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ABSTRACT

An adaptive boundary element scheme is developed using the concept of local
reanalysis and quadratic h-hierarchical functions for the construction of near op-
timal computational models. The use of local reanalysis in the error estimation
guarantees the reliability of the modeling process while the use of h-hierarchical
elements guarantees the efficiency of the adaptive algorithm. The technique is
developed for the elastic analysis of two-dimensional models. A practical exam-
ple of a micro structure component shows the rapid convergence of the results with
few refinement steps.

INTRODUCTION

Adaptivity is the availability of a reliable error analysis allowing the discretized
model to be selectively refined and thus improved. In more precise terms Rank
[1] states that the key to adaptivity is " ••• a more or less accurate knowledge
about the size and distribution of the error for a given FEM or BIEM approxima-
tion. Usually this knowledge has to be extracted a posteriori from the numerical
solution in the form of error indicators for the local error and error estimator for
the global error in some norm ".

The refinement will be necessary when the solution obtained from the analy-
sis is not satisfactory. The accuracy of the solution may be verified by use of error
estimators, but engineering considerations may also be used to test the reliability
of the results. Once it has been judged necessary to refine, error indicators are
used to show where the refinement should occur.
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The adaptive algorithm should be both reliable (i.e. the desired error con-
trol should be guaranteed) and efficient (i.e. the computational work should be
minimal).

In this paper, the concept of local reanalysis is adopted in the error estima-
tion to guarantee the reliability of the quadratic /z-hierarchical adaptive scheme.
The emphasis is on two-dimensional elastic problems.

/i-HIERARCHICAL (QUADRATIC) SHAPE FUNCTIONS

The main idea behind the use of h- hierarchical [2], instead of standard, shape
functions is to improve the efficiency of the adaptive algorithm, since the compu-
tational work spent in the build up of the matrix for one iteration is saved to be
used in the next iteration. The accuracy obtained using either of the two types
of shape functions is the same as they just represent two different bases for the
same functional space.

To define quadratic h- hierarchical shape functions [3] one starts with the
polynomials

to represent the approximate solution <£, on a certain geometric element Tg that
has been mapped to the interval [—1,1] by

c=l

Let A be the number of hierarchical levels (i.e. the number of iterations
in the adaptive procedure) and 'H\ the list of integers indicating those pairs of
/i-hierarchical functions that are used in the current mesh (for each level A there
are at most 2^~* pairs). The approximate solution is then given by

c=l

where

- I- I otherwise
1

/ 2(̂ -1) '
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and t\,n is a one-to-one mapping from [aA,n>&A,n] to [-1,1] defined by

Figure 1 shows shape functions of the 1st hierarchical level and two out of
four for the 2nd hierarchical level.

It is important to notice that </?A,n does not represent the approximate so-
lution (p at the new collocation points £A,H> but rather auxiliary unknowns. To
obtain the actual value of y>, these unknowns have to be computed and substi-
tuted into equation (1) at £ = £A,U-

Also, due to the presence of (p\̂  which do not have any physical meaning,
the Cauchy principal values (CPV) at £\,n have to be calculated with a direct
method rather than indirectly (like using rigid body motion).

In the adaptive process the geometric elements are never modified. Their
number is usually quite low as they only have to represent the geometry and
boundary conditions y^ On refined elements, other degrees of freedom and
internal modes (bumps) are added to the original interval [-1,1].

BEM FORMULATION FOR 2D LINEAR ELASTOSTATICS

The starting point for the direct BEM formulation for 2D elastostatics without
body forces is the Somigliana's identity for displacements [4]

«,j=l,2 (2)

where P is the source point and Q is the field point lying on the boundary P. U*-
and T*J are the kernel functions and Uj and tj are the displacement and traction
components respectively. Cij(P) are the free terms which depend only upon the
local geometry of F at P and orientation with respect to global axes.

For the numerical implementation of equation (2), the boundary F is divided
into q continuous quadratic elements F& and equation (2) becomes

6=1
/"
/
6̂6=1

where «/&(£) is the Jacobian of the one-to-one mapping between the curvilinear
abscissa along F& and the intrinsic coordinate f .

After application of the boundary conditions the whole set of linear equations
in the current iteration of an adaptive process can be expressed in matrix form
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In the next iteration when new degrees of freedom corresponding to the h-
hierarchical shape functions are added, the system of equations will have the
form

n A u ] \ x i ] _ \ b i
ai ^22 J [ *2 \ " [ b*

where the matrices AH and b\ remain unchanged.

Special care in the numerical integration

In the first iteration of the adaptive process, for the case when P lies within
F&, the values of the free term C{j(P) and the integral that contains T£, which
is strongly singular and therefore exists only if defined in the Cauchy principal
value (CPV) sense, are calculated indirectly by using rigid body motion.

For the next iterations the values of ĉ -(P) and the singular integrals have
to be calculated directly. Since the added collocation point P is located inside
the subelement, the value of Cij(P) at f,\,n is given by

Ctj(6,n) = I 0 1/2

The strongly singular integral is given according to Guiggiani [5] by:

i if \ 7 I ^ A

where
;̂J(£A,TI) = T*j(<

is a continuous regular function in [—1,1].

The quantity /itj(£\,n) assumes the following values

0 --r%7?

Thus, each CPV integral is reduced to a regular integral plus a simple closed-
form-term. Notice that the use of Telles transformation [6] in the regular integral
avoids f being coincident with £\,n-

In all preceding numerically calculated boundary integrals, Telles' transfor-
mation [6] is used. This transformation bunches the integration points closer
to the singularity by using a third degree polynomial transformation allowing a
smaller number of integration points for the same accuracy. Furthermore, Telles'
transformation gives better results than if Gaussian quadrature is applied directly,
and permits the computation of terms with singularities of order 0(ln(r)).
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In the ^-hierarchical adaptive process, special care should be taken when
the source point is located close or inside a large element (usually the original
element). As a general rule, increasing the number of integration points in the
calculation of the boundary integrals provides improved accuracy of results. On
the other hand, as this number increases, the computer program becomes less
efficient. The method of selective integration [7] ensures an optimal balance be-
tween accuracy and efficiency using the minimum necessary number of integration
points over the element situated at a certain distance from the source point.

The optimal number of integration points for a required accuracy depends
on the relative position of the source point to the boundary element along which
integration is carried out. The minimum distance required for a given number of
integration points adopted in the program is given in Table 1.

Location of P
Boundary F

No. of integration points
4
4.0

6
1.4

8
0.7

10
0.4

16
0.18

32
0.05

64
0.

Table 1: Minimum distance D required against number of integration points.

THE PRINCIPLE OF LOCAL REANALYSIS

To assess the reliability of the modeling process an interpolation-type a posteriori
error estimation is developed using the principle of local reanalysis. Before we
define what is meant by " local reanalysis " it is worth investigating how one can
estimate the error in a boundary integral equation. For that, let us consider a
boundary integral equation of the form

The boundary F is subdivided into a certain number of elements and the
exact solution approximated on each element Fg by

(p(s) ~ <
k=i

where

rie is the number of degrees of freedom on element Fg;

{Nk}k>i &re piecewise polynomials basis functions;

{&k}k>i are nodal values of the approximation <p to be determined.

The residual function is denned by

r(s) = tC(p- f(s) , for 5 € F .
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In the collocation method, the residual function is set to zero at all the n boundary
nodes

r(a,) = 0 , i = 1,2,...,% .

This leads to a system of equations to be solved. The nodal values {(pk}k>\ are
then obtained and thus the approximation y determined.

In 'this approach, starting from the assumption that a local change in the
mesh will affect the solution only if the latter is not accurate enough, we introduce
the concept of local reanalysis to measure the sensitivity of the solution once the
mesh has been locally modified. In what follows we explain the concept of local
reanalysis.

After the first approximation (p is obtained, we need to test its quality. The
following discrete representation of the equation JC(p — f is then obtained

= /(,,), for 2 = !,...,%,

where m is the number of elements on the boundary F and n the number of
collocation points.

Suppose that element Tj has been selected for reanalysis. The previous
equation can then take the form:

A'(6,-,#(# = /(a,),
r>

with Si being any node on the element Fj, (p the predicted solution on the element
TJ calculated during local reanalysis; and a, given by

The values of y on the portion F — Tj of the boundary are supposed to be
known from y, thus a; is considered as known and the only unknowns (p are on
the element Tj. One discretizes only the element Tj into two subelements with
nrv, nodal points (if quadratic elements are used n^- — 5, see Figure 2), and solves
the equation

/
JT

K(si, t)(p(t)dt = g(si) = /(*,-) - cii , for * = 1, . . . ,

This produces a very small system relative to the one obtained when doing
the analysis on all the boundary since the degrees of freedom are only those on
the portion Tj of the boundary F. Hence, local reanalysis is relatively quick
to perform. This idea has been first suggested by C as ale [8] in his dissertation
thesis. Its use as an error estimator has already proved reliable in the case of
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potential problems [9]. Figure 3 shows how the local system of equations for the
local reanalysis is obtained from the global one.

Local reanalysis is achieved over each element by refining the approximation
over the element considered; computing a new solution by assuming that the
boundary values on all the other elements are already known; and comparing it
to the previous one providing a quick feedback on the quality of the solution.
The use of local reanalysis enables us to build an error estimate - substituting
the exact solution by the one obtained from the local reanalysis - which provides
a measure of how the solution is affected by a local change in the mesh.

ERROR INDICATORS

After performing the local reanalysis over each element of the boundary we get a
predicted solution (p. If (p is the numerical solution obtained from the standard
boundary element analysis, the exact error is then approximated by Ay = (p — (p.

Error indicators are defined by measuring - in the J^-norm - the difference
between the two solutions (p and (p. The basic (although empirical) idea is that
the difference between the two solutions is an indication of how sensitive is the
solution (p to a local change in the mesh, providing some information about where
the refinement should occur.

Assuming a uniform distribution of the error on the boundary F, the relative
error percentage on the element F, is defined by

xlOO%,

where n is the number of elements in the mesh.

The self-adaptive mesh refinement strategy is controlled by specifying for
all elements

rj, < 7% ,

where TL is a user-specified tolerance. It is important to notice that TL is a local
requirement.

For linear elasticity problems one needs to look at the convergence of the
displacements and stresses. Convergence of the stresses implies that of displace-
ments whereas the converse is not true.To provide a stable error indicator the
error in Von Mises stresses

°vm = y Cf\i f 0^2 + <?33 + 3̂ 12

has been used.

Two sets of values of the stress tensor have to be computed : a obtained from
the values of u = (%%, u^) and i = (fi, i?) , and a obtained from the values of u -
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(tti, #2) and t = (?i, £2)- To compute the stress tensor values on the boundary the
approach described by Lachat [10] is used. First, the local stresses are calculated
using a finite difference scheme and then, a transformation is carried out to obtain
the global values of the stress tensor from the local ones. The error indicators for
the Von Mises stress are defined as

100%*""'° '

STOPPING CRITERIA

The refinement procedure can be terminated by use of different stopping criteria:

• If r^ < TL for all elements.

• By specifying an error bound TQ for the global error percentage of the
solution, if one is interested in the global accuracy:

i

x 100% < TQ ,

However, one should keep in mind that a good overall accuracy could well
mask large errors in small parts of the boundary.

• By storage considerations, that is, by specifying the maximum number of
degrees of freedom the user is prepared to include in the analysis.

• By time limitation considerations specifying, for example, a maximum num-
ber of re-solutions.

• By studying the constants of a boundary value problem like the global
equilibrium or the norm ||y>||, namely

^ny < f
** " — w\\ —

where k and k + 1 represent two successive iterations.

ADAPTIVE STRATEGY

The adaptive refinement strategy is described by the following algorithm:

Step 1-Define shape and boundary conditions

Step 2-Perform standard BEM analysis using /^-hierarchical functions

Step 3-Compute the norm of the solution

Step 4-Local reanalysis:
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* Subdivide the element

* Form the small system of equations AX = B

* Solve the system of equations

* Compute the norms of the local errors ||Ay|| = \\(p — (p\\

Step 5-Compute the global percentage errors:

Step 6-Compute the local percentage errors on the elements F,:

%H2 .

Step 7-If one of the stopping criteria is satisfied, then STOP,

else subdivide the elements I\ for which: r^ > f, and Go to step 2

NUMERICAL APPLICATION

The proposed adaptive scheme has been applied to a practical 2D study of an ac-
celerometer hinge submitted to a prescribed displacement. This device measures
the acceleration of bodies, utilizing capacity effects caused by its deformation
in an electrical field. The geometry, boundary conditions and corresponding de-
formed shape are shown in Figure 4. The hinge is fixed at the lower block by
prescribing zero displacement in both directions at point B and in the x^ di-
rection at point C. The upper block is bent in the x\ direction by applying a
displacement of magnitude -0.01mm at point A. The material properties are
2 = 1.9 x lOSW/mnf and y = 0.31.

Considering a local tolerance TL = 0.5% and a global tolerance TQ = 0.05%,
the meshes in the adaptive process are shown in Figure 5. As expected, a high
graded refinement occurs in the thinner area of the structure.

The maximum Von Mises stress obtained by the present adaptive analysis
is compared with BEASY (554 boundary elements) and ANSYS results (a very
fine finite element mesh) in Table 2. In all the analyses, the maximum stress
occurs in the same region. Figure 6 shows the contour plot obtained by BEASY
analysis.
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No. of elements
Max. (Tyrn

Present Adaptive Scheme
66

26.628
82

27.316
106

28.631
138

28.838

BEASY
554

28.941

ANSYS
—

28.940

Table 2 : Maximum Von Mises stress.

The values of the global error estimator r^ and the stopping criteria
(for (p — oryrn) are shown in Table 3.

Mesh
1
2
3
4

No. Elements
66
82
106
138

7%?i
4.788%
1.576%
0.553%
0.219%

2̂

0.829 %
0.509 %
0.111%

Table 3: Parameters of the adaptive procedure.

CONCLUSION

A new quadratic /i-hierarchical adaptive strategy for boundary element method
using error estimation based on the concept of local reanalysis has been pro-
posed for the construction of near-optimal computational models. The use of
local reanalysis in the posteriori error estimation guarantees the reliability of the
modeling process while the use of ̂ -hierarchical shape functions over the elements
guarantees the efficiency of the adaptive algorithm, since the computational work
spent in the build up of the matrix for one iteration is saved to be used in the
next iteration.

In order to avoid excessive integration errors when the length of the sub-
element is very small compared to the original one, and to increase the efficiency
of the numerical integration, Telles' transformation is used in conjunction with a
selective integration scheme.

The proposed adaptive strategy has proved to be successful in solving practi-
cal problems and produced good results with much fewer elements than standard
non-adaptive boundary element or finite element codes.

It is the authors' belief that successful solutions of the two basic problems
in adaptivity (reliability and efficiency) will have a profound influence on the
boundary element software of tomorrow.
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Figure 1: Quadratic /i-hierarchical shape functions: A = 1 and 7i\ — 1; A = 2 and
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r -*

\ Original nodal points /

Additional nodal points

Figure 2: Local discretization for local reanalysis.

i 1

Effect of additional collocation points

Global analysis

Local analysis

Figure 3: Matrix illustration of local reanalysis.
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Figure 4: Geometry, boundary conditions and the corresponding deformed
shape of the accelerometer hinge.
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MESHl
66 elem.

MESH 2
82 elem.

MESH 3
106 elem.

MESH 4
138 elem.

(a) (b) (c) (d)

Figure 5 : Adaptive meshes of the accelerometer hinge.
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Figure 6: Contour plot of the Von Mises stresses using BEASY analysis.

                                                             Transactions on Modelling and Simulation vol 3, © 1993 WIT Press, www.witpress.com, ISSN 1743-355X 


