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Abstract: Exoskeletons are a promising tool to support individuals with a decreased level of motor
performance. Due to their built-in sensors, exoskeletons offer the possibility of continuously recording
and assessing user data, for example, related to motor performance. The aim of this article is to
provide an overview of studies that rely on using exoskeletons to measure motor performance.
Therefore, we conducted a systematic literature review, following the PRISMA Statement guidelines.
A total of 49 studies using lower limb exoskeletons for the assessment of human motor performance
were included. Of these, 19 studies were validity studies, and six were reliability studies. We found
33 different exoskeletons; seven can be considered stationary, and 26 were mobile exoskeletons.
The majority of the studies measured parameters such as range of motion, muscle strength, gait
parameters, spasticity, and proprioception. We conclude that exoskeletons can be used to measure
a wide range of motor performance parameters through built-in sensors, and seem to be more
objective and specific than manual test procedures. However, since these parameters are usually
estimated from built-in sensor data, the quality and specificity of an exoskeleton to assess certain
motor performance parameters must be examined before an exoskeleton can be used, for example, in
a research or clinical setting.

Keywords: wearable robotics; wearable devices; test; diagnosis; range of motion; strength; gait;
proprioception; stiffness

1. Introduction

A higher level of motor performance is associated with an increased functional per-
formance, for example, the ability to carry out activities of daily living (ADL), as well as
reduced injury and mortality [1]. With increasing age or due to injuries or illnesses, motor
performance including, but not limited to, strength, balance, flexibility, endurance, or gait
performance, decreases gradually or suddenly [2–7]. As a result, affected individuals may
require assistive devices to carry out ADLs and remain independent. About 1.5 percent
(3.6 million) of U.S. citizens use a wheelchair to maintain their mobility, and an additional
4.8 percent (11.6 million) use canes, crutches, or walkers [8]. It is estimated that about one
percent of all persons across the globe use a wheelchair [9]. Research shows that motor
limitations put individuals at higher risk for poverty, lower educational attainment, and
lower economic and social participation, and may lead to an overall decreased quality of
life [10].

To overcome these problems, exoskeletons (e.g., see Figure 1) can be used to reintegrate
persons with motor disabilities into social life [11]. Furthermore, they can be used to support
patients as well as therapists or trainers in the rehabilitation or training progress [11,12].
Exoskeletons are mostly electrically powered robotic devices that fit tightly against the
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body and use rigid structures to empower or augment the user’s movements [13]. Different
classifications are used for exoskeletons. The most common distinction is based on the
field of application (e.g., military, occupational, medical), and the body area supported
(e.g., upper limbs, trunk, lower limbs, whole body). Moreover, they can also be classified
by their design, that is, anthropomorphic (some or all rotation axes of both robot and
human are in alignment, and the exoskeleton replicated most of the human’s degrees of
freedom (DoF)); quasi-anthropomorphic (rotation axes are not in alignment with the human
joint, but the function of the exoskeleton joint is similar to its human counterpart); and
non-anthropomorphic (the exoskeleton joints are in not in alignment with the human joint
at all) [14]. In this review, we only considered exoskeletons for the lower limbs (whole leg
or single joints), and differed stationary or mobile exoskeletons.
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For control purpose, exoskeletons are usually equipped with three different types of
sensors: (1) sensors to primarily detect the internal state of the exoskeleton (e.g., inertial
measurement units (IMU), joint angle encoders, torque, and force sensors), (2) sensors to
detect the interaction between exoskeleton with the environment (e.g., sensorized insoles
or distance sensors), and (3) sensors to directly measure the state of the user (e.g., heartrate,
electromyography, or electroencephalography) [15–17]. Sensor types (2) and (3) are used
to detect motion intention of the human, and sensor type (1) is primarily used to control
the movement of the exoskeletal joints, in relation to the required support of the user [18].
Due to their proximity to the body, these sensors, similar to those of other wearables (e.g.,
smartwatches, smart shirts, etc.), can capture and track the user’s physical and motor
functions. In research and clinical practice, physical and/or motor performance data is
mainly collected in stationary settings, and usually only when there is an indication, for
example, during an acute illness. At the same time, data collection through clinical tests
or assessments is time-consuming, costly, and personnel-intensive [19]. In contrast, novel
technology, particularly portable sensors, may allow for rather easy, less-expensive, and
continuous monitoring of physical and/or motor performance data of individuals [20].
According to Antonovsky’s salutogenesis model, it is assumed that the onset of a disease
should not be regarded as a sudden event, but underlying pathology likely progressed
and developed over a certain period of time [21]. Furthermore, health-related parameters
often fluctuate even within individuals, and during periods as short as minutes or hours
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depending on various circumstances (e.g., stress, fatigue, weather). A prominent example of
this is the “white coat effect”, which demonstrates that blood pressure rises when measured
in a clinical compared to non-clinical setting [22]. Thus, a one-time snapshot measurement
would not be useful/representative and sensitive enough to detect such fluctuations, or
it would only detect an extreme deviation from the mean. To this end, exoskeletons, and
similar wearables devices may be used to continuously record and automatically evaluate
even subtle changes of certain health-related parameters [23–25]. A further advantage of
robotic or exoskeletal assessments pertains to the collection of data that were previously
not available, or were only available to a limited extent, for example, due to physical
limitations of the individual [26]. With regard to motor performance, exoskeleton-derived
information can be used to monitor the performance and health of the user, and to evaluate
the rehabilitation progress, for example, related to gait quality (e.g., step length, step width,
cadence). Furthermore, these data could inform decisions about necessary (technical)
support, medical interventions, or the creation and adaptation of training plans [27].

The majority of exoskeletons already have different integrated sensors (e.g., angular
encoder, IMUs, or pressure sensors). To date, these sensors are mainly used for two different
purposes: first, to determine the current state of the exoskeleton, and thus to monitor and
adjust forces/moments and trajectories provided by the control system; and second, to
estimate the user’s movement intention, and hence, to be able to adjust the exoskeleton to
the needs of the individual user [15,28].

In an initial, non-systematic review published in 2016, Maggioni et al. [29] examined
the possibilities of assessing lower extremity function using robots, and regarding param-
eters such as range of motion (RoM), muscle strength, or proprioception. The authors
conclude that future robot-supported assessment methods should not only replicate to-
day’s established test methods, but that the advantages of the robot-supported assessments
should also be used to develop new procedures. However, the ecological validity should
not be compromised to ensure that such novel procedures are applicable in practice, and
the data generated is useful. Ideally, the applied methods should also be transferable to
other robotic devices. Overall, the authors regard the use of robots to assess lower extremity
function as a “green field” that offers great potential for rehabilitation, but also requires
valid and reliable methods. A second review [30] focused on the usability of rehabilita-
tion robots to assess balance capacity. The authors conclude that robots currently have
both, advantages in clinical routine (e.g., faster and more reliable examinations, testing
and training with one device) as well as disadvantages (e.g., high costs and unfamiliar
handling). Another review on the use of robotic technology to assess upper limb muscle
strength identified five different therapy robots, and showed that these robots can reliably
and sensibly quantify arm force (e.g., force magnitude, force direction, or moment of a
force) [31]. Two other reviews [27,32] examined the measurement of upper limb movement
performance using robots in rehabilitation with stroke patients and healthy children. The
authors showed that robots can be used to record parameters such as active RoM, move-
ment time, speed and smoothness of the motion, and precision. Furthermore, the authors
note that the clinical utility of the data is not yet fully clarified, and a lack of standards
makes it difficult to use and compare robots with other measurement tools. Furthermore,
both reviews [27,31] mention that it is necessary to increase the validity and reliability of
robot-based assessments for clinical use.

To the best of our knowledge, no review has been published that examined the use
and efficacy of lower limb exoskeletons as an assessment tool for human motor perfor-
mance. The specific goals of this systematic review were thus to (1) provide an overview of
literature on this topic, (2) examine which parameters of motor performance (e.g., strength,
joint angles, proprioception) can be/have been measured using lower limb exoskeletons,
and (3) explore which approaches have been used to assess motor performance through
exoskeletons. In addition, we were particularly interested in studies that compared the va-
lidity of exoskeleton-assisted measurement methods to a gold standard, as this information
would be valuable to determine the validity and reliability of the data collection.
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2. Methods

We conducted a systematic review following the criteria of the “Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA)” statement [33]. This study
was also registered at PROSPERO (CRD42021274215), along with a detailed description of
the study protocol and methods.

2.1. Eligibility Criteria

The eligibility criteria for this systematic review were defined using the PICO frame-
work [34] as follows. (1) Participants: We did not apply any exclusion criteria with regard
to study population. Since exoskeletons are primarily used in therapy settings, we opted
to not make any restrictions regarding diseases or physical limitations. Likewise, we did
not make any restrictions regarding age of study participants. (2) Intervention: We only
included studies that used lower-limb exoskeletons or wearable robotic devices for assess-
ing motor performance. We considered all devices, regardless of whether they support
only one joint (e.g., ankle, knee, hip) or multiple joints. Fixed-frame exoskeletons were also
considered. Studies that examined exoskeletons for other body parts such as back, arms,
or hands were not considered for this review. Similarly, rigid robots that do not have an
exoskeletal structure were excluded from this review. In terms of motor performance, a
wide range of parameters was considered. We were mainly interested in balance (i.e., the
ability of keeping the body in a stable position thereby avoiding falls), joint angles (i.e., the
angle between two body segments connected by a joint), muscle strength (i.e., the ability to
generate force), proprioception (i.e., the awareness of the position and/or movement of
body parts), muscle stiffness (i.e., the resistance of muscle to length change, mainly static),
muscle impedance (relation between force and length of a muscle relying on a combination
of stiffness, damping and mass), and various gait parameters such as phase, speed, or step
length. Studies in which cognitive parameters were measured were excluded. Studies
that merely simulated an exoskeleton were also excluded. (3) Comparison and outcome:
No inclusion or exclusion criteria were defined regarding comparison and outcome pa-
rameters. Studies comparing data collected through an exoskeleton with a (clinical) gold
standard/laboratory instrument were desired. Furthermore, we only considered studies
published in English or German.

2.2. Information Sources

PubMed, Scopus, and Web of Science databases were used to identify articles. The
search was performed in July 2021. In addition, reference lists of selected studies were
screened for possible matching articles. An updated search was performed in February 2023.

2.3. Search Strategy

For all databases we used the following systematic search term strategy: ((exoskelet*)
OR (“assistive device”) OR (“wearable robot”)) AND ((“motor performance”) OR (“strength”)
OR (“balance”) OR (“flexibility”) OR (“walking function”) OR (“gait pattern”) OR (“joint
impedance”) OR (“range of motion”) OR (“proprioception”) OR (“fall”) OR (“speed”) OR
(“endurance”)). The search was limited to the titles, abstracts, and keywords. No further
restrictions were made.

2.4. Selection Progress

After downloading all articles, all duplicates were removed, and the retrieved publica-
tions were screened independently by two reviewers (T.M. and F.M.) for suitability based
on their title. In the next step, the abstracts of all remaining studies were again screened
independently by the same two reviewers. In the final stage, we read all full texts of the
remaining studies, and used our pre-defined inclusion and exclusion criteria to decide
whether a study would be included in the review or not. In the case of a disagreement
in any of the steps described above, a third reviewer (J.K.R.) was available for mediation.
The updated search in February 2023 was only performed by one reviewer (T.M.). The
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literature management was done using the Citavi software (Version 6.10, Swiss Academic
Software GmbH, Wädenswil, Switzerland). No automation tool was used in this process.

2.5. Data Collection Process and Data Items

To derive necessary information from eligible studies, a standardized data extraction
form was utilized. First, all included studies were described in terms of study design
and population characteristics. In the next step, we collected information about specific
characteristics of the use of the exoskeleton, for example, type, sensors, sensor location, type
of motor performance, activity while motor performance data were collected, the sensor-
derived parameters, and possibly comparison to the gold standard. Two authors (T.M. and
F.M.) independently extracted these study characteristics. If there was a disagreement or
discrepancy, a third author (J.K.R.) was consulted.

2.6. Study Risk of Bias Assessment

The quality of each validity or reliability study included in this review was assessed
independently by two authors (T.M. and F.M.). To this end, we used a modified and adapted
version of the National Heart, Lung, and Blood Institute (NHLBI) Quality Assessment Tool
(QA) for before–after (pre-post) studies with no control group [35]. This tool can be used
to rate a study’s bias concerning research question, sample characteristics, description of
the test procedure and measurement methods, and analysis of the data. As items 4, 8, 9,
and 12 (inclusion of all eligible participants, blinding, loss to follow-up, and group level
analysis) were not relevant to the studies included in this review, we removed these items
from the assessment. The maximum possible quality score was eight points. In addition,
those studies included in our review that were not validity or reliability studies, used the
measurement function of the exoskeletons only as a tool, and the goals and methodological
designs of these studies are of limited relevance to the content of this review. Therefore,
these studies (n = 22) were not examined for their quality.

3. Results

The initial search in July 2021 resulted in 1041 publications from PubMed, 4466 publi-
cations from Scopus, and 1156 publications from Web of Science databases. After removing
duplicates, 4507 articles remained for the title and abstract screening. After both screening
stages, 4461 studies were excluded, and 91 studies remained. After the eligibility screening
of the full texts, another 72 articles were excluded. The main reasons for this were that the
articles dealt with exoskeletons for the upper extremities, that robots were used instead of
exoskeletons, and that motor performance was measured with an external measurement
method instead of an exoskeleton. Furthermore, we could not retrieve the full text for
two articles, and one article was written in Spanish language. Furthermore, the reference
screening of all included studies resulted in 32 additional publications, of which 20 were
included after the eligibility screening. The updated search resulted in 10 further studies.
Thus, a final number of 49 studies were included in this review (Figure 2).

An overview of the included studies is provided in Table 1. Furthermore, in Table 2,
a summary of all studies which tested the exoskeletal measurement methods for validity
and/or reliability can be found.
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Table 1. Overview and brief description of included studies (Abbreviations: 6MWT, 6-min walk test; CPR, counts per revolution; FSR, Force Sensing Resistor; IMU,
Inertial Measurement Unit; n.d., not described; RS, reliability study; VS, validity study).

Author Exoskeleton Motor Performance
Parameter Sensors Task VS RS

Joint Angles
Lunenburger et al. [36] Lokomat

(full leg; stationary)
Hip and knee angle Position sensors (potentiometers) n.d.

X X
Chaparro-Rico et al. [37] X X

Hu et al. [38] Lower extremity exoskeleton
(full leg; stationary)

Hip, knee and
ankle angle

Encoder (hip), three
degree-of-freedom (3-DOF) magnetic
sensor/a pantographic
exoskeleton sensor

Sit to Stand exercise � X

Bryan et al. [39] Exoskeleton emulator system
(full leg; stationary)

Hip, knee and
ankle angle Magnetic rotary encoders Walking on a treadmill X X

Agrawal et al. [40] X X
Banala et al. [41] X X

Gravity balancing orthosis
(hip and knee; stationary)

Hip and knee angle
Optical joint encoders (USDigital,
2500 CPR, 1 kHz, Vancouver,
WA, USA)

n.d.

Veneman et al. [42] LOPES Exoskeleton
(hip and knee; stationary) Hip and knee angle n.d. Sagittal walking on a treadmill � X

Fan and Yin [43] Standing bed exoskeleton
(hip and knee; stationary) Hip and knee angle Angular encoder (200 Hz) n.d. X X

Koginov et al. [44] Myosuit
(hip and knee, mobile) Thigh angle 5 IMUs (2 on each shank and thigh, 1

at the back, 100 Hz) n.d. � X

Zhang et al. [45] Single-joint robotic hip exoskeleton
(hip; mobile) Thigh angle IMU (50 Hz) n.d. X X

Molinaro et al. [46] Robotic hip exoskeleton
(hip; mobile) Hip angle

Absolute magnetic encoders (Orbis,
Renishaw, Wotton-under-Edge, UK;
100 Hz)

n.d. X X

d’Elia et al. [47] Active pelvis orthosis (APO)
(hip; mobile) Hip angle

2 absolute 17- bit Rotary Electric
Encoder™ units (DS-37 + DS-25
Netzer Precision Motion Sensors Ltd.,
Misgav, Israel)

Walking on a treadmill � X

Buesing et al. [48] Honda Stride Management Assist
(hip; mobile) Hip angle Angular sensors n.d. X X
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Table 1. Cont.

Author Exoskeleton Motor Performance
Parameter Sensors Task VS RS

Pinheiro et al. [49] Ankle–foot exoskeleton
(ankle; mobile) Ankle angle

Potentiometer (resolution: 0.5◦;
100 Hz), four strain gauges, FSR (toe
and heel)

Walking at 1 km/h X X

Bolus et al. [50] Instrumented ankle–foot orthosis
(ankle; mobile) Ankle angle

Optical encoder (S4T, US Digital,
1 kHz, Vancouver, WA, USA), 4 IMUs
(MTw Series, XSense,
50 Hz, Enschede, The Netherlands)

Walking on a treadmill at 1 m/s X X

Satici et al. [51] SUkorpion AR
(ankle; mobile) Ankle angle Angular encoder n.d. X X

Park et al. [52] Active Soft Orthotic Device
(ankle; mobile) Ankle angle Custom-built strain sensor; IMUs n.d. � X

Aíin et al. [53]
MAFO (motorized ankle
foot orthosis)
(ankle; mobile)

Ankle joint
angular position n.d. n.d. X X

Durandau et al. [54]
Symbitron
Exoskeleton (only ankle modules)
(ankle; mobile)

Ankle angle Rotational encoder (16 b MHM, IC
Haus, Bodenheim, Germany) n.d. X X

Dambreville et al. [55]
Electrohydraulic robotized
ankle–foot orthosis
(ankle; mobile)

Sagittal plane
ankle angle Optical encoder n.d. X X

Proprioception

Chisholm et al. [56] � �

Domingo et al. [57] X X

Domingo and Lam [58]

Lokomat
(full leg; stationary)

Proprioception (hip
and knee)

Angular encoder/potentiometer

(1) Automated movement of the
joints; participants push a
button when felt a movement;
participant‘s legs are unloaded

(2) The participant reproduces a
shown/memorized position

(3) The participant reproduces a
memorized position

� �

Dambreville et al. [55]
Electrohydraulic robotized
ankle–foot orthosis
(ankle; mobile)

Proprioception (ankle) Optical encoder, load cell Walking on a treadmill, pushing a
button if perturbation is remarked X �
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Table 1. Cont.

Author Exoskeleton Motor Performance
Parameter Sensors Task VS RS

Gait Phase, Spatio-temporal Gait Parameters and Walking Ability

Maggioni et al. [59] Lokomat
(full leg; stationary)

Walking ability (based
on the required amount
of support)

force sensors, potentiometers (hip and
knee angles) n.d. X X

Lonini et al. [60] ReWalk
(full leg; mobile)

Walking ability score
(step frequency, standard
deviation of the frontal
angle, approximated
energy expenditure,
number of steps)

Accelerometer (Actigraph, ActiGraph
LLC, Pensacola, FL, USA) on
exoskeleton (mid-sagittal position,
20 cm above hip)

6MWT (�) X

Gambon et al. [61] EksoGT exoskeleton
(full leg; mobile)

Stride time + length, gait
speed + events

Resistive force sensor (heel and toe),
motor encoder

Level ground walking at
self-selected speed X X

Li et al. [62]
Unilateral rehabilitation
exoskeleton robot
(full leg; mobile)

Gait phase Infrared
Distance Sensors

Level ground walking at
self-selected speed � X

Xia et al. [63] Passive lower limb weight-bearing
exoskeleton (full leg; mobile) Gait phase IMU (thigh and shank, 2000 Hz) Treadmill walking � X

Kang et al. [64] Powered hip exoskeleton
(hip; mobile)

Gait phase,
walking speed

Angular encoder (hip), IMU (Micro
USB, Yost Lab, Portsmouth, OH, USA)
(trunk + thigh)

Level ground walking at self-selected
speed (between 0.8 m/s and 1.2 m/s) � X

Kang et al. [65] Gait Enhancing and
Motivating System
(hip; mobile)

Gait phase
FSR (only [65]), Angular encoder
(hip), IMU (Micro USB, Yost Lab)
(trunk + thigh); sampling rate: 100 Hz
[65]; 200 Hz [66]

n.d.
X X

Kang et al. [66] X X

Zhang et al. [45] Single-joint robotic hip exoskeleton
(hip; mobile)

Gait phase estimation
(based on thigh angle
and thigh acceleration)

IMU (50 Hz) Different walking tasks for validation
study (treadmill; level ground) � X

Zhang et al. [67] Hip joint lower limb exoskeleton
(hip; mobile) Gait phase IMU (thigh) Level ground walking, Stair walking

(up and down) X X
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Table 1. Cont.

Author Exoskeleton Motor Performance
Parameter Sensors Task VS RS

Crea et al. [68] Active pelvis orthosis (APO)
(hip; mobile) Gait phase Capacitive pressure sensors Treadmill walking at different speed � X

Cao et al. [69] Soft lower limb exoskeleton
(hip; mobile) Gait Phase IMU (1000 Hz) n.d. X X

Yu et al. [70] Portable knee exoskeleton
(knee; mobile) Gait phase IMUs (HI219M, HiPNUC

Technology, 200 Hz) Treadmill walking at different speed � X

Pinheiro et al. [49] Ankle–foot exoskeleton
(ankle; mobile) Gait phase

Potentiometer (resolution: 0.5◦;
100 Hz), four strain gauges
(resolution: 1 Nm, 100 Hz), FSR (toe
and heel, 100 Hz)

Walking at 1 km/h X X

Bolus et al. [50] Instrumented ankle–foot orthosis
(ankle; mobile) Gait phase

Optical encoder (S4T, US Digital,
1 kHz), 4 IMUs (MTw Series, XSense,
50 Hz), strain gauge-based reaction
torque sensor (TFF350, Futek, 1 kHz),
FSR (model 42, Interlink Elect., 75 Hz),
pressure-sensitive capacitive films
(Pedar and Pliance, Novel, 50 Hz).

Walking on a treadmill at 1 m/s X X

Joint Torque and Strength
Galen et al. [71]

Lokomat
(full leg; stationary)

Maximum voluntary
isometric Hip, Knee and
ankle (only [72])
torque/strength

Force transducers (integrated in every
joint actuator), potentiometer

Maximal isometric contraction
against the exoskeleton

� X
Cherni et al. [73] � �
Chaparro-Rico et al. [37] X X
Lunenburger et al. [36] X X
Tan and Dhaher [72] X X
Bolliger et al. [74] X �

Cruz and Dhaher [75]
Motorized, instrumented
exoskeletal orthosis
(full leg; stationary)

Hip and knee torque Load cells (thigh, proximal shank,
and distal shank; sample rate: 1 kHz)

Maximal isometric contraction against
the exoskeleton in fixed position X X

Agrawal et al. [40] Gravity balancing orthosis
(hip and knee; stationary)

Hip and knee torque
Optical joint encoders (USDigital,
1 kHz), two built-in force-torque
sensors (ATI, 1 kHz)

n.d.
X X

Banala et al. [41] X X



Sensors 2023, 23, 3032 10 of 40

Table 1. Cont.

Author Exoskeleton Motor Performance
Parameter Sensors Task VS RS

Fan and Yin [43] Standing bed exoskeleton
(hip and knee; stationary)

Muscular strength
(isometric and isokinetic)

Angular encoder (200 Hz);
Force sensor (air pressure sensor;
200 Hz)

n.d. X X

Rea et al. [76] X1 exoskeleton
(full leg; mobile)

Isokinetic, isotonic, and
isometric muscle
strength, torque, rate of
change of torque,

n.d. n.d. (�) (�)

Naghavi et al. [77] FUM HEXA-I
(hip; mobile)

Strength index for hip
extension/flexion

Beam-type load-cells, 16-bit
incremental angular encoder

Treadmill walking (self-selected
speed) X X

Molinaro et al. [46] Robotic hip exoskeleton
(hip; mobile) Hip torque

Absolute magnetic encoders (Orbis,
Renishaw, UK; 100 Hz), IMU sensors
(100 Hz)

Walking on the ground/ascending
ramp/descending ramp � X

Aíin et al. [53]
MAFO (motorized ankle
foot orthosis)
(ankle; mobile)

Ankle joint torque n.d. n.d. X X

Satici et al. [51] SUkorpion AR
(ankle; mobile) Ankle torque Angular encoder n.d. X X

Stiffness/Spasticity/Impedance
Riener et al. [78] X X
Lunenburger et al. [36] � X
Chaparro-Rico et al. [37] X X

Cherni et al. [79]

Lokomat
(full leg; stationary)

Hip and knee spasticity Force transducers (integrated in every
joint actuator), potentiometer

Automated movement of the tested
joints; participant‘s legs are
100% unloaded

X �

Koopman et al. [80] LOPES Exoskeleton
(hip and knee; stationary) Hip and knee impedance

Potentiometers on the exoskeleton
(angles; 100 Hz) and potentiometers
in the SEA (torque; 100 Hz)

Two positions

(1) Hip: 5◦; knee 55◦

(2) Hip 25◦ and knee 15◦

Two tasks:

(1) Relax task (not interact with
the exoskeleton)

(2) Position task (position is
displayed on a screen,
participants should keep the
error as small as possible)

X X
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Table 1. Cont.

Author Exoskeleton Motor Performance
Parameter Sensors Task VS RS

Mendoza-Crespo
et al. [81]

H2 robotic exoskeleton
(full leg; mobile) Ankle spasticity Force sensors n.d. X X

Nazon et al. [82] Torque-controllable exoskeleton
(knee and ankle; mobile) Knee impedance

SSubmicron resolution optical
encoders (ATOM; Renishaw,
Wotton-under-Edge,
Gloucestershire, UK)

n.d. (�) X

Roy et al. [83] X X
Roy et al. [84] X X

MIT’s ankle robot system
(ankle; mobile) Ankle stiffness

Linear incremental encoders
(Renishaw, Chicago, IL; resolution:
5 × 10−6 m), analog current sensors
(Interactive Motion Technologies;
resolution: 2.59 × 10−6 Nm);

Moving the ankle in two planes
(sagittal and frontal)

Satici et al. [51] SUkorpion AR
(ankle; mobile)

Ankle impedance (joint
angles + torques) Angular encoder, n.d. X X

Table 2. Overview and results of validity and reliability studies (Abbreviations: 6MWT, 6-min walk test; BM, baseline model; CP, cerebral palsy; DEP, dependent-
movement type is known; FSR, force sensing resistor; ICC, intraclass correlation; IMU, inertial measurement unit; IND, independent movement type is not known;
(i)SCI, (incomplete) spinal cord injury; n.d., not described; NN, feedforward neural network; MAE, mean absolute error; PGE, pantographic exoskeleton sensor
RMSE, root mean square error; XGBoost, gradient boosting algorithm).

Author Exoskeleton Participants Validation Tool Protocol Results
Joint Angles

Hu et al. [38]
Lower extremity
exoskeleton
(full limb, stationary)

N = 1 (1♂)
health:
all healthy

Vicon motion capture system
(Oxford Metric, Oxford, UK) Sit to stand exercise

Human-robot hip angle deviation

- mean: 4.93◦ ± 3.05 (PGE)
- mean: 4.94◦ ± 3.2 (hip encoder)

Human-robot knee angle deviation

- mean: 3.00◦ ± 1.64 (PGE)

Human-robot ankle angle deviation

- mean: 1.02◦ ± 0.79 (PGE)
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Table 2. Cont.

Author Exoskeleton Participants Validation Tool Protocol Results

Veneman et al.
[42]

LOPES Exoskeleton
(hip and
knee; stationary)

N = 10
age:
26
health:
all unimpaired

PTI-VZ4000 mocap system
from PhoeniX Technologies
(Campbell, CA, USA)

Treadmill walking

- Only small deviations between the
robotic and the motion
capturing assessment

- Not precise enough for inverse
dynamics calculations

Koginov et al.
[44]

Myosuit
(hip and knee, mobile)

N = 8 (4♂, 4♀)
health:
all healthy

Vicon motion capture system
(Oxford Metric, Oxford, UK)

Standing and Treadmill
walking with different support
modes (1-3) and different speed
(0.8 m/s, 1.3 m/s)

Human-robot hip angle deviation
RMSE:

- overall 2.5◦ ± 1
- error is bigger with more support and

higher speed

d’Elia et al. [47]
Active pelvis
orthosis (APO)
(hip; mobile)

N = 5
age:
29.2 ± 6.3
health:
all healthy

optoelectronic system
(SmartD, BTS, Milan, Italy)

Treadmill walking with three
different speeds (slow, normal
and fast; depending on leg
length) and different modes
(transparent, low, moderate
and high assistance)

Human-robot hip angle deviation
RMSE:

- Transparent mode:
2.7◦ ± 0.8 (slow)–3.6◦ ± 1.2 (fast)

- Low assistance:
4.0◦ ± 0.9 (slow)–5.2◦ ± 1.1 (fast)

- Moderate assistance:
4.9◦ ± 0.7 (slow)–5.9◦ ± 1.0 (fast)

- High assistance:
5.3◦ ± 0.7 (slow)–7.2◦ ± 1.1 (fast)

Park et al. [52]
Active Soft
Orthotic Device
(ankle; mobile)

n.d. Goniometer Moving the ankle freely in
plantar and dorsiflexion

Mean error:

- 0.135◦ ± 2.85 (IMU)
- 0.255◦ ± 1.63 (strain sensor)
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Table 2. Cont.

Author Exoskeleton Participants Validation Tool Protocol Results
Proprioception

Chisholm et al.
[56]

Lokomat
(full leg; stationary)

N = 34 (26♂, 8♀)
age:
39.5 ± 10.2
(abled bodied)
39.5 ± 9.7 (SCI)
health:
n = 17 abled bodied
n = 17 SCI

Manual assessment

2 assessments of robotic lower
limb joint proprioception
separated by one week; manual
assessment of proprioception

Test–retest reliability
Hip:

- ICC = 0.88 left, ICC = 0.94 right (control)
- ICC = 0.97 left, ICC = 0.96 right (SCI)

Knee:

- ICC = 0.90 left, ICC = 0.91 right (control)
- ICC = 0.95 left, ICC = 0.96 right (SCI)

Validity

- Movement detection score increases
with increasing speed

Comparison to manual assessment

- Robotic assessment is more sensitive
- No ceiling effect in robotic assessment

Domingo and
Lam [58]

Lokomat
(full leg; stationary)

N = 46 (28♂, 18♀)
age:
37.8 ± 14.1 (abled bodied)
40.5 ± 14.0 (SCI)
health:
n = 23 abled bodied
n = 23 SCI

Manual assessment

First participant was moved to
the target position for 5 s and
second to the starting position
passively; participant must
replicate the target position;
manual assessment
of proprioception

Test–retest reliability
Hip:

- ICC = 0.493 (healthy)
- ICC = 0.55 (iSCI)

Knee:

- ICC = 0.656 (healthy)
- ICC = 0.882 (iSCI)

Comparison to manual assessment

- Both scores corelate

Dambreville
et al. [55]

Electrohydraulic
robotized ankle–foot
orthosis
(ankle; mobile)

N = 25 (13♂, 12♀)
age:
22.88 ± 2.63
health:
all healthy

Only reliability study

Treadmill walking; exoskeleton
induces perturbations during
gait; push a button when they
felt a perturbation

- ICC = 0.78 (95% CI: 0.45–0.91)



Sensors 2023, 23, 3032 14 of 40

Table 2. Cont.

Author Exoskeleton Participants Validation Tool Protocol Results
Gait Phase, Spatio-temporal Gait Parameters and Walking Ability

Lonini et al. [60] ReWalk
(full leg; mobile)

N = 11 (6♂, 5♀)
age:
26.9 ± 14
health:
n = 6 abled bodied
n = 5 SCI

Number of steps
(accelerometer)

Two 6MWT (1 min pause
between) on a 30 m walkway

- Proposed score has a higher
discriminatory power to distinguish
between expert and non-expert users
than just the number of steps

Kang et al. [64]
Powered hip
exoskeleton
(hip; mobile)

Young
n = 4 (3♂, 1♀)
age:
23.5 ± 3.3
Elderly
n = 2 (2♀)
age:
72.5
health:
all healthy

Treadmill Treadmill walking
(different speed)

Walking speed (RMSE)

- 0.094 m/s ± 0.043 (young)
- 0.061 m/s (elderly)

Li et al. [62]
Unilateral rehabilitation
exoskeleton robot
(full leg; mobile)

N = 10 (8♂, 2♀)
age:
25 ± 4
health:
all healthy

Vicon motion capture system
(Oxford Metric, Oxford, UK)

- 5 m Level ground
walking at self-selected
speed (6 trials)

- Treadmill walking (2/4/6
km/h) for 1 min

Gait phase estimation (MAE in ms)
(self-selected speed; 2 km/h; 4 km/h; 6 km/h)

- Heel strike: 20.5; 27.3; 24.4; 22.6
- Foot flat: 24.8; 25.8; 29.1; 34.0
- Heel off: 17.1; 28.2; 32.8; 31.0
- Toe off: −25.8; −31.1; −28.3; −30.7
- Back Swing highest: 14.1; 17.9; 19.7; 22.5
- Front swing lowest: 15.1; 16.5; 20.9; 19.5

Xia et al. [63]

Passive lower limb
weight-bearing
exoskeleton
(full leg; mobile)

N = 7 (6♂, 1♀)
age:
25–30
health:
all healthy

Image acquisition system
(manual labelling)

- Treadmill walking (2, 4,
and 6 km/h)

1. Gait phase estimation accuracy
(correct classified data points/total
data points))

- average: 92.989%
- left foot lift, right foot hang: 69%
- left foot lift, right foot support: 96%
- left foot hang, right foot lift: 82%
- left foot hang, right foot support: 97%
- left foot support, right foot lift: 94%
- left foot support, right foot hang: 98%
- left foot support, right foot support: 81%
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Table 2. Cont.

Author Exoskeleton Participants Validation Tool Protocol Results

Zhang et al. [45]
Single-joint robotic hip
exoskeleton
(hip; mobile)

N = 7 (5♂, 2♀)
age:
25.9 ± 3.8
health:
all healthy

FSR Sensors in foot
insole (offline)

- Treadmill walking
(increasing speed)

- Free walking
(self-selected speed)

Gait phase estimation (RMSE)

- 5.15% ± 1.82 (treadmill)
- 5.53% ± 2.09 (free walking)

Crea et al. [68]
Active pelvis
orthosis (APO)
(hip; mobile)

N = 7 (4♂, 3♀)
age:
28.6 ± 4.9
health:
all healthy

Sensor insoles
Treadmill walking with fast
and slow speed in two modes
(assistive and transparent)

Gait phase estimation (RMSE)

- 0.26 rad (transparent mode)
- 0.27 rad (assistive mode)

Yu et al. [70]
Portable knee
exoskeleton
(knee; mobile)

N = 3
age:
25.3 ± 0.94

Foot switches

Walking on a treadmill and
stair walking (ascending +
descending) at steady and
varying speed

Gait phase estimation (RMSE)
Steady speed:

- Walking (ANN): 4.10%
- Walking (event based): 1.66%
- Stairs ascending (ANN): 4.58%
- Stairs ascending (event based): 4.55%
- Stairs descending (ANN): 5.32%
- Stairs descending (event based): 3.51%

Varying speed:

- Walking (ANN): 4.18%
- Walking (event based): 11.0%
- Stairs ascending (ANN): 6.66%
- Stairs ascending (event based): 15.3%
- Stairs descending (ANN): 8.03%
- Stairs descending (event based): 18.5%

Joint Torques and Strength
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Table 2. Cont.

Author Exoskeleton Participants Validation Tool Protocol Results

Cherni et al. [73] Lokomat
(full leg; stationary)

N = 17 (9♂, 8♀)
age:
10.0 ± 3.2 health:
all CP

Handheld dynamometer

Isometric force measurement
fixed joints angles (30◦ hip
flexion, 45◦ knee flexion);
producing and holding
maximum strength for 5 s, each
muscle group (hip
flexors/extensors and knee
flexors/extensors)
measured separately

Test–retest reliability
Inter-tester (single measurement):

- ICC = 0.8 (hip flexion)–0.87 (hip
extension)

Inter-tester (average measurement):

- ICC = 0.89 (hip flexion)–0.93 (hip
extension)

Intra-tester (single measurement):

- ICC = 0.7 (knee extension)–0.87 (hip
flexion)

Intra-tester (average measurement):

- ICC = 0.83 (knee extension)–0.93 (hip
flexion)

Comparison robotic vs. manual assessment

- Strong correlation hip and knee flexors
(0.76 and 0.60)

- Moderate correlation for hip and knee
extensors (0.53 and 0.52)

Galen et al. [71] Lokomat
(full leg; stationary)

N = 18 (14♂, 4♀)
age:
49.3 ± 11 health:
all iSCI

Standard neurological
classification of spinal cord
injury (ASIA) scoring system

Isometric force
fixed joints angles; producing
and holding maximum
strength for 5 s, muscle groups:
hip flexors/extensors and knee
flexors/extensors

- Non-linear relation between generated
peak torque and ASIA Score
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Table 2. Cont.

Author Exoskeleton Participants Validation Tool Protocol Results

Bolliger et al.
[74]

Lokomat
(full leg; stationary)

N = 30 (8♂, 32♀)
age:
25.7 ± 3.8 (healthy)
53.5 ± 16.5 (neurological
disorders)
health:
n = 16 healthy
n = 14 neurological disorders

Only reliability study

Isometric force measurement
fixed joints angles (30◦ hip
flexion, 45◦ knee flexion);
producing and holding
maximum strength for 5 s, each
muscle group (hip
flexors/extensors and knee
flexors/extensors)
measured separately

Healthy
Inter-tester reliability

- Single measurement: ICC = 0.72 (hip
extension, left) – 0.95 (hip
extension, right)

- Average measurement: ICC = 0.91 (hip
extension, left)–0.97 (knee extension, left;
hip flexion, left; knee flexion, right)

Intra-tester reliability

- Single measurement: ICC = 0.71 (knee
extension, right)–0.9 (hip
extension, right)

- Average measurement: ICC = 0.74 (hip
extension, left)–0.9 (knee
extension, right)

Neurological disorders
Inter-tester reliability

- Single measurement: ICC = 0.66 (hip
extension, less affected side)–0.97 (knee
flexion, more affected side)

- Average measurement: ICC = 0.85 (knee
extension, more affected side)–0.96 (hip
flexion, less affected side; knee flexion,
more affected side)

Intra-tester reliability

- Single measurement: ICC = 0.5 (hip
flexion, more affected side)–0.91 (knee
flexion, less affected side)

- Average measurement: ICC = 0.79 (hip
flexion, more affected side)–0.96 (knee
flexion, less affected side)
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Table 2. Cont.

Author Exoskeleton Participants Validation Tool Protocol Results

Rea et al. [76] X1 exoskeleton
(full leg; mobile) N = 8 Biodex system; dynamometer n.d. - Test–retest repeatability was comparable

to Biodex system

Molinaro et al.
[46]

Robotic hip exoskeleton
(hip; mobile)

N = 5
age:
23.0 ± 2.1
health:
all healthy

Vicon motion capture system
(Oxford Metric, Oxford, UK)
+ Bertec force plates (Bertec,
Columbus, OH, USA)
+ OpenSim

Walking on a treadmill
Level ground
Ramp ascent
Ramp descent

RMSE of estimated hip torque compared to
ground truth:
Level ground:

- 0.149 (Baseline model (BM) + known
movement (DEP))

- 0.186 (BM + unknown movement
type (IND))

- 0.071 (gradient boosting algorithm
(XGBoost) + IND)

- 0.097 (feedforward neural network
(NN) + IND)

Ramp ascent:

- 0.188 (BM + DEP)
- 0.580 (BM+ IND)
- 0.092 (XGBoost + IND)
- 0.127 (NN + IND)

Ramp ascent:

- 0.153 (BM + DEP)
- 0.488 (BM + IND)
- 0.082 (XGBoost + IND)
- 0.083 (NN + IND)

Stiffness/Spasticity/Impedance

Lunenburger
et al. [36] Lokomat

(full leg; stationary)

N = 42
health:
all with
neurological disorders

Modified Ashworth score
Automated movement of the
tested joints; participant‘s legs
are 100% unloaded

- Measured stiffness correlated with the
Modified Ashworth score
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Author Exoskeleton Participants Validation Tool Protocol Results

Cherni et al. [79]
Lokomat
Pediatric version
(full leg; stationary)

N = 16 (9♂, 7♀)
age:
20 ± 3
health:
all CP

Only reliability study

Lokomat L-STIFF Tool;
Exoskeleton displace each joint
with three different velocities
(slow/medium/fast)

Test–retest reliability
Intra-tester (same day):

- ICC = 0.69 (fast knee extension)–0.95
(fast hip extension/medium hip flexion)

Intra-tester (between days):

- ICC = 0.49 (slow hip extension)–0.89
(medium knee extension/slow
knee flexion)

Inter tester:

- ICC = 0.32 (slow hip extension)–0.7 (fast
hip extension)
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Figure 2. Flowchart of study section process (adapted according to [33,85]).

3.1. Study Characteristics

In the 49 included studies, 33 different exoskeletons or active orthoses were examined.
Of these, seven can be considered as (treadmill) stationary exoskeletons, and 26 can be
considered as mobile exoskeletons. Regarding the stationary exoskeletons, four supported
the full leg, whereas three supported hip and knee joints only. The most-often used
exoskeleton (Lokomat, n = 12) can also be considered as “full leg” exoskeleton. None of
the stationary exoskeletons examined in the included studies supported only one joint
(monoarticular). As for the mobile exoskeletons, six devices supported the full leg, one
device supported hip and knee joint, one device knee and ankle, and 18 devices supported
only one joint (hip: n = 9; knee n = 0; and ankle: n = 9).

The motor performance parameters measured in the studies included in this review
can be categorized as follows: joint angles (n = 20), proprioception (n = 4), gait parameters
or gait phase estimation (n = 14), muscle strength and joint torque (n = 15), and joint
stiffness, impedance or spasticity (n = 11). Some exoskeletons were used to measure more
than one parameter simultaneously. For a better overview of the measured parameters and
the sensors used, see also Figures 3 and 4.
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Figure 4. Sensors used in studies (please note that in some studies, multiple sensors were used).

Most of the studies (n = 27) used the exoskeleton as an assessment tool within a
broader (intervention) study. The respective test procedure was validated in 19 studies,
and tested for reliability in six studies, with three studies performing both validity and
reliability testing. Two studies [51,82] only presented results from an experiment without
any participants. In four studies [52,67,78,81], the number, health status, age, and sex
of participants were not mentioned. The remaining 43 studies included a total of 631
participants. Of these, 48.3% (n = 305) were male, 34.1% (n = 215) were female, and
sex/gender was not specified for the remaining 17.5% (n = 111) participants. More than half
of all participants (58.9%; n = 372) were described as healthy, able-bodied, or unimpaired.
13.5% (n = 85) of participants had an incomplete spinal injury, and 10.1% (n = 64) had
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a history of stroke. Two studies [73,79] examined 33 children with cerebral palsy, and
two studies [36,74] included participants with different neurological disorders. Only
three studies [65,70,76] did not provide any information about the health status of their
participants. The average age of participants was under 18 years in two studies, between
18 and 40 years in 25 studies, and between 40 and 60 years in three studies [71,72,75].
Only two studies [37,48] used an exoskeleton in individuals with a mean age of more than
60 years. Furthermore, three studies only provided an age range of their participants, and
eight studies did not provide any information regarding participants’ age.

3.2. Risk of Bias in Studies

The results of the quality assessment of the validity and reliability studies are shown
in Table 3. The quality of the studies ranged from 0 [76] to 8 [55,71,73,74,79] points. On
average, the studies scored 5.41 points, which is indicative of good quality and low risk of
bias. The main limitations were small sample sizes, and only one-time measurements of
relevant parameters.

Table 3. Results of the quality assessment of validity and reliability studies. The reader is referred to
National Heart, Lung and Blood Institute (2021) [35] for further details on the different items of the
quality assessment tool (na, not applicable).

Author/Item 1 2 3 4 5 6 7 8 9 10 11 12 Sum
Bolliger et al. [74] 1 1 1 na 1 1 1 na na 1 1 na 8
Cherni et al. [73] 1 1 1 na 1 1 1 na na 1 1 na 8
Cherni et al. [79] 1 1 1 na 1 1 1 na na 1 1 na 8
Chisholm et al. [56] 1 1 1 na 1 1 1 na na 1 0 na 7
Crea et al. [68] 1 1 0 na 0 1 1 na na 1 0 na 5
Dambreville et al. [55] 1 1 1 na 1 1 1 na na 1 1 na 8
d’Elia et al. [47] 1 1 1 na 0 1 1 na na 1 0 na 6
Domingo and Lam [58] 1 1 1 na 1 1 1 na na 1 0 na 7
Galen et al. [71] 1 1 1 na 1 1 1 na na 1 1 na 8
Hu et al. [38] 1 0 0 na 0 1 1 na na 0 0 na 3
Kang et al. [64] 1 1 1 na 0 1 1 na na 0 0 na 5
Koginov et al. [44] 1 1 0 na 1 1 1 na na 1 1 na 7
Li et al. [62] 1 0 0 na 1 1 1 na na 1 1 na 6
Lonini et al. [60] 1 1 1 na 0 1 1 na na 1 0 na 6
Lunenburger et al. [36] 1 0 0 na 1 1 1 na na 0 0 na 4
Molinaro et al. [46] 1 1 1 na 0 1 1 na na 1 0 na 6
Park et al. [52] 1 0 0 na 0 1 1 na na 0 0 na 3
Rea et al. [76] 0 0 0 na 0 0 0 na na 0 0 na 0
Veneman et al. [42] 1 0 0 na 0 1 1 na na 0 0 na 3
Xia et al. [63] 0 0 0 na 0 1 1 na na 1 0 na 3
Yu et al. [70] 1 0 0 na 0 1 1 na na 0 1 na 4
Zhang et al. [45] 1 1 0 na 0 1 1 na na 0 0 na 4

3.3. Results of Included Studies

In the following sections, we will provide a summary of the studies included in this
review. If provided by the authors of the original research, we will present the sensors used,
and the procedure which was conducted for the assessment. If the aim of the respective
study was to examine validity or reliability, we will also provide a short description of the
methods and results.

3.3.1. Joint Angles

We included 20 studies with 18 different exoskeletons which examined the joint angles
or RoM of the study participants. Of these, 6 were stationary exoskeletons, and 12 were
mobile exoskeletons or actuated orthoses.
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Stationary Exoskeletons

The Lokomat is a full leg exoskeleton, with only the hip and knee joints actuated,
that measure joint angles of the user with the L-ROM (lower limb-RoM) tool [36,37]. In
the studies we included, however, the sensors used for this purpose were not precisely
defined, but are simply referred to as “position sensors” [86]. Since the human as well
as the technical joints and segments lie on one line, the developer of the L-ROM Tool
assume that the joint angles measured by the exoskeleton also correspond to the human
angles [86]. The built-in tool moves the limb up to a predefined torque threshold, and then
determines the maximum and minimum joint angles. Another study [38] used a three DoF
magnetic sensor for sensing hip, knee, and ankle joint angle with a full body unilateral
stationary exoskeleton for stroke patients. In a validation study, they showed, on average,
only small (hip: 4.93◦ ± 3.05; knee: 3.00◦ ± 1.64, ankle: 1.02◦ ± 0.79) derivations from
the measurement with an optical marker-based system (Vicon). Further, Bryan et al. [39]
presented a full leg exoskeleton which is capable of measuring joint angles. They estimated
that the joint angles of the exoskeleton are the same as those of the human.

In addition, the included studies used three different stationary exoskeletons which
support only the knee and the hip, and are also able to assess the angles of these joints.
The “Gravity-Balancing Leg Orthosis” from Banala et al. [41] and Agrawal et al. [40] is a
passive exoskeleton which is mounted on a moveable frame, and can be used to assess the
angles of the hip and knee joints. The developers used optical joint encoders (USDigital,
2500 counts per revolution; 1 kHz) to determine the angles of the exoskeleton, which were
also aligned with the joint angles of the human being. In both studies, no explicit test
was performed to determine the RoM; rather, angles during walking and leg raising were
examined. The LOPES Exoskeleton [42] is a treadmill stationary exoskeleton, which can
be used to determine sagittal hip and knee angles. The authors did not describe how
the exoskeleton measures the angles and processes the data. However, in a validation
study with 10 physically unimpaired and young participants walking on a treadmill, they
observed only small differences between the robot and the human joint angles, which
were recorded with marker-based motion capturing system. They conclude that errors in
hip angle are thought to be primarily due to marker cluster rotations caused by muscle
contractions. However, the accuracy of the measurement with the exoskeleton is not yet
sufficient to calculate inverse dynamics. Furthermore, Fan and Yin [43] presented an
exoskeleton which is mounted on a standing bed for early post stroke rehabilitation and
evaluation of the rehabilitation progress. For angle detection, they also used an angular
encoder (200 Hz). The authors did not provide any further information as to how the data
were processed, or if they validated the data in comparison to another method (e.g., motion
capturing or goniometer).

Mobile Exoskeletons or Actuated Orthoses

Regarding the mobile exoskeletons, 1 exoskeleton supporting the hip and knee, and 11
single-joint (hip (n = 4) and ankle (n = 7)) exoskeletons were used in the studies included in
this review.

Koginov et al. [44] measured the thigh angle with five IMUs (100 Hz) with the Myosuit
exoskeleton (supporting the hip and knee). For better results, they trained a machine learn-
ing algorithm (XGBoost). In a validation study with young and unimpaired participants
who were standing and walking on a treadmill with different support and speed, they
showed an average RMSE of 2.5◦. Zhang et al. [45] presented a single-joint hip exoskeleton
which is capable of determining the thigh angle with one IMU (50 Hz) attached along the
sagittal plane of the thigh. The zero point of the thigh angle was set in a way that it was
perpendicular to a plane floor. For smoothing the raw data of the sensor, a low-pass filter
was used, after that they used a basic kinematic model to calculate gait parameters (see
also Section 3.3.3). In this study, no explicit test was performed to determine the RoM;
rather, the courses of the joint angles during treadmill walking with the exoskeleton were
examined. In another study, Molinaro et al. [46] presented a hip exoskeleton to measure
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hip joint angles via absolute magnetic encoders (Orbis, Renishaw, UK; 100 Hz). In this
work, the authors used the measured and segmented joint angles to estimate hip torques,
which is presented later in this review. d’Elia et al. [47] used two absolute 17-bit Rotary
Electric Encoder™ units (DS-37 and DS-25 Netzer Precision Motion Sensors Ltd., Misgav,
Israel) in their active pelvis orthosis to detect hip joint angles. In a validation study, five
healthy young adults walked on a treadmill under different speed and support conditions.
The angles measured with the orthosis were then compared to angles measured with an
optical marker-based motion capturing system. The measurement differences increased
with increasing speed, and with increasing support (especially in the range between 40
and 90% of the gait cycle) by the orthosis. The root mean square error (RMSE) between
the robotic angle and the human joint angle varied between 2.7◦ (slow speed; transparent
mode) and 7.2◦ (fast speed; high assistance). Furthermore, Buesing et al. [48] used the
Honda Stride Management Assist Device which is also capable of measuring hip joint
angles with integrated angle sensors. However, no additional information was provided.

With regard to the mobile ankle exoskeletons to measure ankle joint angles,
Pinheiro et al. [49] used the ankle–foot exoskeleton which has a built-in potentiometer
(resolution of 0.5◦; 100 Hz) as an angle position sensor. However, the authors used the raw
angle data without processing or validating them. Satici et al. [51] introduced a concept
to a non-anthropomorphic ankle exoskeleton called SUkorpion AR. Additionally, they de-
scribe how they derive the respective estimated joint axis from the raw data of the sensors.
Another study [52] developed an “active soft orthotic device” with an artificial muscle and
tendon system, and two different sensor systems (custom-built strain sensor and IMUs) to
measure ankle joint angles. The strain sensors which are placed on the soft tissue in the
area of the anterior ankle of the exoskeleton, must be calibrated before use with the help
of the IMUs. The researchers validated the angle measurement with the strain sensors as
well as with the IMUs with a commercial goniometer in only one participant. The mean
error was 0.135◦ ± 2.85 for the IMU, and 0.255◦ ± 1.63 for the strain sensor while freely
moving the foot for 20 min in plantar and dorsiflexion. Dambreville et al. [55] developed
an electrohydraulic robotized ankle–foot orthosis which was equipped with an optical
encoder to determine ankle joint angles in the sagittal plane. Also, Durandau et al. [54]
used the ankle modules of the Symbitron to determine the ankle angle of the user by just
reading the encoders of the exoskeleton. Furthermore, Aíin et al. [53] used a “motorized
ankle foot orthosis” (MAFO) which is capable of measuring ankle joint angles, but they
did not provide any information as to which sensors are used by the device, and whether
the procedure is validated or not. Bolus et al. [50] presented an instrumented ankle–foot
orthosis which used a large set of sensors to determine different parameters. For sensing
the ankle rotation in sagittal plane, they used optical encoder (S4T, US Digital, 1 kHz), and
for analyzing the orientation of the limb they integrated four IMUs (MTw Series, XSense,
75 Hz).

3.3.2. Proprioception

We included four studies with two different exoskeletons which examined the propri-
oception of study participants. Of these, one was a stationary exoskeleton, and one was a
mobile exoskeleton or actuated orthosis.

Stationary Exoskeletons

The Lokomat exoskeleton was used in three studies to determine proprioception
or kinaesthesia. As described above, the Lokomat exoskeleton uses position sensors to
determine joint angles. For proprioception, the authors [57,58] described two tasks: (1) the
exoskeleton brings the joint in a predefined target position and after five seconds of rest
in a second distraction position. The participants should then move their limb with a
joystick back to the target position; and (2) The participants are shown the actual position
of their limb and the target position with a stickman on a screen in front of them. They
are then asked to move their limb to the target position with a joystick and without any



Sensors 2023, 23, 3032 25 of 40

visual reference. In both tasks, the difference between the target position and the achieved
position was used for evaluation purposes. The first task described was tested for validity
and reliability by Domingo and Lam [58] as follows: Regarding validity, the results of
the robotic assessment were compared with the results of a manual clinical assessment
among participants with a spinal cord injury (SCI). As a result, it was found that the clinical
results correlate significantly with the results from exoskeleton-based testing. However,
the authors observed a ceiling effect for the manual but not for the robotic assessment,
thus leading them to conclude that the exoskeleton-based testing is more sensitive. They
also observed a moderate to good test–retest reliability, with ICC ranging from 0.493
(able-bodied; hip joint) to 0.882 (SCI; knee joint).

In another validation and reliability study, Chisholm et al. [56] used the Lokomat as
a tool to determine kinaesthesia. The participants (n = 34, 17 with SCI, 17 able-bodied)
were strapped into the exoskeleton, and their vision to the legs was blinded. Then, their
lower limbs were passively moved at different speeds. The participants were asked to
push a button when they felt their limbs moving, and then indicated the direction of
movement. With the help of angular encoders, the angles (hip and knee) were measured,
and in the processing, a score was formed from the difference between the initial angle and
the final angle. Compared to a manual assessment, the robotic assessment seems to be more
sensitive, especially as the manual method shows a ceiling effect just as for proprioception.
For both groups, the authors observed a very high test–retest reliability (ICC > 0.88). They
further concluded that faster speeds seem to be more promising for individuals with SCI,
whereas slower speeds seem to be better to determine differences in kinesthetic abilities.

Mobile Exoskeletons or Actuated Orthoses

We only found one study [55] which used an “electrohydraulic robotized ankle–foot
orthosis” to conduct an ankle perturbation to determine the proprioceptive threshold.
The participants walked on a treadmill and were asked to push a handheld button when
feeling a perturbation. The system used the “Parameter Estimation by Sequential Testing”
method [87] to reduce the number of tests required to identify the ankle torque disturbances
threshold. The strength of the perturbation was adjusted upwards or downwards, depend-
ing on whether the participant had detected it or not. In their study on test–retest reliability
among 25 participants, they observed an ICC value of 0.78, indicating a good reliability.

3.3.3. Gait Phase, Spatio–Temporal Gait Parameters and Walking Ability

We included fifteen studies which examined various gait parameters such as the
current gait phase or spatio–temporal parameters (e.g., stride length or cadence) of the par-
ticipants. Of 14 different exoskeletons used in these studies, 1 was a stationary exoskeleton,
and 13 were mobile exoskeletons or actuated orthoses.

Stationary Exoskeletons

We only found one preliminary study [59] which used a stationary full leg exoskeleton
(Lokomat) to assess walking function. The authors successfully tested a novel control
algorithm which was specifically developed for assessing walking ability based on the
required amount of support. Therefore, they used force sensors and potentiometers.

Mobile Exoskeletons or Actuated Orthoses

Of the studies that used mobile exoskeletons or actuated orthoses to investigate
gait parameters, 3 studies examined gait parameters or walking ability, and 11 studies
performed gait phase estimation.

Lonini et al. [60] used the commercially available full leg exoskeleton ReWalk to
investigate the walking ability of the users. To this end, the authors attached a tri-axial
wearable accelerometer (Actigraph) to the exoskeleton in mid-sagittal position above the
hip which recorded the data at a sampling frequency of 100 Hz. As part of the data
analysis, stride frequency, standard deviation of the sagittal trunk angle, approximated
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energy expenditure, and number of steps were extracted from the accelerometer data to
calculate a walking ability skill score with a presented algorithm. The authors tested the
exoskeleton in 11 participants (6 able-bodied, 5 with SCI) with a six-minute walk test on a
30 m hallway. The study showed that able-bodied participants did not differ from those
with SCI who had a lot of training experience regarding the exoskeleton. The authors also
reported that the scores of novices with SCI approached those of experts after training
phase. According to the authors, the score can be used to decide whether users are ready
to use the exoskeleton alone at home, or need further training. In a second study [61],
the authors used the full leg EksoGT exoskeleton from Ekso Bionics to investigate gait
parameters such as stride time, stride length, gait speed, and gait events. To this end, they
used force sensing resistor (FSR) sensors on heel and toe on each foot, and motor encoders to
determine the joint angles of the exoskeleton. The authors provide information about how
the different parameters were calculated, based on a 5-link planar kinematic model, but did
not validate the methods. Additionally, Kang et al. [64] used a “powered hip exoskeleton”
to determine walking speed. They implemented hip joint encoder, and an IMU (Micro
USB, Yost Lab) on the trunk and the thigh. For data processing, the authors used a machine
learning model to determine walking speed. They further used electromyography for
a better model performance. However, the last aspect is not considered in this review.
For validation purpose, six participants (four younger and two older adults) walked on a
treadmill under two conditions (e.g., static increasing and decreasing speed, and dynamic
speed). The RMSE for young participants for the walking speed under static conditions
between the measured speed by the exoskeleton, and the predefined treadmill speed was
0.094 m/s ± 0.043. For the older adults walking at a slower speed, the RMSE for the
walking speed was 0.061 m/s.

As mentioned above, we included 11 studies which used onboard sensors in the
exoskeleton to estimate the current gait phase. Of these, two studies used full leg exoskele-
tons, six studies used mobile hip exoskeletons, one used a knee exoskeleton, and two used
mobile ankle exoskeletons.

In one study [62], the authors used a unilateral rehabilitation exoskeleton robot to
estimate gait phases/events with infrared distance sensors integrated in the shoe part of
the exoskeleton. They validated their system with a marker-based motion capture system
(Vicon) with 10 healthy and young participants walking at self-selected speed on a 5 m
walkway and with different speeds (2/4/6 km/h) on a treadmill. After calculating the mean
absolute error and processing a Bland-Altman analysis, they showed that the differences
between both systems are within a mean ± 1.96 standard deviations. Another study [63]
used a passive lower limb weight-bearing exoskeleton equipped with IMUs at the thigh
and shank of the exoskeleton. For processing these data, investigators used a CNN-BiLSTM
Network Model. To train this model, seven participants (six male, one female) walked
on a treadmill at different speeds and durations (4/6/2 km/h (4/3/3 min)), 80% of these
data were used for training and 20% for testing purpose. The overall accuracy was 92.99%.
Compared to other models (long short-term memory (LSTM): 92.57%; gated recurrent
unit (GRU): 92.39%) the authors conclude that their model has a better generalization
performance and accuracy.

In two studies [65,66], the authors investigated a fully wearable hip exoskeleton called
Gait Enhancing and Motivating System (GEMS). In the first study, they used a FSR sensor
at the heel to detect the heel contact, as well as angular encoder and IMU sensors (sampling
rate for all sensors: 100 Hz). In a later study, they only used the built-in hip angular encoder
and a 6-axis IMU sensor at the trunk at 200 Hz, because they did not want to use extra
sensors outside the exoskeleton. They trained and validated a neural-network to estimate
the gait phases with 10 able-bodied and young participants (seven males and three females).
Compared to a well-established gait phase estimation method which uses FSR sensors at
heel or toe, the neural-network based method reached the same performance. In addition,
Zhang et al. [45] developed a real time algorithm to estimate the gait phase, and validated
this with a single-joint robotic hip exoskeleton. To this end, they used one IMU sensor
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with a sample rate of 50 Hz, integrated to the thigh of the exoskeleton along the sagittal
plane. In a validation experiment with seven healthy and young participants, they showed
that their approach has large deviations, for example, the RMSE ranged between 5.15%
(treadmill walking) and 5.53% (level ground walking) compared to an FSR based approach.
Also Zhang et al. [67] presented a hip exoskeleton with two IMUs at the thigh to estimate
gait phases. Furthermore, Crea et al. [68] carried out a study on their active pelvis orthosis
(APO). They used capacitive sensors in the cuffs between the exoskeleton and the human
thigh to measure the muscle volume changes during the gait cycle, and angular encoders
to measure hip flexion and extension. The data was used to calculate the current gait phase.
For validation purpose, they also used sensor insoles during treadmill walking with seven
healthy and young persons (four males) at three different speeds. Compared to the offline
gait phase measurement with the insoles, the RMSE was 0.26 rad (transparent mode) and
0.27 rad (assistive mode). Another study [69] used integrated IMUs to determine gait
phases of the user.

One study [70] used a mobile knee exoskeleton to determine gait phases with inte-
grated IMU sensors at the thigh (200 Hz). For estimating the different gait phases, the
authors trained an artificial neural network with five participants. In a validation study
with three other participants, they compared their model to a ground truth measurement
with foot switches and an event-based model with the same IMU data. For steady-speed
walking they showed that the artificial neural network is less accurate than the event-based
model in level ground walking (RMSE: 4.1% vs. 1.66%) and stair walking (RMSE: 4.58%
vs. 4.55% (ascending) and 5.32% vs. 3.51% (descending)). For various-speed walking, they
showed that the artificial neural network is more accurate than the event-based model on
level ground walking (RMSE: 4.18% vs. 11%) and stair walking (RMSE: 6.66% vs. 15.3%
(ascending) and 8.03% vs. 18.5% (descending)).

Pinheiro et al. [49] used a mobile ankle exoskeleton (ankle–foot exoskeleton) to estimate
the current gait phase. The authors split the gait cycle into four phases, and used the joint
data and a joint angle-based reference model to determine the current phase. For measuring
the ankle joint angle, they used a potentiometer (100 Hz, resolution: 0.5◦). Bolus et al. [50]
examined the aforementioned instrumented ankle–foot orthosis which used a large set of
sensors to determine different parameters. They integrated an FSR (model 42, Interlink
Elect.; 75 Hz) to detect gait states and pressure-sensitive capacitive films to measure plantar
and interface pressure (Pedar/Pliance, Novel, 50 Hz, München, Germany).

3.3.4. Muscle Strength and Joint Torques

We included 15 studies which examined the produced joint torques or muscle strength
of study participants. Of the nine different exoskeletons used in the studies, four were
stationary exoskeletons, and five were mobile exoskeletons or actuated orthoses.

Stationary Exoskeletons

The Lokomat exoskeleton was used in six studies [36,37,71–74] to determine joint
torques of the users with the built-in tool “L-force”. Lunenburger et al. [36] conducted a
preliminary study to examine the suitability for voluntary isometric force measurement
with the device. In a second study [74], the authors presented a standardized assessment
for the voluntary force. To this end, they used the force transducers which are integrated in
every joint actuator to measure the linear force, and the built-in potentiometer to measure
the current joint angle. Participants were then fixed to the exoskeleton, and the joints
were placed in predetermined positions (knee: 45◦ flexion, hip: 30◦ flexion). Then, the
participants were asked to perform an extension or flexion movement against the cuff with
maximal voluntary force for three seconds with a real time feedback on a screen in front of
them. At the same time, the exoskeleton pushed against the human, so there was essen-
tially no movement (isometric condition). The authors tested this procedure for inter-and
intra-rater reliability with 16 young women and 14 persons with neurological movement
disorders; men were excluded because of limited force capabilities of the exoskeleton. For
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the healthy participants, the study showed a moderate to excellent inter- (ICC: 0.72–0.97)
and intra-rater (ICC: 0.71–0.9) reliability. For persons with neurological disorders, the
inter- (ICC: 0.66–0.97) and intra-rater (ICC: 0.5–0.96) reliability was lower but still moderate
to excellent. In a further study [71], this method was compared to a manually-assessed
muscle score [88] among participants with incomplete spinal cord injury who underwent a
six week robot assisted gait training intervention. The authors found a non-linear relation-
ship between the robotic and the manual assessment. In another reliability and validity
study [73], the pediatric version of the Lokomat exoskeleton was tested in 17 children
with cerebral palsy. The results showed a moderate to excellent inter- (ICC: 0.8–0.93) and
intra-rater (ICC: 0.7–0.93) reliability. In comparison with a hand-held dynamometer, the
authors observed a strong relationship for the hip (Pearson score: r = 0.769) and knee
(r = 0.609) flexors, and a moderate relation to both flexors (knee: r = 0.530; hip: r = 0.528).

In another study, Cruz and Dhaher [75] used a motorized, instrumented exoskeletal
orthosis. The stationary exoskeleton covered the hip, knee, and ankle joint to determine
isometric joint torques with multiple load cells (thigh, proximal shank, and distal shank;
sample rate: 1 kHz) and fixed joint angles in a “toe off” (hip flexion: 10◦; knee flexion:
65◦) and a “mid-swing” (hip extension: 15◦; knee flexion: 45◦) position. Furthermore,
the aforementioned (see Section 3.3.1) stationary “gravity balancing orthosis” [40,41] was
also used to assess joint torques of the hip and knee joints by considering the built-in
joint angular encoder and two built-in ATI 6D-force-torque sensors (thigh and shank)
with a sample rate of 1 kHz. For data processing, the authors calculated joint torques
using a two DoF model, and inverse dynamics. Moreover, Fan and Yin [43] examined
an exoskeleton which is mounted on a standing bed for stroke rehabilitation. The device
can assess isometric and isokinetic strength. For measuring interaction forces with the
human body, the exoskeleton is equipped with airbags at the contact points which act as
a spring-damper connection. Additionally, air pressure sensors are integrated in these
airbags to measure the interaction force. In addition, joint angles were recorded with an
angular encoder. Both parameters were sampled with 200 Hz. The authors did not provide
any further information, for example, if they validated the data in comparison to another
method (e.g., dynamometer).

Mobile Exoskeletons or Actuated Orthoses

Rea et al. [76] described a full leg exoskeleton (X1 exoskeleton) which is fully wearable
and capable to determine isokinetic, isotonic, and isometric muscle strength, as well as
torque and the rate of torque change. In comparison to a Biodex dynamometer, the ex-
oskeleton showed a good test–retest repeatability of peak knee torque in eight participants,
but no information about the test procedure, sensors, study protocol, and results were
presented. In another study, Molinaro et al. [46] presented a robotic hip exoskeleton to
estimate hip joint torque via absolute magnetic encoders (Orbis, Renishaw, UK), IMU
sensors (sample rate: 100 Hz), and a machine learning algorithm. For ground truth and
model learning, the authors used external measurement systems (force plates, motion cap-
turing) to compute human torque via inverse dynamics in OpenSim (V 3.3.). In a validation
study with five healthy participants, they tested three different models (i.e., baseline model,
and two machine learning algorithms-XGBoost and a feedforward neural network), and
compared them with ground truth (i.e., motion capturing and force plates and inverse
dynamics in OpenSim). Regarding the RMSE for hip torque estimation, they found no
significant difference between the two machine learning algorithms. Also, both methods
could additionally lower the RMSE compared to the baseline model by up to 73%.

As part of the development of a new “assist-as-needed” exoskeleton controller,
Naghavi et al. [77] proposed a new strength index. This index estimates the user’s overall
strength of each hip separately with the help of interaction torque between the human and
the exoskeleton, and position error tracking (i.e., deviation between the desired trajectory
of the controller and the real position). The index has values between 0 and 1, where
“0” represents a complete passive user, and “1” a user with full abilities. The authors



Sensors 2023, 23, 3032 29 of 40

implemented this concept in the FUM HEXA-I exoskeleton, and used beam-type load-cells
and angular encoders to determine the strength index with a presented algorithm.

With the SUkorpion AR [51], which has also been mentioned above, it is also possible
to estimate the ankle joint torque. For this purpose, researchers used the data of the joint
angle encoder, a robust position controller and a reaction torque observer. To perform
inverse dynamics calculations, the human exoskeleton system is modeled with two DoF
with three universal prismatic and spherical joints (exoskeleton), and two revolute joints
(user´s ankle). Furthermore, Aíin et al. [53] used a “motorized ankle foot orthosis” (MAFO)
which is capable of measuring ankle joint torques, but they did not provide any information
as to which sensors were used by the device, and whether the procedure is validated or not.

3.3.5. Stiffness/Spasticity/Impedance

We included 10 studies which examined the muscle stiffness, spasticity or impedance
of study participants. Of the six different exoskeletons used in these studies, two were
stationary exoskeletons, and four were mobile exoskeletons or actuated orthoses.

Stationary Exoskeletons

Four studies [36,37,78,79] used the Lokomat and the integrated L-Stiff tool exoskele-
tons to examine knee and hip joint spasticity or stiffness.

In two conference papers [36,78], the authors presented the process of the assessment,
for example, the joints (hip and knee) of the participants were moved separately and
passively with different angular speeds (30◦/s, 90◦/s, and 120◦/s). As already described
above, joint angles and joint torques were automatically measured by the exoskeleton.
These parameters were then used to calculate the mechanical stiffness. To get closer to the
real stiffness, confounders (e.g., internal friction or gravitational effects) were subtracted.
Comparing the measurement to the results derived from the Modified Ashworth Scale,
which was administered to 42 patients with neurological disorders, the authors [36] ob-
served that both values correlate with each other, but that in persons with low spasticity, the
robotic assessment is less sensitive than the manual test. In another study, Cherni et al. [79]
examined the inter- and intra-rater reliability of the L-Stiff tool (hip and knee flexion and
extension spasticity) with a pediatric version of the Lokomat among 16 children and adoles-
cents with cerebral palsy. The results showed a moderate to excellent intra-rater reliability
for the same session (ICC: 0.69–0.95), and a moderate to good intra-rater reliability for
different day assessments (ICC: 0.49–0.89). The inter-tester reliability was poor to moderate
(ICC: 0.32–0.7).

Koopman et al. [80] used the LOPES exoskeleton (hip and knee support) to estimate
hip and knee impedance. For measuring joint angles and joint torques, they used a
potentiometer on the exoskeleton (hip and knee angle) and a potentiometer integrated
in the series-elastic actuators (torque). Both potentiometers record data with a sampling
rate of 100 Hz. For the calculation of individual parameters, the authors used a simplified
kinematic leg model, which represents two pendulums (leg and exoskeleton) coupled with
a parallel spring damper. For testing, the protocol had two different positions (1: hip: 5◦;
knee 55◦; 2: hip: 25◦; and knee 15◦), and the participants were asked to complete two
tasks: (1) relax task (i.e., wearing but not interacting with the exoskeleton), and (2) position
task (i.e., position is displayed on a screen, participants should keep the error as small
as possible).

Mobile Exoskeletons or Actuated Orthoses

There was only one study that used the mobile, full-leg H2 robotic exoskeleton [81] to
measure ankle spasticity. The authors used force sensors located in the foot sole and in the
instep brace. Interaction forces were then used to determine spasticity.

One study [82] presented a novel approach to determine knee impedance during
walking with a torque-controlled knee exoskeleton with a passive ankle joint. To this end,



Sensors 2023, 23, 3032 30 of 40

the investigators used a perturbation-based approach during walking. After a mechanical
validation, the authors are planning to use it to estimate human knee impedance.

Furthermore, we included three studies [51,83,84] with two different exoskeletons
using mobile ankle exoskeletons for measuring ankle stiffness or impedance.

The “MIT’s ankle robot system” [83,84] is an ankle robot with three DoF (only two are
actuated). For estimating ankle stiffness, the investigators used linear incremental encoders
(Renishaw, Chicago, IL), and analogue current sensors (Interactive Motion Technologies)
for detecting ankle torque and joint angle displacement, and calculated the ratio of them.
For measuring passive ankle stiffness, the ankle was moved by the robot with a constant
speed (5◦/s), and during testing, the participants were asked to not move their ankle. To
calculate joint angles, torques, and stiffness, the authors used a rather simple linearized
mathematical model based on the shank–ankle–foot system, anthropomorphic data, and
geometry. In addition, Satici et al. [51] used the aforementioned SUkorpion AR exoskeleton
to calculate ankle impedance through joint angle and joint torque.

4. Discussion

The aim of this review was to (1) provide an overview of studies and devices which
used or tested lower limb exoskeletons to assess motor performance, (2) examine which
parameters of motor performance can be or have been measured by lower limb exoskeletons,
and (3) explore which approaches have been used to assess motor performance through
lower limb exoskeletons.

4.1. Studies and Devices Which Used or Tested Lower Limb Exoskeletons to Asses
Motor Performance

Regarding our first research question, we were able to identify a variety of different
exoskeletons with built-in sensors that can be used to measure motor performance. How-
ever, there was large heterogeneity across studies regarding the design of the exoskeletons’
structure. Most studies used the treadmill stationary “Lokomat” exoskeleton, which was
developed primarily for therapy purposes. Indeed, stationary exoskeletons have important
advantages regarding training and testing. For example, the user does not need to carry
the weight of the exoskeleton, and their own weight can, in turn, be carried by the device.
Furthermore, larger sensors can be used, and loaded parts can be designed stronger. This
is important, especially regarding force measurement. Furthermore, the laboratory-like
conditions allow for standardized assessments to be carried out; however, the device can
only be used at its current location. Mobile exoskeletons can be used more flexibly and
in different environments including ambulatory settings, which may be more pertinent
to the living conditions of most individuals. Here, monoarticulated exoskeletons appear
most effective due to their lower complexity. Only four of the exoskeletons included in
our review are freely wearable, and support the entire leg at the same time. However, it is
more difficult to perform a standardized or even continuous assessment without knowing
the confounding variables (e.g., surface conditions) that inevitably occur in the field. There
are also differences in the replication of the joints, as most exoskeletons are (quasi-) an-
thropomorphic and match the number and position (same axis of rotation) of joints of the
human body (not necessarily the DoF). Only few exoskeletons, such as the one presented
by Satici et al. [51], are not anthropomorphic. An anthropomorphic exoskeleton has the
advantage of being able to estimate different parameters with rather few sensors, which in
turn reduces complexity. Non-anthropomorphic exoskeletons, where one human joint is
represented by multiple joints in the exoskeletons, require multiple sensors and algorithms
for calculating the values are more complex and also more error-prone. These types of
exoskeletons have the possibility to reduce joint misalignments. Regarding the data pro-
cessing from the acquired sensor data, some studies used unprocessed raw data to estimate
human parameters, or did not specify which algorithms were used to process the data. The
question as to how valid and accurate these estimates were, was only addressed in a few
studies. For example, in one study [47], the results varied by up to 7◦ from ground truth
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for RoM. However, of note, the results depend on many variables such as support level
and movement speed. When the calculation method was provided, mostly the simplest
possible kinematic models were used. Only few studies used somewhat more complex
multibody models, such as shown in Koopman et al. [80]

4.2. Parameters of Motor Performance, That Can Be or Have Been Measured by Lower
Limb Exoskeletons

Regarding our second research question, we were able to show that a variety of
motor parameters can be measured with exoskeletons (e.g., joint angles; proprioception;
gait parameters such as gait phase, spatio–temporal gait parameters, and walking ability;
muscle strength and joint torques; and stiffness, spasticity, and impedance), which will
briefly be discussed in the following sections. These parameters represent a broad range of
motor performance variables, which are particularly important for rehabilitation settings,
or may be used to identify the success of a certain therapy or practice schedule. However,
our review could not identify studies that use exoskeletons to assess other areas of motor
performance such as dynamic balance, fall prediction, metabolic costs, or endurance which
are equally important regarding training of older adults or individuals with limited motor
skills. Nevertheless, balance and fall prediction can be evaluated with wearable sensors
such as IMUs, and the results may also be transferable to exoskeletons [89,90]. Some
exoskeletons already are being prepared or systems for exoskeletons are being developed
to measure stability for control purposes [91,92]. Thus, more research is needed that uses
exoskeletons to assess a broad range of motor performance variables, including balance
which is associated with risk of falling.

4.3. Approaches to Assess Motor Performance through Lower Limb Exoskeletons

Regarding our third research question, various aspects are important to mention. First,
defining the goal of an exoskeleton-supported assessment is essential for choosing the right
approach. Such goals may include, but are not limited to, a clinical evaluation, control, or
assessment of a training progress, the examination of motor parameters during the daily
training cycle, or the examination of specific motor conditions (e.g., recognition of gait
patterns). Each goal has its own requirements with regard to the assessment, the design of
the exoskeleton, and the selected sensors [16]. However, in general, it is recommended to
validate all parameters against a gold standard, regardless of whether they are clinically rel-
evant or represent a newly developed exoskeleton-based parameter. In addition, if inverse
kinematics or dynamics are to be calculated using a model of the musculoskeletal system,
the values measured by the exoskeleton must have the same accuracy as measurement
devices in the laboratory. Based on current models in prior research [42], the data was
not (yet) of sufficient quality, or was not tested for such biomechanical model calculations.
Almost all measurements are estimates of reality, since angles, forces, etc. of the exoskeleton
are used to extrapolate to those of the user. Thus, it is particularly important that the
type of sensors, their number and placement on the exoskeleton, as well as the algorithms
for calculating the estimate, are optimally matched. To this end, initial studies are using
machine learning to interpret selected values derived from the data; however, all studies
included in this review, and using machine learning, only included healthy participants.
It is thus not known how well these systems would work with individuals who are older
and/or have impairments such as gait deficits. According to the authors of the included
studies, this has the advantage of lower required computing power and more robust results,
which are also needed for real-time control of the exoskeletons.

Compared to other testing methods, assessments of motor performance with exoskele-
tons have several advantages. One major advantage is the mobility of the exoskeleton.
Particularly with mobile exoskeletons, assessment is possible outside of the laboratory or
clinical setting. Furthermore, exoskeletons seem to be more objective and sensitive com-
pared to manual testing procedures, particularly with regard to assessing proprioception or
strength (e.g., [56]). In addition, some manual procedures and standard clinical tests have a
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ceiling effect, which does not appear to be the case with exoskeleton-based assessments.
Moreover, exoskeletons are increasingly used in the therapy setting, and no other special
equipment would then be needed to perform motor performance assessments. Most active
exoskeletons generally already have built-in sensors for control, which may additionally be
used for testing purpose, for example, to measure different motor parameters such as RoM
in selected joints and proprioception with small additional effort. Another advantage of
exoskeletons is that the data can be collected in real time, and even during training phases.
Thus, even short-term effects, for example during motor adaptation [93], can be examined
and better understood, as well as factors influencing current or future training sessions.
Finally, individuals who cannot undergo standard test procedures, for example, due to
physical limitations, may be tested using exoskeletons.

However, several limitations of exoskeletons still exist and should be addressed
in future research. For example, the human–exoskeleton interface, and especially the
connection points, inevitably lead to interactions that can affect the measurement of motor
performance, or can alter the biomechanics of the human gait. Furthermore, if the weight
of the exoskeleton is too heavy, and/or the control of the exoskeleton is poorly tuned to
the human movement, the user can be forced to also carry the weight of the exoskeleton
which also could lead to biases in measurement of motor performance. In addition, joint
misalignments between the exoskeletons and the body cause shear forces (e.g., due to the
moving center of rotation of the knee joint), what could be perceived as uncomfortable
and could have a negative impact on performance. Furthermore, it can be an unfamiliar
feeling for the user to wear an exoskeleton closely fitting to the body, which in turn may
affect performance. During movement, the soft tissues may also move and cause further
deviations in measurements. In addition, the settings of the exoskeleton in terms of control
and support mode have a main impact on the measurement of motor performance [94].
The advantage of being able to test persons who were previously unable to undergo a test,
also creates new challenges. For example, both the measured and the individual support
provided by the exoskeleton are included in the result, and therefore the results need to be
interpreted individually and carefully. Potential solutions for these limitations include a
sufficiently long and standardized familiarization phase, so that the user can familiarize
themselves with the new conditions (i.e., wearing an exoskeleton). The exoskeleton can only
be used as a measuring instrument if and when the user in combination with the exoskeleton
can constantly deliver the best possible performance. For example, Poggensee et al. [95]
reported that users of their exoskeleton required 109 min of training to become an expert
user, which would be needed to conduct motor assessments. For future research, this
time period should be minimized by adapting the control algorithm or design of the
exoskeleton. However, one can hypothesize based on the results of Poggensee et al. [95],
that this familiarization or the design of the exoskeleton could also lead to an unwanted
adaptation of the user to the exoskeleton, in which case the measured results would not
reflect the reality without exoskeleton, but only the performance of the user while wearing
the exoskeleton, which could, for example, be indicated by an alteration in stride width.
In that case, the measured values would need to be interpreted cautiously and would
only apply to the condition when the user is wearing an exoskeleton. Therefore, a better
approach may be to reduce the potential disturbance of the measurement. This could be
made possible by a special test-control algorithm, which keeps the interaction in an optimal
range, or through sensor–actuator units, which always adapt the sensors to the optimum in
the sense of the measurement. In any case, a reliable validation of the data is important,
so that one can ideally rule out the possibility that certain disturbance variables have an
influence on the measurement.

4.4. Motor Performance Parameters
4.4.1. Joint Angles

For detection of joint angles, all exoskeletons used in the included studies measure
their internal state of the exoskeleton and estimate the position of the human limb. To
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this end, various sensors (e.g., encoders, IMUs) are used. The minimal sample rate which
should be used to track joint angles depends on the expected speed of the movement and
the type of analysis to be conducted (e.g., trajectory detection or activity classification) [96].
Payton et al. [97], for example, recommend a minimal sampling rate of 25 to 50 Hz for a gait
analysis, and 200 to 500 Hz for high speed sports activities like a serve in tennis. With one
exception [51], all exoskeletons had a (quasi-) anthropomorphic design, which can simplify
the estimation of joint angles. This is because the state of the exoskeleton (e.g., joint angles),
which is often used for control reasons, can be congruent to the state of the user. Therefore,
it may be sufficient to test this congruence for validity and reliability. Five validation studies
were found, which showed small deviations between the estimated joint angle and the joint
angle measured with the validation tool. However, the results depend on various factors
such as supporting mode of the exoskeleton, and movement speed. Furthermore, the
accuracy was not always high enough to perform inverse dynamics calculations. Especially
in the extreme positions (maximum possible of the RoM) deviations could occur, which
should also be investigated in future evaluation studies.

4.4.2. Proprioception

Three studies [56–58] used the Lokomat exoskeleton for proprioception assessment.
For position detection, they used the same angular detection sensors as mentioned in the
joint angular Section 4.4.1.

In contrast to manual testing of proprioception, using an exoskeleton has the advan-
tage that most parameters are standardized (i.e., movement speed, quantification of the
response). Furthermore, the Lokomat exoskeleton is also capable of controlling the limbs
with a joystick, which means that also physical impaired people can be tested. We found
no study which investigated the use of an exoskeleton as an assessment tool for position
reproduction for the ankle joint, which may be important for standing balance and fall
prediction [98]. In addition, the influence of the robot on the proprioception is not clear, and
given the contact between the robot and the exoskeleton, a measurement bias is possible.

4.4.3. Gait Phase, Spatio–Temporal Gait Parameters and Walking Ability

Most studies included in this review and investigating gait parameters determined
gait phases based on different sensor data (e.g., FSR sensors, accelerometers). As mentioned
before by Maggioni et al. [29], exoskeletons with variable support algorithms offer the
possibility to identify weaknesses in the individual gait phases more precisely, and to focus
training processes on them. One main prerequisite is that the exoskeleton itself has no
influence on the gait, which is possible depending on the design and the controls [99].
Only two included studies focused on other gait parameters (i.e., stride time, stride length,
gait speed). Since these parameters are important for rehabilitation progress and fall risk
assessment, they should be given greater focus in the future [100,101]. Two studies [59,60]
proposed their own index to determine walking ability. These values calculated based on
different sensor data can, for example, describe the initial state or the training progress of
the user, and also identify deficits in individual motor performance sub-areas.

4.4.4. Muscle strength and Joint Torques

Linear forces are often measured using force sensors (e.g., load cells, air pressure
sensors) attached to the contact points between the human body and the exoskeleton, and
the human forces are then calculated by using the known joint angles of the exoskeletons. A
second way to determine joint torques is the implementation of a reaction torque observer
(sensor). The recommended sampling rate for isokinetic measuring is 1000 Hz, but also a
lower sampling rate at 500 Hz seems to provide an acceptable accuracy [102]. Not all of the
studies included in this review fulfill these recommendations, and some only used sensors
with a sensor rate of less than 500 Hz. Only one study [77] used the interaction forces
between the exoskeleton and the user to calculate an individual strength index, which lies
between 0 and 1, and is used to control the exoskeleton. However, use of the index for the
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evaluation of training progress is also conceivable. For the Lokomat, researchers observed
a fair to good reliability, and a correlation with the results of a handheld dynamometer.
Especially when compared to handheld dynamometers, exoskeletons seem to have an
advantage due to higher inter-tester reliability [73].

4.4.5. Spasticity/Stiffness/Impedance

The most common clinical tool to measure spasticity is the Modified Ashworth Scale,
but different robotic assessment tools were also developed. However, there is no ob-
jective gold standard for the measurement of spasticity to which the results could be
compared [103]. Nazon et al. [82] state that exoskeletons must be able to perturbate (ap-
ply torque), to measure the applied torque and to determine the position displacement
during the perturbation to measure impedance. The authors [82] state that until now,
there are no empirical biomechanical studies investigating dynamic tasks with regard to
knee impedance. With regard to the Lokomat exoskeleton, the studies included in this
review showed that results correlate with the Modified Ashworth score, and have a good
to excellent intra-rater reliability (for children with cerebral palsy). For stroke patients, the
exoskeleton was able to detect small changes after a training period, but the device cannot
discriminate between lower spasticity levels. Also, other (ankle) exoskeletons seem to be
feasible as a testing device for spasticity, but further validation studies are needed.

4.5. Limitations

Several limitations exist pertaining to the studies included in this review. First of all,
we rely on a detailed and scientifically sound description of the methodological approach
of each study. Unfortunately, many studies did not provide such detailed descriptions;
for example, regarding the type of sensors, positions, and sampling rates used. Also, the
evaluation methods (algorithms) were often not described in detail, or only described
to a limited extent. Further, the target population for exoskeletons in general is very
heterogeneous. Research on exoskeletons is primarily carried out in the medical field [104],
in addition to military use or use in the working environment [105]. Here, the focus is on
diseases that severely restrict movement, such as stroke or paraplegia. There is also an
increasing focus on supporting older individuals who have restricted mobility, for example,
due to age-related sarcopenia. The participants of the studies included in this review,
however, were particularly young healthy men, as well as patients with neurological
disorders. Future studies on exoskeletons to measure motor performance should aim
at recruiting more women, older persons, and individuals with pre-existing diseases in
addition to neurological conditions.

Another limitation of the included studies is the lack of validation and reliability tests.
For example, for some exoskeletons it was assumed that the joint angle of the user matches
that of the exoskeleton; but this may not always be the case.

There are also some limitations pertaining to this review itself, such as the identification
of articles based on our predefined inclusion and/or exclusion criteria. However, we tried
to overcome these limitations by carrying out the entire screening process independently
by two authors. Furthermore, we conducted a reference screening of all included studies to
detect more studies which ultimately led to the inclusion of 20 additional studies. Another
limitation pertains to the fact, that the definition of an exoskeleton is not always clear, and
has overlaps with the area of orthotics. Therefore, we always used the terminology as used
by the authors of the studies included in this review. Additionally, this review only focuses
on exoskeletons designed for the lower extremities. However, exoskeletons for the upper
extremities may also be used to assess motor performance (e.g., strength), and results from
such studies may also be transferable to exoskeletons for lower extremities.

4.6. Recommendations for Future Developments and Test

Although the design of exoskeletons is highly dependent on the goal of the research
study or area of application, (quasi-) anthropomorphic exoskeletons reduce complexity
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and simplify the measurement of motor performance. Some exoskeletons may also not
be suitable to conduct motor performance assessment due to design or safety features,
and thus would need to be adapted. Furthermore, it is recommended to build the testing
model (software architecture) in a way so that it can be used by different exoskeletons
for measurement. In order to generalize the calculation of different motor parameters,
one possible approach may be to create different levels in this model, and use a converter
to unify the input data across devices. However, this approach would need to be vali-
dated for each device individually, for example, a current study tested their simulated
model against a marker based system and found consistent results with regard to joint
angles [106]. Furthermore, it has been shown that exoskeletons can also have a direct
impact on motor performance (e.g., balance [107]). Therefore, further research is needed
that investigates whether and how these influences can be reduced to a minimum, or how
they can be adjusted. Similarly, research often focuses on reproducing quantitative or
laboratory-based testing procedures using exoskeletons, or using exoskeletons to design
a new procedure [108]. Less frequently, (semi) subjective methods are used, which are,
however, widely used in the clinical setting. They have a high informative value, but also
some limitations such as a ceiling effect. Pertinent methods regularly used in a clinical
setting include but are not limited to the Berg Balance Scale, or the Tinetti Balance and
Gait Test. These tests could be further specified, and their reliability and validity could
be further increased by utilizing and augmenting objective data from an exoskeleton. In
our review, we only detected one original study [62] using exteroceptive sensors to assess
motor performance in humans. However, it is conceivable that such sensors can poten-
tially be used to measure certain aspects of motor performance or, through sensor fusion,
can improve the results of other measurements. For the test procedure itself, sufficient
familiarization of the participants and minimal disturbance by the exoskeleton must be
ensured. Given that the number of persons over 60 years of age will double to more than
two billion within the next 30 years, and in light of a decreased mobility of older adults
due to sarcopenia and other limitations or medical conditions, exoskeletons may be used to
not only maintain mobility, but also to detect and train weaknesses with regard to motor
performance through new sensor technology, control algorithm, design, and lightweight
materials [109]. In the future, various target groups for lower-limb exoskeletons, including
but not limited to older persons with and without cognitive and/or physical impairments,
should be considered in research studies.

5. Conclusions

The results of our review show that particularly stationary and single-joint exoskele-
tons can be used to measure a wide range of motor performance parameters (RoM, strength,
proprioception, gait parameters, and muscle stiffness) through built-in sensors. Most
studies utilized exoskeletons with a (quasi-) anthropomorphic design to simplify the
calculations. Regarding assessing certain motor performance parameters, for example,
proprioception or spasticity, exoskeletons are considered more objective and specific than
manual test procedures. However, since these parameters are usually only estimated from
built-in sensor data, the quality and specificity of an exoskeleton to assess certain motor per-
formance parameters must be ensured before an exoskeleton should be used in a research
or clinical setting. To this end, comprehensive evaluation studies that examine validity,
reliability, and accuracy of exoskeletons assessing motor performance parameters are still
scarce. Furthermore, it must be noted that an exoskeleton itself may have an impact on
motor performance, for example, due to the unfamiliar situation for the user or irritations
caused by micro misalignments.
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