height of a feature is less than the FVA, it cannot be 

measured accurately. For instance, neither the height nor the length of 

large woody debris in  riverine systems could be accurately measured with 

a 1.0  m resolution LiDAR-derived DEM with a vertical accuracy of 0 .50  m 

(Frazier et al. 2012). It is important to note that, for two reasons, the hori-

zontal accuracy of LiDAR data is generally treated as a function of vertical 

accuracy. First, horizontal accuracy is difficult to ground truth and evalu-

ate, particularly in areas with few planimetric surfaces. Second, the hori-

zontal accuracy must be high to achieve high vertical accuracy (NDEP 

2004).  

If LiDAR data have not been ground truthed, the metadata usually contain 

a statement of the vertical accuracy from the manufacturer of the LiDAR 

system. However, the accuracy of the LiDAR scanner itself may not always 

reflect the true accuracy of the processed data, which also must incorpo-

rate, for example, the accuracies of the IMU and the GPS. The Universal 

LiDAR Error Model (ULEM) is a type of metadata that calculates LiDAR 

accuracies by propagating system-specific measurement errors through 

the derivation of x, y, and z values from the raw sensor data. It is not yet in 

widespread use, but it indicates that the ability to quantify the accuracy of 

LiDAR data is an area of active research and that methods can be expected 

to improve. 
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In addition to evaluation of the spatial resolution, the classification accu-

racy of land cover or vegetation classes in LiDAR-derived products, such 

as DEMs or CHMs, is quantified on a scale of 0% to 100% by using three 

metrics: user’s accuracy (UA), producer’s accuracy (PA), and/ or overall 

accuracy (OA). Whenever possible, in this review these metrics are pre-

sented together in the following form: UA/ PA. UA quantifies how well 

each pixel in the product represents the field conditions in the correspond-

ing area. For example, in a floodplain vegetation classification study by 

Geerling et al. (2007), 13 pixels were classified as dominated by Brom us 

inerm is (smooth brome) and Eryngium  cam pestre (field eryngo). Four of 

the 13 corresponding field validation plots were actually dominated by 

these plants. In this case, UA = (4/ 13) × 100  = 31% for the B. inerm is/ E. 

cam pestre vegetation category. In contrast, PA describes how well the 

product classifies each pixel. Using the same example, 53 field validation 

plots were dominated by the B. inerm is/ E. cam pestre vegetation category. 

J ust 4 of the corresponding 53 pixels in the product were classified as 

such. The PA = (4/ 53) × 100  = 8% for this category. Finally, the OA of 

37.0% reported by Geerling et al. (2007) represents the combined accura-

cy of all eight vegetation categories in their classification system.  

2.4 Current federal LiDAR guidelines 

Because LiDAR technology is still developing, few standards have been set 

for data collection. As of this printing, the US Army Corps of Engineers 

(USACE) has no standards or requirements for LiDAR data collection or 

processing. In December 2011, USACE formed a LiDAR Community of 

Practice (COP) (Finnegan 2012). USACE standards for data collection and 

processing are forthcoming. The standards and specifications developed 

by the LiDAR COP will take precedence over the information in the follow-

ing paragraphs. Until then, we recommend adherence to the minimum 

guidelines and specifications published by the US Geological Survey 

(USGS 2010) and the Federal Emergency Management Agency (FEMA 

2010). These minimum specifications guide data collection and the use of 

LiDAR data for NED and flood hazard mapping. Although specifications 

from the Federal Geographic Data Committee (FGDC) Wetlands Sub-

committee permit wetland mapping using LiDAR data, these minimum 

specifications for geographic data were not developed specifically for 

LiDAR data, so they do not specify requirements for point spacing or verti-

cal accuracy (FGDC 2009).  
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Investigators should examine the spatial resolution of LiDAR data and 

products to ensure that these metrics meet USGS and FEMA minimum 

specifications. If LiDAR data are to be included in NED, unprocessed 

point-cloud data must have a nominal pulse spacing of one point every 

1.0– 2.0  m. The horizontal resolution of LiDAR-derived DEMs should be 

3.0  m or less (USGS 2010). FEMA requires the same post spacing in flat 

floodplains characterized by high flood risk although values as low as one 

point every 5.0  m are acceptable in low-risk, hilly terrain (FEMA 2010). As 

of 2012, a post spacing of one point every 0 .5 m in point-cloud data is 

common and considered repeatable (Finnegan 2012). Post spacing as high 

as one point every 0 .35 m has been reported from airborne systems (Lang 

and McCarty 2009). Point clouds from TLS can have a post spacing as 

high as one point every 1.2– 2.0  mm (Hodge et al. 2009b) although spacing 

depends on the distance from the scanner. Areas closest to the scanner 

have the closest point spacing. The literature suggests that LiDAR-derived 

products made from data collected by ALS commonly have horizontal 

resolutions of 1.0  m (Hall et al. 2009; Maxa and Bolstad 2009; J enkins 

and Frazier 2010; Frazier et al. 2012). Horizontal resolutions of products 

created from TLS can be as low as 1.0  mm (Hodge et al. 2009b) or 0 .25 m 

(Perroy et al. 2010).  

Investigators should also check the reported vertical accuracy estimate for 

each dataset to ensure that it meets current USGS or FEMA guidelines. 

Although the wetlands subcommittee of the FGDC currently has no stand-

ard for vertical accuracy, the USGS requires a vertical accuracy of 24.5 cm 

at the 95% confidence level for LiDAR products included in NED (USGS 

2010). FEMA’s specifications for mapping high-risk, flat floodplains re-

quire the same vertical accuracy although vertical accuracies of 147 cm are 

acceptable in hilly areas with low risk of flooding (FEMA 2010). The litera-

ture suggests that vertical accuracies of 15.0  cm are common and are con-

sidered repeatable (Lang and McCarty 2009; Zhao et al. 2010). However, 

reported vertical accuracies may be as high as 1.3 mm for data collected by 

TLS (Hodge et al. 2009b) or as low as 0 .63 m (RMSE = 0 .32 m) for older 

datasets or for data collected in dense vegetation, such as conifer forests 

(Reutebuch et al. 2003). 

With regard to classification accuracy, the wetlands subcommittee of the 

FGDC recommends a PA of 98% for the correct identification of wetlands 

vs. nonwetlands when wetland size is at least 0 .2 ha (0 .5 acres). A PA of 

85% is recommended for attribute accuracy, meaning that the wetland was 
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classified as the correct type, such as PFO4B (palustrine, forested, needle-

leaved evergreen, saturated), using the FGDC Wetlands Classification 

Standard. At this time, there are no requirements for UA (FGDC 2009). 

2.5 Recommendations  

LiDAR technology is constantly being upgraded and refined, ever enhanc-

ing our ability to view the Earth at larger and larger scales. Although 

LiDAR may accurately represent coarser-grained features, such as channel 

morphology, it may not capture all of the fine-grained features, such as 

some changes in sediment texture. Because the field is still evolving, there 

are few guidelines or standards regulating data collection and processing. 

Therefore, the following recommendations are made with the understand-

ing that any guidelines developed by USACE’s newly formed LiDAR COP 

will take precedence. For now, investigators should make sure that the 

data meet or exceed the minimum federal specifications described by 

FEMA (2010) and the USGS (2010). High-resolution data are recom-

mended for preliminary OHWM and wetland delineations although the 

term “high resolution” will be defined differently as LiDAR technology 

continues to develop. As of 2014, TLS datasets often provide the highest 

spatial resolution and will be most useful for delineation purposes, with 

one exception. Perroy et al. (2010) found that ALS produces more accurate 

results than TLS in steeply sloped, deeply incised, first-order streams. 

Low, slow-flying aircraft and slow-moving vehicles also collect high-

resolution LiDAR data. Future technological advances will likely result in 

the collection of high-resolution data, regardless of platform type.  
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3 Using LiDAR Data in 

Preliminary OHWM Delineations 

During a preliminary delineation, remote sensing resources, including 

satellite imagery, aerial photographs, soil maps, vegetation maps, geology 

maps, or rainfall data, may be used to approximate the signature of the 

OHWM across the landscape (Lichvar and McColley 2008). The literature 

suggests that LiDAR data are another remote sensing resource that may be 

useful, provided that investigators are cognizant of the channel discharge 

history. Once relationships between discharge history and LiDAR survey 

dates have been determined, LiDAR data and products can be used during 

preliminary delineations of the OHWM boundary to discern patterns in 

vegetation density and some breaks in slope across the landscape. LiDAR 

is less useful, however, for documenting changes in sediment texture.  

Before LiDAR data can be used during preliminary delineations of the 

OHWM boundary, the data collection date should be considered in the 

context of discharge history because the vegetation patterns and channel 

morphology are a reflection of the recent flow patterns. Vegetation is often 

absent from a stream channel immediately after a moderate to large event, 

but it may reestablish within the active channel during extended periods of 

low flows. Likewise, the active channel boundary tends to remain stable 

for low to moderate discharge events but may shift after a large flood 

event. Thus, understanding the discharge history is critical to interpreting 

the LiDAR data. Metadata contain a table showing the date and location of 

each survey or flight. Data collected prior to a large flood event, such as 

those generated by tropical storms or hurricanes, may be less useful be-

cause these events are capable of altering the channel morphology. Data 

collected after years of low flows need to be scrutinized more closely be-

cause vegetation patterns may hide the physical channel features.  

LiDAR data collected prior to the most recent flood or ordinary flow event should be used 

with caution because channel morphology and the locations of OHWM indicators may 

have changed since the data were collected.   
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Figure 4 suggests that the channel morphology of the Humboldt River in 

northwestern Nevada changed between 1972 (Fig. 4a) and 2010 (Fig. 4b). 

The sinuous, winding section of the active channel mapped in 1972 ap-

pears to be a high flow channel in 2010. However, it is important to note 

that some of these morphological differences, such as the presence of 

small tributaries, are attributable to differences in the horizontal resolu-

tion of the data (10  m vs. 1.0  m). This type of comparison can sometimes 

be useful for determining channel stability, particularly whether or not a 

channel might return to pre-flood conditions after a large flood event. 

LiDAR data collected before a flood event can also be used to map physical 

features located above the active channel, such as mature vegetation or a 

terrace (abandoned floodplain) boundary. LiDAR-derived maps showing 

the positions of these terrace indicators may help an investigator focus the 

field investigation by distinguishing the outer limit of potential OHWM 

locations.  

3.1 Mapping vegetation patterns 

Once relationships between discharge history and survey dates have been 

determined, LiDAR data or products can be used to map an estimated 

boundary of the OHWM by using the landscape-level signature created by 

a combination of three indicators: changes in vegetation density, breaks in 

slope, and changes in  sediment texture. The literature suggests that LiDAR 

topographic data alone are unable to accurately classify and map vegeta-

tion (Geerling et al. 2007; Anderson et al. 2010). However, CAMs or 

CHMs created from LiDAR point clouds and used in combination with 

another remote sensing resource can be used to map patterns among vege-

tation units based on height. In some instances, plant communities on 

terraces (abandoned floodplains) may be the most mature and the densest 

as succession is not set back by the stochastic disturbance of flood events 

(Curtis et al. 2011). LiDAR data can be used to map these communities, 

and communities of tall shrubs, that can become established either in the 

floodplain or in active channels characterized by a high water table. For 

instance, a 0 .5 m resolution CAM that incorporated topographic data and 

return intensity distinguished among young (less than 15 years), mature 

(16– 50 years), and old (greater than 50  years) stands of Populus deltoides 

ssp. frem ontii (= Populus frem ontii) (cottonwood) growing along the San 

Pedro River in southeast Arizona (Farid et al. 2006). Classification accura-

cy varied with stand age. Most of the old-stand validation plots were classi-

fied correctly (PA = 89%), but the likelihood of a pixel representing actual 

field conditions was quite low (UA = 38%). The reverse was true of young 
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stands, which had UA/ PAs of 100%/ 41%. Mature stands were represented 

most accurately, with UA/ PAs of 78%/ 73%. This research suggests that 

changes in canopy height or return intensity do not always correspond to 

stand growth form. Therefore, any changes in  stand growth form suggest-

ed by LiDAR data must be verified in  the field. 

Other research suggests that LiDAR data accurately classify tall plants, 

such as trees and shrubs, but are much less accurate when distinguishing 

among smaller plants and bare earth. Forested communities were well 

classified using a 2.0  m LiDAR-derived CHM with a vertical accuracy of 

0 .07 m (Geerling et al. 2007). Almost all of the validation plots in riparian 

forests were classified correctly (PA = 97%), and there was a 100% proba-

bility that pixels classified as forest represented actual field conditions. 

Communities of tall shrubs, such as Sam bucus nigra (black elder), were 

also well classified with UA/ PAs of 94%/ 84%. However, the overall classi-

fication accuracy dropped to just 41% when five broad vegetation classes 

were considered, including bare ground, grasses and herbs, herbs and low 

shrubs, tall shrubs, and forest (Geerling et al. 2007). One reason that 

LiDAR has difficulty distinguishing among smaller plants is that height 

differences among herbaceous plants and low shrubs are sometimes not 

significant (Hopkinson et al. 2004). For example, a 3 m resolution CHM 

with a vertical accuracy of 0 .10  m could not distinguish herbaceous plant 

communities from Artem isia arbuscula (dwarf sagebrush) communities in 

the Arid West region (Sankey and Bond 2011). However, height differences 

measured in field validation plots were not significantly different either.  

A second reason that grasses, herbs, and small shrubs are poorly repre-

sented in  LiDAR-derived products is because the data consistently under-

estimate the height of the canopy. Although LiDAR data underestimate the 

height of all vegetation, the relative vertical error is greatest for small 

plants and aquatic vegetation (Hopkinson et al. 2004). There are several 

explanations for this underestimation (Hopkinson et al. 2004; Su and 

Bork 2006; Sankey and Bond 2011). First, when the pulse density is low, 

laser pulses often miss thin plants with vertically oriented leaves or low 

leaf area indexes, such as sedges, rushes, or grasses. In these instances, 

only the surface of the Earth is mapped. Likewise, the height of shrub 

canopies, particularly those with long, linear, highly dissected, or small 

leaves, such as Salix spp., Tam arix spp., or Artem isia spp., is often under-

represented in LiDAR data because pulses easily penetrate the canopy, 

producing few first returns from the top.  
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Another explanation for poor representation of smaller plants in LiDAR 

data is that when vegetation is extremely dense, LiDAR pulses may fail to 

reach the Earth’s surface. Under these circumstances, the height of the 

Earth’s surface is overestimated when returns from the low canopy are 

mistaken for bare earth. Consequently, vegetation height is underestimat-

ed when these inflated bare earth points are subtracted from the canopy 

returns. For instance, in one classification of rangeland vegetation, a 

LiDAR-derived product classified all shrublands as grasslands, an accura-

cy of 0 .0% for the category (Bork and Su 2007). This error was attributed 

to the fact that these shrubs reproduced by root sprouting and formed 

dense patches. The dense shrub cover resulted in an overestimation of the 

height of the Earth’s surface and an underestimation of canopy height (Su 

and Bork 2006). Although absolute vertical errors tend to increase with 

vegetation height, these errors have a greater relative effect on the canopy 

estimates of smaller plants. Because many LiDAR datasets have a vertical 

accuracy of ±0 .15 m, they cannot distinguish between small plants and 

bare earth.  

Given these limitations, low-resolution LiDAR data collected using multi-

ple return systems will be least useful, and high-resolution data collected 

from waveform ALS or TLS will be most useful, for mapping vegetation 

during preliminary OHWM delineations. Vegetation indicators found at or 

below the OHWM, such as the new growth of vegetation in the active 

channel or a change in vegetation species from herbaceous plants to small 

shrubs, may be difficult to discern from DSMs or LiDAR-derived products. 

However, data that were collected shortly after an ordinary event while 

vegetation is reestablishing in the channel may be useful for estimating the 

OHWM boundary, provided that plant communities on the floodplain and 

terrace are well established. Some LiDAR data, such as those collected 

from TLS, may enable investigators to map differences in height and vege-

tation density among grasses, herbaceous plants, and shrubs. However, 

the literature suggests that changes in species composition and stand 

growth form cannot be determined with accuracy using remote sensing 

data alone. These types of changes must be confirmed in the field.  

In addition to mapping live plant communities, LiDAR data may also be 

useful for mapping piles of large woody debris. Although drift features are 

of limited use for determining the OHWM boundary (Mersel et al., in 

prep.), they can be used as evidence of flow because they verify that a 

channel is active, particularly in sparsely vegetated arid landscapes. Fu-
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sions of LiDAR data and another type of remote sensing data are most 

accurate for mapping the distribution of large woody debris. For instance, 

Eamer and Walker (2010) fused LiDAR data (0 .6 to 2.0  points/ m 2 pulse 

density) with 0 .20  m spatial-resolution aerial orthophotography. The 

result was a 2.0  m resolution DEM, with 0 .20  m vertical accuracy, that 

classified Canadian beaches into two land cover classes—sand and large 

woody debris—with an overall accuracy of 87.3%– 93.3% at three locations. 

However, in heavily vegetated project areas, LiDAR-derived products may 

be less useful for mapping large woody debris or drift piles. On the vege-

tated floodplains of the Namoi River in Australia, a LiDAR-derived prod-

uct was unable to identify locations of large woody debris piles (Frazier et 

al. 2012). The 1.0  m resolution DEM produced from an ALS (vertical reso-

lution less than 0 .5 m) classified with an accuracy of 0% large woody de-

bris.  

3.2 Mapping topographic patterns and channel morphology 

LiDAR data or products are used in a variety of hydrogeomorphic applica-

tions that are potentially useful to regulators, including mapping flood-

plains and modeling inundation extents (Frazier et al. 2012), modeling 

floodplain widths (J ones et al. 2007), modeling hydrologics and hydraulics 

(Hall et al. 2009), determining flow paths (J ones et al. 2008) and connec-

tivity (Lang et al. 2012), delineating ditches (Bailly et al. 2008), and map-

ping erosion and deposition in coastal dunes (Woolard and Colby 2002). 

The literature suggests that LiDAR models or products can also be used in 

preliminary identifications of the OHWM boundary to map channel mor-

phology and changes in topography. DTMs and bare earth DEMs created 

from the last returns in LiDAR point clouds may be useful for estimating 

the locations of some of the breaks in slope that signify potential bounda-

ries of the OHWM. 

In preliminary delineations of the OHWM boundary, LiDAR data or prod-

ucts can be used to map the approximate location of the OHWM signature 

across the landscape. Maps created during preliminary delineations pro-

vide investigators with a bird’s eye view, enabling them to see landscape-

scale patterns created by the locations of indicators relative to one other. 

In some landscapes, this type of pattern is difficult to discern at smaller 

spatial scales, such as at the site level. The literature suggests that LiDAR 

is commonly used to map riparian systems, including the tops of channel 

banks, bank slopes, channel beds, bars, benches, and floodplains (Frazier 

et al. 2012). J ones et al. (2007) mapped up to 88.0% of channel features, 
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including valley floors, terrace fronts, paleochannels, and alluvial fans, 

using a 2.0  m resolution LiDAR-derived DEM with a vertical accuracy of 

0 .10  m. Likewise, a 0 .5 m resolution DEM derived from LiDAR topograph-

ic and intensity data classified dry stream channels in southeastern AZ 

with a UA/ PA of 94%/ 80% (Farid et al. 2006). On a smaller scale, four 

riverine habitat categories based on water surface roughness were distin-

guished using point clouds produced from TLS (Milan et al. 2010). Riffles 

and pools/ glides were represented with 88%– 84% overall accuracy. Cas-

cades/ rapids and runs were more difficult to classify (50%– 57% overall 

accuracy).  

In addition to illustrating channel morphology and topographic changes, 

tools found in LiDAR software and in some GIS enable investigators to use 

LiDAR data or products to estimate the length and width of 

hydrogeomorphic features, such as the active channel, the floodplain, or 

the terrace. These values can then be used to calculate other variables, 

such as sinuosity. The height or depth of other features, such as the height 

of a channel bank or the depth of a channel bed, can be directly measured 

in point-cloud data and DTMs using the tools in LiDAR software. Other 

variables, such as slope, can be calculated from length and depth meas-

urements. In Figure 5, measurement tools in QTR 7.1.6 are used to meas-

ure the depth of a swale (2.66 m) and to calculate the slope of the bank 

(0 .18) from a DTM derived from a LiDAR point cloud collected using TLS 

in eastern Vermont.* Channel depth cannot be directly measured when 

LiDAR data are displayed using a two-dimensional GIS, such as in  Figure 

6a. However, changes in elevation can be estimated because each pixel 

contains an elevation value, which is displayed using different colors. It is 

important to note that most GIS should not be used to directly measure 

elevation of LiDAR products even though they provide measuring tools 

and display base map data in three dimensions. In most instances, these 

measuring tools are calibrated to the base map and not to the imported 

LiDAR layer.  

                                                                 

* D. Finnegan and A. LeWinter, unpublished LiDAR data from Ascutney, Vermont. USACE ERDC-CRREL, 

2012. 
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Figure 5.  Digital Terrain Model (DTM) derived from LiDAR data collected using a terrestrial 

platform in eastern Vermont* and displayed using Quick Terrain Reader 7.1.6 (Applied 

Imagery 2012). In the legend, height is measured in meters. Elevation of the bank and the 

swale are used to calculate slope (0.18) over a distance of 15 m.  

  

As described in  Section 2, the resolution of the data determines which 

measurements can be made. Features that are shorter than the post spac-

ing in a point cloud or the horizontal resolution of a DEM cannot be accu-

rately discerned or measured. For the purposes of OHWM delineations, 

small or narrow features, such as some point bars or coarse woody debris, 

will not be accurately represented in LiDAR data. For the same reason, 

sharp breaks in slopes, such as those associated with some channel banks, 

ditches, or canals, are not well represented in  LiDAR data. In addition, 

LiDAR data may not represent flow direction accurately because high-

resolution data may show numerous small changes in  elevation over a 

relatively small area. These small-scale discrepancies in  topography may 

need to be smoothed before flow direction can be accurately determined. 

In these instances, data that have been enhanced with breaklines will be 

most useful for delineation purposes. 

For preliminary OHWM delineations, measurements made using LiDAR 

data should be considered estimates. All GIS measurements should be 

verified in the field (Hall et al. 2009; Perroy et al. 2010). It is extremely 

important to examine metadata and to ground truth, particularly when 

using LiDAR data that were originally collected for a purpose other than 

OHWM delineations. As described in  Section 2, the data collection and 

processing methods and purpose for which the data were collected can 

have a great impact on the product. Hall et al. (2009) illustrate why inves-

                                                                 

* D. Finnegan and A. LeWinter, unpublished LiDAR data from Ascutney, Vermont. USACE ERDC-CRREL, 

2012. 
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tigators cannot rely on remotely sensed data alone. They used a combina-

tion of hyperspectral imagery and a 1.0  m resolution LiDAR-derived DEM 

with a 0 .15 m vertical accuracy to map a reach of the South Fork of the 

Humboldt River in Nevada. The DEM represented the last returns of a 

LiDAR point cloud originally collected for fire management purposes by 

the Department of the Interior’s Bureau of Land Management (BLM). It 

was used to measure stream channel cross sections, to develop a longitu-

dinal profile of a reach, and to measure sinuosity and channel slope. These 

measurements and Manning’s equation were also used to calculate dis-

charge for the reach. Gage data were used to check the accuracy of the 

results. Unexpectedly, the flow rate calculated from the LiDAR-derived 

product was 1.82 times slower than that of the gage data from the same 

time period. Although gage data are not error free (Curtis et al. 2011), Hall 

et al. (2009) determined that, on average, the DEM underestimated the 

height of the water surface by 15.25 cm. The error was attributed to the 

infrared LiDAR processing algorithms, which were designed to calculate 

elevation in terrestrial systems. Terrestrial algorithms distort the bathy-

metric portion of the returns because they assume that LiDAR pulses are 

traveling at a constant rate through one medium—air. However, in riverine 

systems, pulses actually travel through both water and air at two different 

rates (Kinzel et al. 2007). This is one reason that the location of OWHM 

indicators and all estimates made using LiDAR data must be verified in the 

field. Other sources of error in LiDAR topographic data are discussed in 

Section 4.2. 

3.3 Mapping changes in sediment texture 

The literature suggests that most LiDAR models or products are unable to 

represent small changes in sediment texture, the third indicator involved 

in preliminary identifications of the OHWM boundary. Although LiDAR 

technology has been used in conjunction with field data to document cor-

relations among elevation, duration of ponding, and fine-scale changes in 

sediments (Lichvar et al. 2008), the sediment changes were not measured 

using LiDAR data. The fine-scale changes in sediments, such as mud crack 

width and depth, were measured in the field. Given the current technolo-

gy, LiDAR products are useful for mapping large changes in  sediment 

texture only, such as a change from boulders to gravel or boulders to sand. 

A 1.0  m resolution LiDAR-derived DEM with a vertical resolution of less 

than 0 .5 m cannot detect differences among smaller substrate classes, 

such as cobble, gravel, sand, and mud (Frazier et al. 2012).  
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However, as technology advances and more datasets become available, 

point clouds, DTMs, and LiDAR-derived DEMs may become more useful 

for mapping changes in sediment texture associated with the OHWM 

boundary. The literature suggests that high-resolution LiDAR data collect-

ed using TLS can map most changes in sediment texture associated with 

placement of the OHWM boundary. One example, a TLS dataset of 3.8  

million points, which had a mean spacing of 0 .012 m and a vertical accu-

racy of 0 .009 m, documented differences in grain roughness from 40  mm 

(D16) to 130  mm (D84) in a gravel bar (Heritage and Milan 2009). Likewise, 

Hodge et al. (2009b) examined differences in  sediment sizes in the gravel 

bars of two channels by using a TLS with a 4 mm diameter laser footprint 

and a minimum point spacing of 1.2 mm to create a 1.0  mm resolution 

DEM. The average sediment size (D50) ranged from 32 to 63 mm in the 

first channel and from 18 to 33 mm at the second site. Data collected at 

this scale could be used in preliminary delineations to estimate the loca-

tion of the OHWM boundary and to document changes from sand to cob-

bles to boulders. However, it would be unable to distinguish between sand 

and silt.  

3.4 Conclusions 

In summary, the literature suggests that LiDAR data and products can be 

useful for preliminary delineations of the OHWM boundary. Before the 

channel signature is interpreted, the recent flow history of the site should 

be determined, if possible. In some cases, recent large floods will have 

altered the OHWM signature, and LiDAR data will not reflect “ordinary” 

conditions at the site. If “ordinary” conditions exist, two OHWM indica-

tors—vegetation density changes and break in  slope—may be interpreted 

through LiDAR data. Currently, only large sediment texture changes can 

be detected. Vegetation density changes are best observed in landscapes 

dominated by trees and tall shrubs. Because LiDAR consistently underes-

timates vegetation height, it will be less useful for estimating changes in 

vegetation density in sparsely vegetated areas and in areas dominated by 

short shrubs, herbs, and grasses. However, ephemeral and intermittent 

channels are often present in these sparsely vegetated regions. LiDAR is 

capable of capturing many of the topographic changes in channel mor-

phology in these dry systems. The horizontal resolution and vertical accu-

racy of the data determine if the OHWM break in slope can be measured 

with sufficient accuracy. Particular attention must be paid to determining 

if the depth of the channel is less than the vertical accuracy of the LiDAR 

data. Although LiDAR provides an opportunity to view the OHWM signa-
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ture at the landscape scale, all information gathered from LiDAR-derived 

products during preliminary delineations of the OHWM boundary must be 

verified in the field.  
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4 Using LiDAR Data in the Preliminary Data-

Gathering Stage of Wetland Delineations 

As LiDAR technology advances, data collection increases, and LiDAR data 

are used more frequently in a variety of wetland applications. For instance, 

in 2010, the Minnesota Department of Natural Resources began a 

statewide National Wetland Inventory mapping project using LiDAR and 

radar imagery and 0 .6 m digital ortho and stereo imagery (Tande and 

Michaelson 2011). USACE’s Wilmington District and Raleigh Field Office 

have used LiDAR data for preliminary delineations (Lekson 2012). Having 

provided evidence of spoil piles, fill, and other anthropogenic disturb-

ances, LiDAR data are potentially useful for enforcement (Shaeffer 2008). 

This section also provides many examples in which LiDAR data or prod-

ucts have been used for wetland identification and mapping. However, it is 

important to note that the studies cited here were based on many different 

definitions of wetlands. With the exception of Shaeffer (2008), Lichvar et 

al. (2006), and Russell et al. (2010), the research described here did not 

explicitly use hydrophytic vegetation, hydric soils, and wetland hydrology 

as the criteria to determine wetland presence or absence. For example, 

Lang and McCarty (2009) used LiDAR to map inundated areas; detailed 

examination of soils and vegetation was not mentioned. Maxa and Bolstad 

(2009) ground-truthed LiDAR-derived wetland maps primarily by vegeta-

tion type. The hydrologic criteria used to distinguish wetlands from up-

lands were not stated. J enkins and Frazier (2010) delineated “upland 

swamps” (headwater wetlands surrounded by upland forest) remotely 

using LiDAR and multispectral imagery. They assessed accuracy by using 

image-interpretation-based point counting rather than ground truthing. 

Therefore, the end products of wetland research, such as classification 

accuracies, should be viewed critically when applied to delineation proce-

dures as accuracies are likely to change with the definition of “wetland.” 

The literature suggests that LiDAR data and products will be most useful 

in the preliminary data gathering stage of wetland determinations. During 

this off-site stage of the investigation, the USACE Wetland Delineation 

Manual recommends examining many types of remote sensing data, in-

cluding (but not limited to) NWI products, Natural Resources Conserva-

tion Service (NRCS) soil surveys, USGS quadrangle maps (1:24,000), 

USGS land use and land cover maps, and aerial/ satellite imagery (Envi-
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ronmental Laboratory 1987). LiDAR data and products can be used in 

conjunction with other remote sensing data to plan an on-site investiga-

tion by dividing a project area into land cover types (LCTs) and, in some 

instances, drawing preliminary wetland boundaries that can be refined 

during the on-site investigation. However, LiDAR data do not contain 

enough information to make wetland determinations for regulatory pur-

poses. 

Before LiDAR data are used in a preliminary investigation, the temporal 

context of the data should be examined. First, the date of the LiDAR sur-

vey shown in the metadata should be compared with the current date. If 

there has been a large disturbance event between the two dates, the data 

should be used with caution. For instance, LiDAR data collected prior to a 

hurricane or tropical storm may be less useful because storm events can 

cause extreme erosion, deposition, and damage to vegetation (Enwright et 

al. 2011). Other natural disturbances, such as wildfires, avalanches, mud-

slides, or beaver activity, may increase or decrease wetland area (Envi-

ronmental Laboratory 1987), making older LiDAR datasets obsolete. Con-

versely, data collected prior to an unpermitted anthropogenic disturbance, 

such as unauthorized fill, could be used along with other remote sensing 

resources to approximate the location of the pre-disturbance wetland 

boundary. A second temporal consideration is whether the data were col-

lected during the growing season as the definition of wetland hydrology is 

linked to the concept of growing season. Investigators should compare the 

LiDAR collection date to the dates of the growing season, listed in an 

NRCS WETS Table (http://www.wcc.nrcs.usda.gov/climate/wetlands.html). Growing 

season is discussed in greater detail in Section 4.3. 

Provided that temporal relationships between data collection date, dis-

turbance events, and growing season are recognized, LiDAR point clouds, 

models, or products may help investigators discern vegetation patterns, 

changes in topography, and inundation patterns. However, LiDAR data 

should not be used to make vegetation determinations, to map hydric 

soils, or to determine whether wetland hydrology is present. All areas 

identified as having the potential to support hydrophytic vegetation, hy-

dric soils, or wetland hydrology should be verified during the on-site field 

investigation. 

http://www.wcc.nrcs.usda.gov/climate/wetlands.html


ERDC/CRREL TR-14-3 34 

 

4.1 Mapping vegetation patterns 

The literature suggests that, in some instances, LiDAR data or products 

may help investigators discern vegetation patterns during the off-site, 

data-gathering portion of a wetland delineation. During this preliminary 

investigation, investigators summarize all remote sensing information 

available and identify LCTs that require less field sampling to verify, such 

as obvious nonwetlands and the interiors of obvious wetlands. During the 

on-site portion of the investigation, sampling is focused on transition 

zones between obvious wetlands and obvious nonwetlands. A project area 

may be divided into LCTs based in part on vegetation patterns discerned 

from LiDAR data or products. Figure 6 provides an example of several 

types of remotely sensed data from Davis Park, New York, including high-

resolution satellite imagery, NWI wetland maps, National Land Cover 

Data (NLCD), and a hydric soil map. Three LiDAR products, a DEM, con-

tour lines, and a CHM, are also shown. These data were used to divide a 

hypothetical project area into three LCTs based on plant height and 

growth form. The LiDAR CHM shows three height classes of vegetation 

(Figure 6b): short (blue: ~0– 3 m), intermediate (yellow: ~4– 6 m), and tall 

(green: ~6– 10 m). USGS land cover maps (Figure 6c) and NWI wetland 

polygons (Figure 6a) suggest that the vegetation in LCT1 is primarily her-

baceous; the vegetation in LCT2 is composed of shrubs and herbs; and 

LCT3 is composed of shrubs, barren land, and a hiking trail. Overall, the 

LiDAR CHM, the NWI wetland polygons, and the hydric soil map suggest 

that less sampling effort is needed in LCT1, which is dominated by 0  to 3 

m herbaceous vegetation, and LCT3, which is characterized by 6 to 10  m 

shrubs and barren land, because they appear to be obvious wetland and 

upland, respectively. These remotely sensed resources suggest that after 

LCT1 and LCT3 are verified in  the field, the boundary investigation should 

focus on LCT2. 
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Figure 6.  Comparison of three LiDAR products and four other types of remotely sensed data 

for a hypothetical wetland delineation near Davis Park on Fire Island, New York. 

a. 1.0 m LiDAR-derived digital elevation model and contour lines (Nayegandhi et al. 2010), 

overlain by US Fish and Wildlife Service’s (FWS) National Wetland Inventory (NWI) wetland 

polygons (USFWS 2012) mapped at a scale of 1:24,000 and displayed using ArcMap 10.1. 

 

b. 1.0 m LiDAR-derived CHM (Nayegandhi et al. 2010) displayed using Google Earth Pro (Terra 

Metrics 2010).  

 

b. 

 

a.. 
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Figure 6 (cont.).  Comparison of three LiDAR products and four other types of remotely sensed 

data for a hypothetical wetland delineation near Davis Park on Fire Island, New York. 

c. NLCD mapped at a 30 m resolution (Vogelmann et al. 2001) displayed using Global 

Mapper 13.0. 

 

d. High-resolution satellite imagery overlain by NRCS’s Soil Survey Geographic soil order 

polygons (NRCS 1994) mapped at a scale of 1:577,000 to 1:1,840,000 and displayed using 

CorpsMap 2.7. 

 

In the preliminary data-gathering stage of a delineation, the literature 

suggests that LiDAR data or products will be most useful for mapping 

wetland boundaries characterized by abrupt transitions from wetland to 

upland that coincide with a significant change in vegetation height (e.g., a 

scrub-shrub wetland located in the midst of a forested landscape). Under 

these circumstances, a combination of a 1.0  m LiDAR-derived CHM, 2.4 m 

d. 

 

c. 
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resolution multispectral imagery, and 0 .20  m orthorectified aerial photog-

raphy delineated shrub-sedge-dominated wetlands from adjacent upland 

forest with a UA/ PA of 97%/ 96% (J enkins and Frazier 2010). LiDAR 

products will also be useful for delineating sparsely vegetated wetlands 

from densely vegetated uplands, or the reverse. For instance, in north-

central California, sparsely vegetated vernal pools, characterized by long 

periods of inundation, were easily identified and mapped using a 2.0  m 

resolution LiDAR-derived DEM with 5.0  cm vertical accuracy created from 

a fusion of LiDAR data and IKONOS satellite imagery (Lichvar et al. 

2006). In this study, wetland mapping using remote sensing identified 

169% more vernal pools and swales than field mapping alone. However, 

when vegetation height and density are similar on both sides of the wet-

land boundary, LiDAR data and products will be less useful.  

Although LiDAR data or products may be used to map LCTs based on 

vegetation, they should not be used to make hydrophytic vegetation de-

terminations for two reasons. First, LiDAR cannot identify plants at the 

species level. The literature provides evidence that LiDAR data alone can-

not distinguish among species in  the same land cover class (e.g., trees) 

although accuracy improves somewhat when LiDAR is used in combina-

tion with multispectral imagery. For instance, in Wisconsin forests, ever-

green conifers were classified with UA/ PAs of 80 .3%/ 86.4% using 

IKONOS satellite imagery fused with a 1.0  m resolution LiDAR-derived 

DEM with a vertical accuracy of 0 .15 m (Maxa and Bolstad 2009). Howev-

er, individual species, such as Larix laricina (American larch), Picea m ar-

iana (black spruce), and Thuja occidentalis (eastern arborvitae), often 

could not be distinguished from one another. Very few of the pixels repre-

senting L. laricina were classified correctly (PA = 14.3%), and the likeli-

hood of a pixel representing actual field conditions was low (UA = 50 .0%). 

Likewise, in a Connecticut River tidal marsh, a 2.4 m resolution LiDAR-

derived DEM (vertical accuracy of 0 .06 m) used in combination with mul-

tispectral signatures of three dominant graminoids had difficulty distin-

guishing Typha spp. (cattail) from Phragm ites australis (common reed) 

and Spartina patens (salt-meadow cord grass) (Gilmore et al. 2008). 

Although most of the Typha spp. plots were classified correctly (PA = 

95%), the likelihood of a pixel representing actual field conditions was very 

low (UA = 36%). The other two species were classified fairly well, particu-

larly when they occurred as monocultures. P. australis had UA/ PA accura-

cies of 96%/ 66%, and S. patens had UA/ PA accuracies of 67%/ 69%.  
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A second reason why LiDAR data should not be used to make hydrophytic 

vegetation determinations is that the data often cannot determine if vege-

tation is present. As described in Section 3.1, LiDAR data consistently 

underestimate vegetation height. Therefore, vegetation units dominated 

by trees and tall shrubs are usually classified most accurately. Differences 

among classes of shorter vegetation, such as small shrubs, grasses, terres-

trial or aquatic herbs, and bare earth, often cannot be distinguished. In 

Figure 6b, the CHM shows that about half of LCT1 is vegetated. The re-

mainder is mapped as bare earth. The NWI polygons (Fig. 6a) and the 

NLCD (Fig. 6c) show that LCT1 is completely covered by emergent herba-

ceous vegetation, extending farther north and covering twice as much area 

as the LiDAR-derived CHM suggests.  

Overall the literature suggests that, in some wetland types, LiDAR data 

could be used to separate a project area into LCTs based on differences in  

vegetation height. However, field validation of these LCTs is necessary. 

Because LiDAR data cannot identify plants to the species level and some-

times cannot even determine if vegetation is present, vegetation determi-

nations should never be made based solely on point-cloud data or on 

LiDAR-derived products.  

4.2 Mapping topographic and soil patterns 

As described in  Section 2.1, infrared LiDAR uses the last return signals 

from lower-energy, longer-wavelength, near-infrared pulses (1064 or 1550 

nm) to determine the height of the Earth’s surface. The resulting topo-

graphic data can be used to model the Earth’s surface across a project site 

during the data-gathering stage of wetland delineations. Provided that 

there have been no severe disturbance events since the data collection 

date, LiDAR topographic data can be used to identify low areas with the 

potential to accumulate water. Because these data provide no evidence of 

the presence or absence of surface water, they should not be used as evi-

dence of wetland hydrology. However, topographic data will be useful for 

dividing a project area into LCTs and for focusing a field investigation on 

areas with the potential to support wetland hydrology. During the prelimi-

nary data-gathering stage of wetland delineations, point-cloud data, mod-

els, LiDAR-derived products, and secondary products may be useful to 

regulators.  

Point clouds and DTMs can be used to identify topographic lows in a land-

scape, to estimate the height of a topographic break, or to calculate the 
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slope of an LCT. Length, width, and height can be directly measured using 

tools in LiDAR software and in some GIS although, as described previous-

ly, narrow or small features that are shorter than the point spacing or 

smaller than the vertical accuracy of the data cannot be accurately meas-

ured. For delineation purposes, changes in  elevation over a specific dis-

tance can be measured in each LCT. Slopes can be estimated from these 

measurements and used in support of a secondary hydrology indicator , 

geomorphic position. During the data-gathering stage of wetland delinea-

tions, measurements made using LiDAR data should be considered esti-

mates. All measurements should be verified in the field (Hall et al. 2009; 

Perroy et al. 2010). 

LiDAR-derived products, such as DEMs and contour lines, may also be 

used to identify low areas in  the landscape with the potential to pond wa-

ter. Although elevation cannot be directly measured in  two-dimensional 

LiDAR-derived DEMs, each pixel contains an elevation value that is dis-

played in raster format using different colors. For example, the LiDAR-

derived DEM in Figure 6a shows that most of LCT3 ranges from 1.1 m 

(green shading) to 11.0  m (red shading) in elevation. As always, spatial 

resolution must be taken into account because both horizontal resolutions 

and vertical accuracy limit the conclusions that can be drawn from a da-

taset. Topographic features that are shorter in  length or height than the 

horizontal resolution or vertical accuracy of a dataset cannot be accurately 

measured. For instance, a 1.0  m LiDAR-derived DEM with a vertical reso-

lution of 0 .15 m could not be used to discern sedge tussocks 0.75 m wide 

and 0 .18 m tall.  

Contour lines derived from a LiDAR point cloud display elevation data in 

two-dimensional vector format (Fig. 6a). In the context of wetland delinea-

tion, the widely spaced LiDAR-derived contour lines in Figure 6a show 

that the elevation of LCT1 is close to sea level (0  to about 1.0  m above sea 

level) and relatively flat, suggesting that it is more likely to pond water 

than LCT3 in which the contour lines are more closely spaced and the 

elevation ranges from 1.1 to 11.0  m above sea level. As with the vegetation 

data, the topographic data suggest that field sampling should focus on the 

southern edge of LCT2 where the elevation gradually increases from 0 .1 to 

2.0  m. The NWI wetland polygons (Fig. 6a), NLCD (Fig. 6c), and NRCS 

(Fig. 6d) hydric soil maps show similar patterns, suggesting that wetland 

hydrology and hydric soils are mostly absent in LCT3 but are present in all 

of LCT1 and in the northern portion of LCT2.  
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Secondary products displayed in two-dimensional raster format may also 

be useful to investigators, when available. LiDAR-derived products, such 

as bare-earth DEMs, and mathematical formulas are used to create sec-

ondary products that predict variables that were not directly measured, 

such as slope, aspect, and curvature (Shaeffer 2008) or terrain shape and 

lagg width (Richardson et al. 2010). In predominantly flat (455– 500 m 

above sea level) Wisconsin forests, terrain shape and slope products, cal-

culated from a 1.0  m resolution LiDAR-derived DEM (vertical accuracy of 

0 .15 m), have been used to map wetlands (Maxa and Bolstad 2009). The 

DEM was used to calculate the terrain shape and slope of features in the 

study area. Negative values for terrain shape indicated topographic de-

pressions while positive values suggested convex landforms. These sec-

ondary products and IKONOS satellite imagery distinguished uplands 

from wetlands fairly well. Pixels representing uplands were usually classi-

fied correctly (PA = 89.8%) although the likelihood of the pixel represent-

ing upland conditions in the field was lower (UA = 82.2%).  

However, the literature suggests that there is some error associated with 

LiDAR topographic data. The error tends to be greatest in areas character-

ized by steep slopes and dense vegetation. Error associated with steeply 

sloping terrain occurs in two ways (Deems et al. 2013). As mentioned 

previously, vertical accuracy depends on horizontal accuracy. Horizontal 

errors, which tend to increase with flight altitude, result in a point being 

incorrectly located on a planimetric surface. The incorrect horizontal loca-

tion points can cause vertical errors, particularly in uneven landscapes. 

Vertical error may also be caused when LiDAR laser footprints spread on a 

sloped surface, increasing the signal-to-return time and inflating the rec-

orded distance from the scanner.  

As described in  Section 3.1, elevation may also be overestimated when 

dense vegetation prevents LiDAR pulses from striking the Earth; pro-

cessing algorithms may interpret the last return as representing bare earth 

when it actually represents low vegetation (Hopkinson et al. 2004). For 

this reason, errors in topographic data tend to be greatest in landscapes 

characterized by several vegetative strata (Clark et al. 2004). For instance, 

densely vegetated swamps dominated by deciduous trees, conifers, and 

Alnus incana (= Alnus rugosa) (speckled alder) could not be distinguished 

from surrounding upland forest by using topographic LiDAR data alone 

(Hogg and Holland 2008). Likewise, a landscape-level study of aspen 

parkland found that LiDAR data overestimated the elevation of steeply 
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sloping forest stands and underestimated the elevation of grasslands and 

wet meadows (Su and Bork 2006). Interestingly, other work suggests that 

the reverse is true at smaller scales. When compared to field measure-

ments along 120  m peatland transects, LiDAR topographic data overesti-

mated lower-elevation features and underestimated higher-elevation fea-

tures, muting the overall topographic heterogeneity (Richardson et al. 

2010). Overestimates of lower-elevation features, such as hollows, were 

attributed to the presence of dense vegetation and the GPS unit compress-

ing the peatland surface during ground truthing. Most importantly, the 

literature suggests that classification and mapping errors tend to be great-

est in areas characterized by a gradual transition from upland to wetland 

(Hogg and Holland 2008). Therefore, topographic patterns discerned 

using LiDAR data should be verified in the field. Field validation of LiDAR 

topographic data is essential before using them as evidence of a secondary 

hydrology indicator, such as geomorphic position, microtopographic relief, 

raised ant mounds, or frost-heave hummocks, particularly in densely vege-

tated or conifer-dominated wetlands or steeply sloped wetlands, such as 

some fens. 

Although LiDAR data cannot be used to map changes in soil saturation 

(Garroway et al. 2011), soil wetness indices, another secondary product 

created from LiDAR-derived DEMs, may be useful to investigators. Soil 

wetness indices (Moore et al. 1993; Murphy et al. 2007), which are also 

referred to as topographic wetness indices (Bӧhner et al. 2002; Shaeffer 

2008; Shoutis et al. 2010), use topographic data from LiDAR-derived 

DEMs and a mathematical formula to predict areas where soils are likely 

to be saturated or inundated given their topographic position in  the land-

scape. Wetness indices are often calculated using the general formula  

 WI = ln(A/tanβ)  

where A is the catchment area (m 2/ m) that drains to the point and β is the 

slope in degrees (Moore et al. 1993). This formula produces large index 

values in pixels that are likely to contain wet soils or wetlands and low 

index values in pixels that are likely to contain drier soils or nonwetlands 

located farther from water sources. Before an index can be used for deline-

ation purposes, the formula used to calculate the index should be exam-

ined because other WI formulas, such as WI = ln(A/ β), produce low values 

for wet soils and high values for drier, nonwetland soils (Murphy et al. 

2007). In addition, the source and spatial resolution of the topographic 
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data should be examined because wetness indices are constructed from 

DEMs produced from other types of remotely sensed data collected at 

different spatial resolutions. For instance, Murphy et al. (2007) developed 

a 10  m resolution soil wetness index from photogrammetrically derived 

topographic data from 1:35,000  digital aerial photographs. 

The literature provides conflicting evidence regarding the utility of sec-

ondary products derived from LiDAR topographic data. In predominantly 

flat, deciduous forests of Maryland, a wetness index, constructed from a 

LiDAR-derived DEM with a vertical accuracy of less than or equal to 0 .15 

m, was less able to distinguish inundated areas from non-inundated areas 

when compared to LiDAR intensity data (Lang and McCarty 2009). How-

ever, other research suggests that the secondary products derived from a 

6 m resolution LiDAR-derived DEM are able to predict the presence of 

jurisdictional wetlands. Shaeffer (2008) modeled the presence and ab-

sence of jurisdictional wetlands in 18 study sites throughout Beaufort 

County, NC, by using a topographic wetness index and localized LiDAR 

elevation data. Ground truthing suggested that the model underestimated 

the presence of jurisdictional wetlands at a landscape scale (the overall 

classification accuracy was 79.8%). At a site-level scale, LiDAR topograph-

ic data and two secondary products—curvature and slope—predicted the 

presence of jurisdictional wetlands with an overall classification accuracy 

of 93.3%. However, the presence of jurisdictional wetlands was overesti-

mated at this fine scale. Russell et al. (2010) reached similar conclusions. 

They predicted the presence of jurisdictional wetlands using LiDAR topo-

graphic data and five secondary products. In three study areas, classifica-

tion accuracy ranged from 58% to 71%. The model tended to miss small 

wetlands and overestimate the area of larger wetlands.  

4.3 Mapping hydrologic patterns 

The literature suggests that LiDAR intensity data and bathymetric LiDAR 

data can be used to map hydrologic patterns in a project area during the 

data-gathering stage of wetland delineations. LiDAR intensity data, which 

measure the strength of the last return pulse, are often used to model the 

presence or absence of surface water. Green or bathymetric LiDAR use 

high-energy, short-wavelength LiDAR pulses (520  nm) to measure water 

depth and to map benthic habitats. Both types of data may provide evi-

dence of wetland hydrology, provided that their temporal limitations are 

recognized. Investigators should examine metadata to determine the col-

lection date because the wetland hydrology criterion has two temporal 
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components that must be met. First, water must be within the top 12 in. 

(30  cm) of the soil surface for 14 or more consecutive days. Second, the 14 

consecutive days must occur during the growing season (USACE 2005). 

Like all remotely sensed data, LiDAR data represent a snapshot in time. 

Point clouds and LiDAR-derived products cannot satisfy the first require-

ment of showing water ponded or at the soil surface for 14 or more con-

secutive days because they represent a single collection date and provide 

no information about the frequency or duration of inundation. However, it 

may still be possible to determine that a project area is inundated or satu-

rated at different times during the growing season if LiDAR intensity data 

are used in conjunction with other remotely sensed data, such as visible 

inundation (primary hydrology indicator) or saturation (secondary hy-

drology indicator) on satellite imagery or aerial photography collected at a 

different time in the growing season.  

Intensity data must be collected during the growing season if they are to be 

used as evidence of wetland hydrology. To determine if data were collected 

during the growing season, the collection date shown in the metadata 

should be compared to the dates of the growing season shown in a WETS 

table (http://www.wcc.nrcs.usda.gov/climate/wetlands.html). LiDAR data could be used 

as evidence of wetland hydrology most easily in the southern United States 

where the growing season can be year round in some counties. However, 

data collected during rainy seasons or in a year of above-average rainfall 

could overestimate wetland acreage while data collected during dry sea-

sons could underestimate wetland acreage (Henry and Gonzalez 2005). 

Some federal agencies, such as the USGS, recommend collection of LiDAR 

data during leaf-off when there is no snow cover and no flooding or unu-

sual inundation (USGS 2010) although collection dates ultimately depend 

on the research question. The literature does suggest that LiDAR data are 

most accurate when collected during leaf-off (Hogg and Holland 2008; 

Lang and McCarty 2009) because vegetation is the greatest source of 

topographic error in LiDAR-derived DEMs (Su and Bork 2006). In the 

north, leaf-off and growing season guidelines effectively restrict data col-

lection to late fall and early spring. LiDAR intensity data collected at these 

times should be used with caution, however, because the extent of inunda-

tion during leaf-off may not be representative of conditions during the 

growing season. It is not unusual for water to pond temporarily during 

leaf-off in nonwetlands for several reasons: spring snowmelt or fall rains 

generate surface flow, evapotranspiration rates are reduced during leaf-

http://www.wcc.nrcs.usda.gov/climate/wetlands.html
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off, and partially frozen soils can reduce infiltration rates. LiDAR intensity 

data collected under these conditions could overestimate wetland area. 

As mentioned in Section 2, LiDAR intensity data represent differences in 

the strength of the return signals across a landscape. In general, clear, 

standing water absorbs or scatters 1064 nm wavelength, near-infrared 

LiDAR pulses, producing very weak returns. In terrestrial landscapes, 

water bodies and wetlands characterized by standing water can be classi-

fied based on this signature. The literature provides conflicting reports 

regarding the classification accuracy of intensity data. In a Maryland wa-

tershed, inundated areas were mapped using intensity data derived from a 

LiDAR point cloud with a 0 .15 m vertical accuracy and about a 0 .40  m post 

spacing collected early in the growing season (27 March) (Lang and 

McCarty 2009). With an overall accuracy of 96.3%, intensity values from 0  

to 50  were used to distinguish inundated from non-inundated forest. 

Likewise, in an estuarine ecosystem near Nova Scotia, LiDAR data collect-

ed at the beginning of the growing season (20– 25 April), before leaf-out, 

were used to construct a 1.0  m resolution LiDAR-derived DEM with a 

0 .03 m vertical accuracy (Brennan and Webster 2006). Intensity data with 

values of less than 0 .25 classified the intertidal zone and open water with 

UA/ PAs of 98.3%/ 99.8%, and 100%/ 100.0%, respectively.  

In northern coastal Spain, Chust et al. (2008) compared the classification 

accuracy of LiDAR-derived intensity data with topographic data when 

both were combined with multispectral satellite imagery. A 1.0  m resolu-

tion, bare-earth DEM produced from LiDAR topographic data (collected 

from J anuary to May 2005, vertical accuracy of 0 .15 m), combined with 

multispectral satellite imagery, classified and mapped wetlands with 

UA/ PAs of 99.0%/ 77.5%. A combination of multispectral imagery and 

LiDAR intensity data was slightly less accurate. Most of the plots repre-

senting inundated areas were classified correctly (PA = 68.8%), and the 

likelihood of these pixels representing actual field conditions was high (UA 

= 91.1%).  

However, there is also evidence that intensity data collected using 

1064 nm wavelength pulses are unreliable under some environmental 

conditions. Another Nova Scotia study, which used intensity data collected 

at the beginning and end of the growing season (31 March and 30  Septem-

ber), showed no correlation between the intensity of LiDAR returns and 

the presence of soil surface water (Garroway et al. 2011). These results 
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suggest that, under some conditions, intensity data may be unreliable for 

wetland mapping. First, some nonwetland ecosystems may generate low-

intensity returns, suggesting the presence of surface water when in fact 

there is none. Low-intensity returns have been reported from the Earth’s 

surface under conifer canopies (Lang and McCarty 2009) and from row 

crops in agricultural fields (Garroway et al. 2011). Intensity data are most 

useful when collected in sparsely vegetated areas or during leaf-off because 

vegetation has a greater effect on return signal intensity than ponded 

water. An instance in which intensity data may be unreliable is when the 

water’s surface is rough/ rippled, turbid, polluted, or covered with organic 

debris, such as leaves (Milan et al. 2010; Newcomb and Lang 2012). Under 

these conditions, water bodies may generate strong returns similar to 

those produced in terrestrial systems. Intensity data also cannot distin-

guish seasonally inundated wetlands, such as Delmarva bays, vernal pools, 

or prairie potholes, from surrounding uplands if they were not inundated 

at the time of data collection (Lang and McCarty 2009). Likewise, intensity 

data will be unable to distinguish seasonally saturated wetlands, such as 

wet flat woods, from surrounding upland unless the data were collected in 

an unusually wet year. 

There are also a few technical concerns associated with the use of LiDAR 

intensity data. Raw intensity data should not be used for regulatory pur-

poses because they contain a great deal of noise, which reduces their abil-

ity to distinguish inundated from non-inundated areas. Lee filtering re-

duces the range of the data and improves the separation between the 

inundated and non-inundated classes (Chust et al. 2008; Lang and 

McCarty 2009). A final concern is that intensity values vary with the type 

of scanner used. Accurate inundation maps have been produced from data 

having intensity values of different orders of magnitude, less than 0 .25 

(Brennan and Webster 2006) and 0– 50 (Lang and McCarty 2009). There-

fore, no universal standard or specification for LiDAR intensity can be set 

for regulatory purposes. For these reasons, project areas mapped as inun-

dated or non-inundated based on LiDAR intensity data must always be 

ground truthed during a field investigation. 

Topographic data collected by green LiDAR pulses may also be used to 

model inundation. Unlike intensity data, which represent the energy of the 

last return, LiDAR topographic data model the height of the Earth’s sur-

face. Green or bathymetric LiDAR uses high-energy, short-wavelength 

LiDAR pulses (520  nm) to penetrate standing water and to produce re-
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turns from the underlying substrate. Green LiDAR pulses are often used in  

conjunction with infrared pulses to measure water depth by producing 

returns from both the surface and the underlying substrate. Figures 6a and 

6b were collected using bathymetric LiDAR. These data are subject to 

some of the same concerns described previously. Green LiDAR will be of 

limited use in seasonally saturated or seasonally inundated wetlands, 

depending on the water levels at the time of data collection. Green LiDAR 

may provide evidence of wetland hydrology in estuarine wetlands if the 

data were collected during the growing season as described above. All 

information obtained from topographic datasets collected using green 

LiDAR must be ground truthed during a field investigation. 

Overall, the literature suggests three reasons that neither LiDAR intensity 

data nor topographic data collected using green LiDAR are reliable enough 

to constitute a primary indicator of wetland hydrology. First, they provide 

no information about hydrologic duration or frequency. Second, intensity 

values of standing water fluctuate with environmental conditions, making 

it difficult at times to distinguish wetland and nonwetland values. Third, 

because inundation is seasonal or absent in  many wetland types, LiDAR 

data will classify wetlands as nonwetlands if they were not inundated at 

the time of data collection. However, LiDAR intensity data could be used 

as a secondary indicator of wetland hydrology. As a secondary indicator, 

the patterns of inundation suggested by LiDAR data would have to be 

confirmed by the presence of another hydrology indicator during the on-

site investigation.  

4.4 Conclusions 

In summary, the literature suggests that LiDAR data, products, or models 

that fuse LiDAR with other remote sensing data to predict the presence of 

three-factor wetlands will be useful for planning-level efforts. In the pre-

liminary data-gathering stage of wetland delineations, they can be used to 

divide a project area into LCTs and to model the presence or absence of 

three-factor wetlands, based on landscape-level patterns in vegetation, 

topography, and hydrology. Dividing a project area into LCTs based on 

patterns of vegetation height will be useful only in wetlands characterized 

by abrupt transition zones. LiDAR will be less useful in distinguishing 

between wetlands and uplands with the same canopy type. LiDAR data 

should not be used to make vegetation determinations since they cannot 

identify plants to species and sometimes cannot detect that vegetation is 

present.  
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LiDAR topographic data can also be used to divide a project area based on 

changes in topography or slope. Topographic data can be used to map 

areas with the potential to accumulate water. Point-cloud data and DTMs 

may be used to measure changes in elevation and to calculate slope. How-

ever, these data should not be used as a primary indicator of wetland hy-

drology, since they cannot detect the presence or absence of water. If the 

resolution is sufficient, ground-truthed LiDAR data could be used in sup-

port of secondary hydrology indicators, such as geomorphic position, 

microtopographic relief, raised ant mounds, or frost-heave hummocks. 

Soil or topographic wetness indices derived from LiDAR products cannot 

be used to determine if a hydric soil is present; however, they may predict 

areas in which soils are likely to be saturated. Because wetness indices are 

developed from different types of topographic data collected at different 

spatial scales, it is important to confirm before using it in a preliminary 

investigation that a wetness index was derived from LiDAR data.  

Provided that LiDAR intensity data were collected during the growing 

season, they could be used as a secondary indicator of wetland hydrology. 

Intensity data identify areas that were ponded or inundated on the survey 

date. However, intensity data alone cannot be used to determine if wetland 

hydrology is present as they represent a single collection date and contain 

no information regarding duration or frequency of inundation. For two 

reasons, intensity values should not be used as evidence that wetland 

hydrology is not present. First, intensity data cannot identify seasonally 

inundated or saturated wetlands that lack standing water. In addition, 

under certain environmental conditions, standing water and wetlands may 

produce strong intensity values similar to those produced in uplands. For 

these reasons, all areas identified as wetland and nonwetland by intensity 

data must be ground truthed during the field investigation.  
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Appendix A: Software for Viewing and 

Managing LiDAR Data and Products 

This appendix describes some software that can be used to view, analyze, 

and measure features in LiDAR data and LiDAR-derived. It presents a 

variety of software, ranging from software for investigators with no GIS 

background to software for those with a great deal of GIS experience. In 

each case, either USACE has a license for these programs or the software is 

a free download.  

ArcMap 10.1 

ArcMap 10 .1 is GIS software distributed by Environmental Systems Re-

source Institute (ERSI 2011). ArcGIS supports LiDAR data as LAS or 

ASCII files. The LAS dataset toolbar enables users to display, thin, edit, 

and analyze LiDAR point clouds in ArcMap 10 .1. Help using this toolbar is 

available at 

http://resources.arcgis.com/en/help/main/10.1/index.html#//015w0000003z000000. The 

ArcGIS 3-D analyst is another software extension that enables the user to 

create LiDAR products, such as DEMs or contour lines, from point-cloud 

data and to display, measure, and analyze those products in two dimen-

sions. Common applications include creating intensity images or contour 

lines and estimating surface slope, canopy cover, or height. Figures 4a and 

6a were made using ArcMap 10 .0 . More information regarding working 

with LiDAR data in ArcMap 10 .1 is located at 

http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#/ Assessing_lidar_coverage_and 

_sample_density/00q8000000nm000000/.   

Although ArcMap 10 .1 is an extremely powerful analysis tool, training is 

required to use it effectively. USACE offers week-long GIS training courses 

in ArcMap at the beginner and intermediate levels. A class in Remote 

Sensing Fundamentals, which covers obtaining, modeling, and analyzing 

multispectral, hyperspectral, radar, LiDAR, and digital elevation data, is 

also available. For more information, go to http://ulc.usace.army.mil/CrsSchedule.aspx 

and click on the letter “G” for ArcMap 10 .1 courses (GIS Introduction and 

GIS Intermediate) or the letter “R” for Remote Sensing.  

http://resources.arcgis.com/en/help/main/10.1/index.html#//015w0000003z000000
http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#/ Assessing_lidar_coverage_and_sample_density/00q8000000nm000000/
http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#/ Assessing_lidar_coverage_and_sample_density/00q8000000nm000000/
http://ulc.usace.army.mil/CrsSchedule.aspx
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A free 60-day trial of ArcMap 10 .1 is available at 

http://www.esri.com/software/arcgis/arcgis-for-desktop/free-trial. Support for trial software 

is found at http://www.esri.com/apps/products/arcgis/eval10/evalhelp/index.cfm. 

ArcGIS Explorer Desktop  

ArcGIS Explorer Desktop is a GIS viewer that provides a less technical 

alternative to ArcMap 10 .1. The program is a free download that is easy to 

use and requires no background in GIS. ArcGIS Explorer provides access 

to ready-to-use ArcGIS basemaps and layers online, including World 

Streets, World Imagery, and World Topographic Maps. Users “fly” to dif-

ferent locations by double clicking on a layer. LiDAR-derived products can 

be imported into ArcGIS Explorer in  KML format, in compressed KMZ 

format, or as a GPX file. Other types of remotely sensed data in vector 

(NWI polygons) or raster (aerial imagery) representations can be added to 

these base layers and displayed in two or three dimensions. ArcGIS Ex-

plorer enables the user to view, model, and perform spatial analyses. This 

program is available at http://www.esri.com/software/arcgis/explorer. Help and sup-

port are available at the ArcGIS Online Resource Center: 

http://resources.arcgis.com/en/communities/arcgis-explorer-desktop/. 

Global Mapper 13/dlgv(32) Global Mapper 13.2 

Global Mapper Software LLC designs, develops, and distributes the Global 

Mapper software package. Global Mapper imports LiDAR-derived models 

in raster and vector representations and imports point clouds as LAS or 

KML files. The program prompts the user to supply any missing infor-

mation, such as spatial projection. The software can be used to view, 

measure, and analyze spatial data. Global Mapper connects to the Internet 

and retrieves background maps, such as aerial imagery, street maps, or 

topographic maps, such as 10  m resolution DEMs from NED. However, 

some of these data, such as 1.0  m resolution aerial imagery from the Na-

tional Agriculture Imagery Program, cannot be accessed with the free 

download version. The 10 .0  m resolution NLCD shown in Figure 6c was 

created using Global Mapper 13. The free trial of version 13.2 is available 

at http://www.bluemarblegeo.com/global-mapper/index.php. This software is also distrib-

uted by the USGS under the name dlgv32 Pro at 

ftp://ftpext.usgs.gov/pub/cr/mo/rolla/viewers/dlgv32pro/. 

http://www.esri.com/software/arcgis/arcgis-for-desktop/free-trial
http://www.esri.com/apps/products/arcgis/eval10/evalhelp/index.cfm
http://www.esri.com/software/arcgis/explorer
http://resources.arcgis.com/en/communities/arcgis-explorer-desktop/
http://www.bluemarblegeo.com/global-mapper/index.php
ftp://ftpext.usgs.gov/pub/cr/mo/rolla/viewers/dlgv32pro/
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Google Earth Pro  

Google Earth Pro (GEP) software enables users to view satellite imagery of 

locations anywhere on Earth by typing an address into a search box or 

navigating with a mouse (Terra Metrics 2012). The program is easy to use 

and requires no background in GIS. Users can quickly navigate through 

the landscape using a mouse and cursor, or they can “fly” to a location by 

double clicking on an imported layer. The elevation and the geographic 

coordinates of each location are displayed at the bottom of the screen. 

LiDAR-derived products must be converted into KML format before they 

can be imported into GEP. The program also accepts compressed KMZ 

files. Imported LiDAR products are displayed over the satellite imagery 

base map. GEP includes several base layers that may be useful to investi-

gators, including boundaries, roads, and terrain (a layer that enables the 

viewer to see the terrain in 3D). Other remotely sensed data, such as NWI 

or soil polygons, can be clipped and imported for analysis with LiDAR-

derived elevation data. Markers can be placed at various points in a project 

area. Maps are easily exported, printed, and emailed. Figure 6b was creat-

ed using GEP. 

Quick Terrain Reader 8.0.2 

Quick Terrain software was developed at J ohns Hopkins University’s Ap-

plied Physics Lab and is distributed by Applied Imagery, Silver Spring, 

MD. Quick Terrain Reader (QTR 8.0 .2) is the free companion software to 

Quick Terrain Modeler, a more complex program for editing and modeling 

LiDAR data and creating two dimensional products. No expertise in  GIS is 

required to operate QTR 8.0 .2. This program enables the user to open and 

view extremely large point clouds or models (LAS files) without having set 

projections or geographic coordinates. This program can handle models 

composed of up to 200  million points and point-cloud data composed of 

up to 100  million points. Users navigate through the landscape using a 

mouse and cursor. QTR 8.0 .2 displays data in three dimensions, so care 

must be taken to ensure that the user remains on top of the landscape. The 

software includes tools for measuring length and height. Markers can be 

placed at various points in the landscape. Figures 2, 3, 4b, and 5 were 

generated using QTR 7.1.6. The program can be downloaded for free, along 

with sample LiDAR datasets to explore, at 

http://www.appliedimagery.com/download.php. 

http://www.appliedimagery.com/download.php
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Appendix B: Some Sources of LiDAR Data  

Data.gov 

The purpose of Data.gov is to increase public access to high-value, ma-

chine-readable datasets and to enable the public to find, download, and 

use these datasets, which are generated by the executive branch of the 

federal government. Data.gov provides descriptions of the federal datasets 

(metadata), information about how to access the datasets, and tools that 

leverage government datasets. The data catalogs will continue to grow as 

datasets are added. Executive branch data are included in the first version 

of Data.gov. 

There are many types of data available from this site, much of which are 

not geospatial, such as a list of FDIC failed banks. The fastest way to find 

LiDAR-derived products is to navigate to the datasets page at 

http://catalog.data.gov/dataset and to type “LiDAR” into the search box.  

Louisiana Statewide GIS  

This website (http://atlas.lsu.edu/lidar/) is maintained and operated by the Com-

puter Aided Design and Geographic Information Systems Research Labor-

atory at Louisiana State University. A wide variety of geospatial data are 

available, including LiDAR data. Data can be downloaded as shapefiles 

with contour lines, as DEMs, and as raw or edited point clouds.  

National Center for Airborne Laser Mapping 

The National Center for Airborne Laser Mapping (NCALM) Distribution 

Center website (http://calm.geo.berkeley.edu/ncalm/ddc.html) is hosted and main-

tained at the University of California-Berkeley, Department of Earth and 

Planetary Science, with IT infrastructure support from the Berkeley Seis-

mological Laboratory. It is jointly operated by the Department of Civil and 

Environmental Engineering, Cullen College of Engineering, University of 

Houston, and the Department of Earth and Planetary Science, University 

of California-Berkeley. The National Science Foundation provides funding 

for this website, which makes aerial laser mapping technology (i.e., 

LiDAR) available to the scientific community. The datasets were collected 

under NCALM’s graduate student seed proposal program. Each collection 

http://geo.data.gov/geoportal/catalog/search/search.page
http://geo.data.gov/geoportal/catalog/search/search.page
http://atlas.lsu.edu/lidar/
http://calm.geo.berkeley.edu/ncalm/ddc.html
http://eps.berkeley.edu/
http://eps.berkeley.edu/
http://seismo.berkeley.edu/
http://seismo.berkeley.edu/
http://www.ncalm.cive.uh.edu/seed/proposal.html
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is typically limited to an area of no more than 40  km 2. Figure 3b was made 

from data collected by NCALM. 

National Center for Earth-Surface Dynamics 

These stream restoration data were created or compiled by scientists fund-

ed by the National Center for Earth-Surface Dynamics (NCED). Registered 

users may access and download data at https://repository.nced.umn.edu. Not all 

data are LiDAR-derived. NCED requests that all data obtained from this 

site be properly cited, including any additional citation accompanying a 

specific data set.  

Natural Resources Conservation Service 

Data from the National Elevation Dataset can be downloaded at Geospatial 

Data Gateway (http://datagateway.nrcs.usda.gov/) maintained by the US Depart-

ment of Agriculture, NRCS. To order, select the state and county of your 

project area. If LiDAR data are available, they will be listed under the 

elevation data category as “3 Meter.” 

North Carolina Floodplain Mapping Program 

LiDAR data, aerial imagery, and floodplain maps for every county in North 

Carolina are accessible through a clickable map (http://www.ncfloodmaps.com/). 

Data can be downloaded or users can create maps online and download 

them as PDFs.  

OpenTopography Facility 

The OpenTopography Facility is based at the San Diego Supercomputer 

Center at the University of California, San Diego, and is operated in col-

laboration with colleagues in the School of Earth and Space Exploration at 

Arizona State University. Core operational support for OpenTopography 

comes from the National Science Foundation’s Earth Sciences: Instrumen-

tation and Facilities Program and the Office of Cyberinfrastructure. 

OpenTopography also receives funding from the National Science Founda-

tion and NASA to support research and development activities. 

OpenTopography supplies LiDAR data in a variety of manageable formats. 

The site (http://www.opentopography.org/) features a clickable map that shows 

locations across the country where LiDAR data are available. LiDAR data 

and products collected by ALS and TLS can downloaded in  many formats, 

https://repository.nced.umn.edu/
http://datagateway.nrcs.usda.gov/
http://www.ncfloodmaps.com/
http://www.opentopography.org/
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including as point clouds (LAS or LAZ), as two-dimensional DEMs in 

raster format (GeoTIFF, IMG, Arc ASCII Grid), or as Google Earth files 

(KMZ). After selecting a geographic area, the user is guided through down-

loading a point cloud or selecting a subset of the data (i.e., last or first 

returns) to create a custom DTM, DSM, DEM, or TIN. Figure 3b was made 

from a DEM obtained at this site. 

Puget Sound LIDAR Consortium 

The Puget Sound LiDAR Consortium is an informal group of local agency 

staff and federal research scientists devoted to developing public-domain 

high-resolution LiDAR topography and derivative products for the Puget 

Sound region. Participants include Kitsap PUD; Kitsap, Clallam, and Is-

land counties; the City of Seattle; Puget Sound Regional Council; NASA; 

and the USGS. Registered users may download LAS or ASCII files, DEMs 

in raster representations, georeferenced topographic images, and other 

data at http://www.pugetsoundlidar.org. 

United States Interagency Elevation Inventory 

The US Interagency Elevation Inventory provides high-accuracy topo-

graphic and bathymetric data for the United States and its territories. The 

project is a joint effort between NOAA and USGS with contributions from 

FEMA. A clickable map shows the location and types of LiDAR data avail-

able, including but not limited to topographic LiDAR, topobathy shoreline 

LiDAR, and bathymetric LiDAR. The address is 

http://www.csc.noaa.gov/inventory/#. 

USACE National Coastal Mapping Program 

The USACE National Coastal Mapping Program is designed to provide 

high-resolution elevation and imagery data along US shorelines on a re-

curring basis. The NCMP is executed by the J oint Aerial Lidar Bathymetry 

Technical Center of Expertise (J ALBTCX). Aerial LiDAR and imagery data 

are available for many locations in Washington, Oregon, California, on the 

Gulf and Atlantic Coasts, on the shores of the Great Lakes and on connect-

ing rivers and streams. GIS and LiDAR-derived products include seamless 

bathy/ topo grids, bare earth bathy/ topo grids, building footprints, a shore-

line vector, seafloor reflectance images, basic land cover classifications, 

and RGB and hyperspectral image mosaics. These data can be accessed by 

http://www.pugetsoundlidar.org/
http://www.csc.noaa.gov/inventory/
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going to http://catalog.data.gov/dataset and typing “J ALBTCX + LiDAR” into the 

search box. 

USGS CLICK 

The goal of the USGS Center for LiDAR Information Coordination and 

Knowledge (CLICK) (http://lidar.cr.usgs.gov/index.php) is to facilitate data access, 

user coordination, and education of LiDAR remote sensing for scientific 

needs. 

The LiDAR data viewer (http://earthexplorer.usgs.gov/) shows areas of the US for 

which LiDAR data are available. Check the box marked “LiDAR” under the 

tab marked “Data Sets.” Select a state from the drop-down box under the 

tab marked “Additional Criteria.” Then click the “Results” tab. 

USGS-NPS-NASA EAARL 

LiDAR data acquired by the USGS-NPS-NASA using NASA’s Experimental 

Airborne Advanced Research LiDAR (EAARL) system in a variety of 

coastal environments are available at 

http://ngom.usgs.gov/dsp/data/products_year.php. This project is a collaboration 

among the USGS Coastal and Marine Geology Program’s Integrated Re-

mote Sensing and Modeling Group, NASA’s Wallops Flight Facility, and 

the National Park Service’s (NPS) Inventory and Monitoring Program. 

Figures 5a and 5b were made from data downloaded from this site. 

USGS National Map Seamless Server 

Both LiDAR-derived and non-LiDAR-derived elevation data are available 

for download on the Seamless Server Data Warehouse at 

http://nationalmap.gov/viewer.html. Click the box marked “Elevation Availability.” 

To see LiDAR coverage areas, click the box marked NED 1/ 9 ~ 3 meter - 

Staged to see locations where LiDAR data are available. These data can be 

extracted from the National Map Seamless Server by highlighting an area 

of interest and clicking the download button at 

http://viewer.nationalmap.gov/viewer/. 

Wikipedia 

Wikipedia lists a number of LiDAR data sets by state and county and pro-

vides links to the data. These tables were created from an American Socie-

ty for Photogrammetry and Remote Sensing publication and from NOAA’s 

http://catalog.data.gov/dataset
http://www.data.gov/search/node/JALBTCX%20%2B%20Lidar
http://lidar.cr.usgs.gov/index.php
http://earthexplorer.usgs.gov/
http://ngom.usgs.gov/dsp/data/products_year.php
http://marine.usgs.gov/
http://coastal.er.usgs.gov/remote-sensing/
http://coastal.er.usgs.gov/remote-sensing/
http://nationalmap.gov/viewer.html
http://viewer.nationalmap.gov/viewer/
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Topographic and Bathymetric Data Inventory and are found at 

http://en.wikipedia.org/wiki/National_Lidar_Dataset_(United_States). 

http://en.wikipedia.org/wiki/National_Lidar_Dataset_(United_States)
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