
Journal of Cleaner Production 360 (2022) 131847

Available online 12 May 2022
0959-6526/© 2022 Elsevier Ltd. All rights reserved.

Use of machine learning and geographical information system to predict 
nitrate concentration in an unconfined aquifer in Iran 

V. Gholami a,*, M.J. Booij b 

a Department of Range and Watershed Management and Dept. of Water Eng. and Environment, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, 1144, 
Guilan, Iran 
b Water Engineering and Management, Faculty of Engineering Technology, University of Twente, the Netherlands   

A R T I C L E  I N F O   

Handling Editor: Bin Chen  

Keywords: 
Extreme gradient boosting 
Deep neural network 
Multiple linear regression 
Nitrate pollution 
Alluvial aquifer. 

A B S T R A C T   

Increased nitrate concentration is one of the main groundwater quality problems today that needs to be measured 
and monitored. Water quality testing and monitoring are time consuming and costly. Therefore, new modeling 
methods such as machine learning algorithms can be used as an efficient solution for predicting nitrate con-
centration. In this study, three machine learning methods including deep neural network (DNN), extreme 
gradient boosting (EGB), and multiple linear regression (MLR) were used to predict nitrate contamination in 
groundwater in the north of Iran (Mazandaran plain) and finally the best method was selected for mapping. The 
mean nitrate concentration in 250 piezometric wells was considered as output variable and the factors affecting 
groundwater quality (groundwater depth, transmissivity of aquifers, precipitation, evaporation, distance from 
water resources and Caspian Sea, distance from industries and residential centers, population density, topog-
raphy, and exploitation from groundwater) as input variables in an alluvial aquifer. The same training and 
testing data were used in the modeling process of the three machine learning methods. The results of the training 
and testing stages showed that the EGB method has the highest performance in predicting nitrate concentration 
due to the lowest error values and highest correlation between the measured and predicted values of nitrate 
concentration (training R-sqr = 0.98, Nash–Sutcliffe efficiency (NSE) = 0.98, and test R-sqr = 0.86, NSE = 0.84). 
Further, the results indicate that the factors distance from industries, population density, groundwater depth, and 
evaporation rates are the most important factors affecting nitrate concentration in groundwater. Finally, the 
tested EGB model and a geographic information system (GIS) tool were used to prepare a map of groundwater 
nitrate pollution in the study area. Evaluating the performance of the resulting map by comparing the predicted 
and measured values indicated a good accuracy (R-sqr = 0.8).   

1. Introduction 

Nitrate concentration in groundwater has increased significantly in 
recent decades due to human activities, especially with the development 
of industries and the use of nitrogen fertilizers in agriculture (Sajedi--
Hosseini et al., 2018; Motevalli et al., 2019; Band et al., 2020; Khalifa 
et al., 2021). Industrial and agricultural development without 
complying environmental standards, especially in developing countries 
such as Iran, has led to increased pollution of surface water and 
groundwater resources (Shivasorupy et al., 2012; Gholami et al., 2015). 
Industries in developing countries do not have wastewater treatment 
systems or environmental standards required. Farmers also traditionally 

use excessive amounts of nitrogen fertilizers and toxins. As a result, 
increasing nitrate concentrations in groundwater sources have been 
observed in recent decades in the world (Alighardashi and Mehrani, 
2017; Band et al., 2020). On the other hand, consuming drinking water 
with high nitrate concentration can lead to serious problems for human 
health, especially for children such as childhood water syndrome and 
lack of oxygen in the body., high concentrations of nitrate in drinking 
water will increase the risk of cancer for humans (Parvizishad et al., 
2017; Taneja et al., 2017). Therefore, it is necessary to conduct moni-
toring and modeling studies to identify the factors affecting the increase 
of nitrate concentration, identify areas with high pollution, and ways to 
reduce it. 
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Sampling groundwater and conducting water quality measurements 
are time consuming and costly. On the other hand, developing countries 
face financial limitations regarding water quality tests, and monitoring 
studies, and mostly such studies are not the priority of development 
projects or can not be implemented on a large scale. Therefore, using 
new methods and modeling techniques to predict nitrate concentration 
and contamination zones can be an effective way under such conditions. 
New effective methods in modeling the quality of water resources are 
the use of artificial intelligence and machine learning methods. Today, 
several studies on the quality and quantity of water resources have been 
conducted worldwide using artificial intelligence and machine learning 
methods. Artificial intelligence in groundwater quality studies (Chou, 
2006; Han et al., 2011; Band et al., 2020; Gholami et al., 2020; Maliqi 
et al., 2020; Mosaffa et al., 2021) and studies on groundwater depth 
fluctuations (Dixon, 2004; Saemi and Ahmadi, 2008; Gong et al., 2018; 
Chen et al., 2020; Gholami et al., 2021) has been widely used. Further, 
machine learning was used in different hydrological modeling studies 
with a high performance (Rahmati et al., 2017; Tongal and Booij, 2018; 
Rahmati et al., 2019; Azizi et al., 2020; Kashani et al., 2020; Javidan and 
Javidan, 2021; Wells et al., 2021). 

Wang and ZhangDing (2017) used machine learning and a water 
quality index (WQI) for modeling groundwater quality in China. They 
found good results in the test stage (R-sqr of 0.92) that showed a high 
performance of machine learning in the water quality modeling. Mote-
valli et al. (2019) used data mining methods and a geographic infor-
mation system (GIS) to investigate nitrate contamination in 
groundwater in the Ghaemshahr plain. They were able to provide an 
accurate map for nitrate concentration zoning. Rahmati et al. (2019) 
studied uncertainty of machine learning methods for predicting nitrate 
pollution in groundwater using UNEEC methods and quantile regres-
sion. They used three state-of-the-art ML models including support 
vector machine (SVM), random forest (RF), and k-nearest neighbor 
(KNN) and found that KNN was the best model among the used models. 
Bedi et al. (2020) compared the performance of three methods for 
modeling groundwater quality. They used artificial neural network 
(ANN), SVM, and EGB. They observed the highest correlation between 
the observed and the predicted values and the lowest errors in the 
modeling process by the EGB model. Awais et al. (2021) used several 
machine learning approach for evaluating nitrate contamination risks 
along the Karakoram Highway. They used SVM, multivariate siscri-
minant analysis (MDA), and boosted regression trees (BRT) in the 
modeling process and their results showed that machine learning have a 
good performance in nitrate pollution evaluation. Bilali et al. (2021) 
used different methods of machine learning in groundwater quality 
prediction. Their results showed that selecting a suitable method for 
modeling water quality will reduce costs and can evaluate water quality 
in a short time. Khalifa et al. (2021) predicted groundwater nitrate 
concentration using artificial intelligence methods in a semi-arid region. 
They found that the factors precipitation, altitude, groundwater depth, 
and distance from the residential area are the most important factors for 
predicting nitrate pollution. Further, many studies have shown a high 
performance of combining artificial intelligence and GIS capabilities in 
groundwater quality modeling (Tweed et al., 2007; Arslan, 2012; 
Haselbeck et al., 2019; Abulibdeh et al., 2021). 

There is an urgent need to study and monitor the rates of nitrate 
pollution in groundwater for the management and use of water re-
sources. It is also necessary to provide a model with the ability to predict 
the effect of different scenarios of agricultural and industrial develop-
ment and population growth on nitrate pollution in groundwater. The 
aim of this study is therefore to present a methodology for predicting 
groundwater nitrate concentration and to prepare a groundwater nitrate 
concentration zoning map by combining the capabilities of machine 
learning and GIS techniques and spatial variation in groundwater of an 
alluvial aquifer on the southern coats of the Caspian Sea. Furthermore, 
the application of different machine learning methods and their evalu-
ation in order to determine the most effective method for predicting the 

concentration of nitrate in groundwater is investigated. 

2. Materials and methods 

2.1. Study area 

The study area includes the Mazandaran plain with an area of ten 
thousand km2 in the north of Iran. This plain includes the southern 
coasts of the Caspian Sea located between 50◦34′ to 54◦10′ eastern 
longitude and 35◦47′ to 37◦ northern latitude (Fig. 1). The mean annual 
precipitation of the study area varies from 1300 mm in the west of the 
plain to 600 mm in the east of the plain. The mean annual evaporation 
range from 600 to 1000 mm. Land uses include agricultural lands, res-
idential lands (cities and villages), water resources, industrial lands, and 
a limited area of forest land (Fig. 2E). Quaternary alluvial sediments are 
the main constituent of the plain formation. An unconfined aquifer 
(alluvial aquifer) with a shallow groundwater layer and rivers are the 
main sources of water supply for agricultural lands in the study area. The 
groundwater table varies from 1 m below surface level at the coast to 40 
m below surface level in the most elevated part. 

The activity of a large number of small industries without complying 
environmental standards in the study plain threatens the groundwater 
quality. In addition to the activities of these industries, the excessive use 
of fertilizers in agriculture, in particular, irrigated agriculture has 
reduced the quality of water resources and especially increased nitrate 
concentration in recent decades (Alighardashi and Mehrani, 2017). 

2.2. Data 

For modeling the nitrate concentration in groundwater, accurate 
data (measured data) on the concentration values in groundwater are 
needed, as well as observations of the affecting factors for the nitrate 
concentration. Therefore, data on nitrate concentration in groundwater 
of 250 piezometric wells in the Mazandaran plain was obtained from the 
Mazandaran Regional Water Company (Mazandaran Regional Water 
Company MRWC, 2020). Further, ten pumping wells were selected and 
sampled in the eastern part of the study plain and their measured values 
of nitrate concentration were used to compare and evaluate the 
modeling results (verification wells). The verification wells are located 
in areas without samples for the model (training and testing). 

The quantitive data on nitrate concentration was used for the years 
2016–2020. Each well had a monthly sampling frequency. The piezo-
metric wells were semi-deep wells (20–40 m) drilled in the alluvial 
aquifer. Nitrate pollution in unconfined aquifers is higher due to the 
extent of paddy lands, the use of nitrogen fertilizers and the activities of 
large and small industries (Alighardashi and Mehrani, 2017). There are 
deep wells or drinking water wells in the study area with a depth of more 
than 100 m, which have less pollution. The piezometric wells were 
drilled by the MRWC to study the fluctuations of the groundwater depth, 
prepare water level maps and calculate the volume of groundwater inlet 
and outlet of the aquifer. On the other hand, the number of deep wells in 
the study plain is limited and is not sufficient for modeling, so deep wells 
have not been used in combination or separately. Finally, the average of 
all monthly observations of nitrate concentration for each well was 
estimated and used as output variable in the modeling process (training 
and testing phases). Affecting factors for the nitrate concentration in the 
Mazandaran plain have been studied using hydrogeologic maps of 
MRWC, and satellite images (Google Earth). For each of the 250 wells, 
the affecting factors for the nitrate concentration in groundwater 
include groundwater depth, transmissivity of aquifers, climate (precip-
itation and evaporation), distance from industries, distance from water 
sources, population density, distance from residential centers, distance 
from the sea, topography, and exploitation from groundwater (accord-
ing to landuse and groundwater extractions in wells), and these factors 
were carefully investigated and determined. Nitrogen fertilizer con-
sumption is an important factor for nitrate pollution in groundwater. 
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Unfortunately, no data is available on the amount of fertilizer con-
sumption and only the mean consumption per capita in agricultural 
lands has been estimated, which is considered as a criterion of con-
sumption of nitrogen fertilizers by studying land use within the oper-
ating radius of each well. 

2.2.1. Groundwater depth 
Groundwater depth is one of the influecting factors for groundwater 

quality (Ghose et al., 2010; Bradai et al., 2016; Haselbeck et al., 2019; Li 
et al., 2020). The data on groundwater fluctuations from the last five 
years, which were almost normal years (no severe drought), were used 
to determine the mean groundwater depth (Fig. 2A). Then, the mean 
groundwater depth map was prepared using data of 250 piezometric 
wells and interpolation using Kriging in GIS. The map shows the spatial 
variability of the groundwater depth in the study area. 

The depth of the well below the water table is one of the effective 
factors for the prediction of nitrate pollution in groundwater. Unfortu-
nately, detailed data on this factor is not available for the study area, and 
this limits the application of the model for nitrate concentration map-
ping. Therefore, this factor has not been used as an input factor. 

Well depth can also be an influecting factor for the nitrate 

concentration in groundwater (Bohlke, 2002). The purpose of this study 
is to provide a model for predicting nitrate concentration at locations 
without data or wells, so well depth could not be used as an input to the 
model because it limits the use of the model. Further, based on the 
available data, there is no significant relationship between well depth 
and nitrate concentration in groundwater in the study area. 

2.2.2. Climate (precipitation and evaporation) 
Precipitation is the main source of recharge for surface water re-

sources and finally groundwater. 
In agricultural areas, more precipitation can cause a large loss of 

nitrate to groundwater. Further, precipitation can reduce the concen-
tration of pollutants and improve water quality. Therefore, the role of 
precipitation in nitrate concentration in determining groundwater is 
depend on hydrological conditions of the aquifer, farm management, 
and climate conditions (Band et al., 2020; Khalifa et al., 2021). Further, 
evaporation can also increase the concentration of pollutants in water 
resources (Awasthi ea tal., 2005; Maliqi et al., 2020). Annual precipi-
tation and actual evaporation data of meteorological stations were 
prepared for a common 30-year period (1990–2020). Then, by inter-
polating the stations statistics, the spatial distribution of mean annual 

Fig. 1. (A) Location of the Mazandaran plain in the north of Iran and (B) location of the studied wells across the Mazandaran plain.  
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precipitation and evaporation (Fig. 2B) in the study area was 
determined. 

2.2.3. Population density and distance from residential centers 
Residential areas are important zones that contaminate groundwater 

resources (Khalifa et al., 2021). The study area, a considerable number 
of cities and villages is located, where all villages do not have any new 
and efficient sewage system. Furthermore, small industries are located 
in these cities and their suburbs. As a result, these centers are an 
important factor in polluting water resources and increasing nitrate 
concentrations (Gholami et al., 2015). Using topographic maps with a 
scale of 1: 25,000 and satellite images, the digital layer of villages and 
cities was prepared in GIS (Fig. 2E) and then the map with the distance 
from residential centers was prepared (Fig. 2F). Moreover, by interpo-
lating the population statistics of the residential centers, the spatial 
distribution of population and population density in the study area was 
determined and mapped (Fig. 2C). 

2.2.4. Transmissivity of aquifers 
The transmissivity of aquifers is one of the most important hydro-

geological characteristics of an aquifer and has a significant effect on the 
quality of groundwater resources and the spread of pollutants (Awasthi 
et al., 2005; Gholami et al., 2021). The transmissivity of the aquifer has 

been determined by MRWC by drilling and pumping tests. Then, based 
on hydrogeological studies and geological maps, homogeneous units of 
transmissivity were determined. Taking into account these homoge-
neous units and the estimated values in the wells, a map of the trans-
missivity of the aquifer formation has been prepared by MRWC. The 
map shows the mean values of the transmissivity in square meters per 
day (Mazandaran Regional Water Company MRWC, 2020) (Fig. 2D). 

2.2.5. Distance from industries 
Industries are one of the most important factors influencing the 

concentration of nitrate in groundwater resources and increasing 
pollution of water resources (Shivasorupy et al., 2012In the Mazandaran 
plain, industrial towns, small industries, livestock and poultry farms 
have a significant effect on the pollution of water resources and increase 
in nitrate concentration (Gholami et al., 2015). To determine the loca-
tion of industries, we have used the database of the Mazandaran Prov-
ince Industries and Mines Organization (MPIMO) and visual 
interpretation of satellite images with a high resolution. After preparing 
the geo-referenced digital layer of industries, a map of the industrial 
area of the study plain was prepared in GIS (Fig. 2F). 

2.2.6. Distance from water sources 
The distance from water sources such as rivers and lakes of fresh 

Fig. 2. Maps of (A) Mean depth to groundwater (m), rivers, and wetlands across the study plain; (B) Mean annual evaporation (mm); (C) Population density (no/ 
km2); (D) Mean transmissivity of aquifer formation (m2/day); (E) Land use map for calculating exploitation values from groundwater; and (F) Distance from in-
dustries (m). 
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water and wetlands will affect the amount of recharge, the groundwater 
depth and finally the quantity and quality of groundwater (Awasthi 
et al., 2005; Gholami et al., 2021). Using topographic maps and satellite 
images, freshwater resources of the plain, including rivers, wetlands and 
lakes (Fig. 2B&E) were identified and a buffer map (map of the distance 
from rivers, lakes and wetlands) was prepared in GIS the seam as Fig. 2 
F. 

2.2.7. Distance from the sea 
Distance from the Caspian Sea can be an important factor for water 

quality as well, especially for groundwater salinity. The distance from 
the sea shows the location of the place in the watershed, which in turn 
will affect the groundwater depth and the amount of groundwater 
recharge (Abd-Elhamid et al., 2020; Shi et al., 2021). The Caspian Sea 
location and GIS capabilities were used to map the distance from the sea 
(Fig. 2). 

2.2.8. Topography (elevation and slope) 
Elevation and slope are important topographic factors influencing 

groundwater conditions (Khalifa et al., 2021). The elevation and slope of 
the land affect the groundwater depth, the drainage conditions and the 
hydraulic slope of the area (Wang and ZhangDing, 2017). At this stage, 
using 10 m topographic lines and GIS capabilities, a 10 m digital 
elevation model (DEM) was prepared and used to prepare a slope map of 
the study area. The ground slope is less than 5 percent and does not show 
notable variability in the study area. 

2.2.9. Exploitation from groundwater 
Agricultural lands, especially paddy fields and citrus orchards, are 

very important in consuming pollutants such as nitrogen fertilizers and 
toxins (Band et al., 2020; Costantini et al., 2021; Wells et al., 2021). The 
areas of agricultural lands also indicate water consumption in the agri-
cultural sector. On average, 1 ha of paddy land consumes about 11,000 
m3 per year and 1 ha of citrus orchard consumes about 5,000 m3 of water 
per year in the study plain (Mazandaran Regional Water Company 
MRWC, 2020). The area of agricultural lands in the study plain was 
determined by using high resolution images (Google Earth) and by 
applying the annual water consumption within the operating radius of 
the well. The maximum operating radius of the pumping well was 
considered to be 1000 m (Shi et al., 2016). The operating radius of the 
well is the maximum distance from the well up to which aquifer prop-
erties have a significant influence on drawdown at the well. By applying 
the annual water consumption of agricultural lands, the amounts of 
water utilization within the operating radius of each well were esti-
mated. The area of agricultural land also reflects the amount of nitrogen 
fertilizer consumption because there is a direct relationship between the 
area of agricultural land and fertilizer consumption (Fig. 2E). The pre-
dominant crop is rice, which has a high nitrate fertilizer consumption. In 
the central part of the plain, rice is cultivated twice a year by farmers, 
which has led to excessive use of nitrogen fertilizers. Farmers in the 
region traditionally consume about 150–250 kg of nitrogen fertilizer per 
hectare per year (Mazandaran Regional Water Company MRWC, 2020). 

2.3. Predicting the nitrate concentration in groundwater 

To model the nitrate concentration in groundwater, three machine 
learning methods including deep neural network (DNN), extreme 
gradient boosting (EGB), and multiple linear regression (MLR) using the 
same training and test data have been used. In this regard, nitrate con-
centrations in groundwater of monitoring wells were used as output and 
factors affecting in nitrate concentration as input. 70% of the data was 
used for model training and 30% for model testing. The modeling pro-
cess was performed by the three methods and then the results were 
compared including evaluation of error to determine the most appro-
priate method. Furthermore, the optimal inputs of the models have been 
determined through sensitivity analysis of the inputs in the model, trial 

and error method, and evaluation of the effect of each input and sta-
tistical analyzes. Finally, for each of the three used methods, the optimal 
model structure was determined. Then, the most efficient method was 
selected by comparing the results of the training and testing phases. 

2.3.1. Extreme gradient boosting (EGB) method 
The EGB method using decision trees is one of the most efficient 

methods in modeling with machine learning. The decision tree algo-
rithm uses a tree-like model that goes from input variable data (branches 
of the tree) to the modeling of the output variable (leaves of the tree). 
This method has several advantages including no restrictions on the 
different types of output, ability to model complex interactions, and to 
manage missing data with minimal data missed. The EGB method was 
first presented by Breiman et al. (1984) and Mason et al. (2000); Chen 
and Guestrin (2016) have developed the EGB method. In this method a 
set of inputs (X1,…,Xn) is used to model a set of outputs (Y1,…,Yn) by 
using a model F(X)→Y and to minimize the sum of loss function J by 
optimizing the model F(X) (eq. (1)): 

J =
∑n

i=1
L(Yi,F(Xi)) (1) 

The loss function is L(x, y) = (x − y)2. Model optimization algorithm 
firstly, computes the negative gradients of J with respect F(Xi) ( − ∂J

∂F(Xi)
). 

Next, the regression tree h is fitted to the negative gradients − ∂J
∂F(Xi)

. 
Then, the new F(Xi) will be F(Xi)+ γh, where γ is called the step size in 
the algorithm to assess the calculated minimum of J, and this process is 
repeated until an appropriate accuracy is achieved. One of the salient 
features of the EGB method is that the modeling process begins with a 
loss function L(Yi, F(Xi)+h) and minimizes J =

∑n
i=1L(Yi, F(Xi) + h)+

Ω(h), where Ω(h) = γT + 1
2 λ||W||

2 T is called the leaf number in the tree, 
and w is called the leaf weights. In this study, the R program was applied 
for modeling nitrate concentration in the groundwater by using the EGB 
model. A schematic diagram of the EGB model is given in Fig. 3. 

2.3.2. Deep neural network (DNN) method 
The DNN method is another machine learning methods which 

mainly uses nonlinear relationships to relate input data and output 
variables in the modeling process. A DNN has a structure similar to the 
neurons in the human brain that enables activity and communication 
between the inputs to train and learn the DNN and ultimately to model a 
target or output variable (Hu et al., 2018). The difference between DNN 
and neural networks is that neural networks use three categories (input 
layer, hidden layer and output layer) and DNN uses multiple hidden 
layers for the modeling process. 

In this study, a multilayer perceptron (MLP) was used to develop an 
adopted DNN method. MLP is a category of feed forward artificial neural 
networks. The base of an MLP network is a perceptron network (Gho-
lami et al., 2019). The perceptron has one or more inputs, a transfer 
function, and an output. A supervised learning algorithm of binary 
classifiers is used in the perceptron algorithm. The binary classifier is a 
function which can define whether or not the inputs, introduced by a 
vector of numbers, belongs to some specific class. Further, back propa-
gation is the most commonly used algorithm for supervised training in 
multilayered neural networks that changes the nonlinear relationship 
between the inputs and the output by changing the weight values 
internally (Hu et al., 2018). The back propagation process was per-
formed into two stages of feed forward and back propagation. In the feed 
forward method, a pattern is considered for the inputs and the effect of 
the pattern is spread from layer to layer through the network until the 
output is obtained. In the next step, the output values are compared with 
the observed values and an error signal is sent to each of the output 
neurons. Output errors are propagated backwards by the hidden layer. 
This process goes step by step until each neuron in the network receives 
an error signal, and this error signal represents the relative share of the 
total error. The goal is to achieve a minimum error function. The output 
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Fig. 3. A schematic diagram of the EGB approach in modeling nitrate concentration in groundwater.  

Fig. 4. The DNN structure for nitrate concentration prediction including input layers, hidden layers, and one output layer. The blue and black lines indicate the 
connections with weights and bias terms, respectively. 
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of a neuron in the hidden layer is obtained from the following equation: 

Hj = f

(
∑n

i=1
WjiXi + bi

)

(2)  

where Wji is the weights of the hidden layer neurons, bi is the biases of 
the hidden layer neurons, and f(.) is a nonlinear activation function. 
Further, the network output is estimated by equation (3): 

y= f

(
∑m

j=1
WkjHi + b0

)

(3)  

where Wkj is the weights of the output layer neuron, b0 is the biases of 
the output layer neuron, and f(.) is the activation function of the output 
layer neuron (Aggarwal, 2018). 

In this study, the Neuralnet package in R was used for application of 
the DNN in the modeling of nitrate concentration in the groundwater 
(Fritsch et al., 2019). In the modeling process, a trial- and-error method 
was used until the predicted and observed values of nitrate concentra-
tion achieved the best fit. The evaluation of the model performance was 
assessed using several error criteria. The optimal structure of the used 
DNN is determined based on minimum error values and maximum 
performance in predicting nitrate concentrations. The obtained optimal 
structure includes four input layers, two hidden layers, and one output 
layer. These two hidden layers have eight hidden neurons according to 
Fig. 4 The number of epochs indicates the number of complete repeti-
tions of the training data set. The optimal number of epochs in the 
modeling process was 135. 

2.3.3. Multiple linear regression (MLR) method 
The MLR method derives patterns in the data and establishes the best 

fitting linear relationships between two or more independent variables 
and the target variable (nitrate concentration in groundwater). A step-
wise approach was used in which the selection of variables is carried out 
by entering or removing input variables using criteria such as the co-
efficient of determination, the F-test, and the t-test. The regression 
method for n input variables X1, X2, …, Xn can be explained as follows. In 
a MLR model, each value of the input variable X is related to the value of 
the target variable Y. The linear regression relation is as follows:  

Y= B0 + B1X1 + B2X2 + … + BnXn                                                (4) 

Where Y is the simulated value of the target variable, B0 is the Y value 
when all input variables are equal to zero, X1, …, Xn are the inputs 
(affecting factors of the nitrate concentration in groundwater), and B1 
through Bn are the regression coefficients (Valentini et al., 2021). One of 
the features of the MLR method is the multi-linearity of the relations, i.e. 
the conditions in which two or more input variables are correlated with 
each other, and this is evaluated by using the inflation coefficient of 
variance (VIF). The multi-linearity of the model provides the ability to 
investigate the effect of single inputs on the output variable and finally 
to select the optimal input variables for the model. Using VIF is one of 
the most widely used methods for determining multi-linearity (Reiser, 
2004). Distance from Caspian sea and site elevation have multi-
collinearity (VIF >11). The training process is performed to reach the 
maximum agreement between the predicted and observed values. 
Basically, linear models are easier to use than nonlinear methods and 
black box models. However, for values with a high variance, i.e. 
maximum and minimum values, they have a lower efficiency and larger 
errors than nonlinear methods (Gholami et al., 2021). 

2.4. Performance evaluation of the models 

The performance evaluation of the used models was carried out 
through the comparison between predicted and measured values in the 
testing stage. Several statistical criteria were used to evaluate the model 

performances such as the R-squared values, the Nash-Sutcliffe efficiency 
(NSE) and the normalized root mean squared deviation (NRMSD) as 
follows: 

RMSD=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n

i=1

(
Yo − Ŷ p

)2

n

√

(5)  

NSE = 1 −

∑n
i=1

(
Ŷp − Yo

)2

∑n
i=1(Yo − Yoi)

2 (6)  

NRMSD=
RMSD

Yoi
(7)  

where Yo is the measured nitrate concentration value, is the predicted 
nitrate concentration value, n is the number of samples, and is the mean 
of the measured nitrate concentration values. Moreover, feature 
importance (FI) was used to analyze the strength of the relationship 
between input variables and target variable (nitrate concentration). The 
estimation of the feature importance is based split variable of regression 
tree in the iteration (Friedman and Meulman, 2003). The relative FI was 
estimated for all of inputs and has a range between 0 and 1. 

2.5. Mapping the nitrate concentration in groundwater 

The optimal inputs of the final model for estimating the nitrate 
concentration as raster layers were prepared in GIS as a raster layers. 
Then, by coupling the capabilities of the machine learning method and 
GIS, the nitrate concentration values were predicted in the entire area of 
Mazandaran plain. Finally, the nitrate concentration map of ground-
water was prepared. The accuracy of the map was evaluated by 
comparing the measured values of nitrate concentration in the 250 
piezometric wells and the predicted values on the map. Ten independent 
pumping wells were selected and sampled in the study plain and their 
measured values of nitrate concentration were compared with the pre-
pared map as verification data. Sampling and measurement of the 
verification wells have been done in areas without samples for the 
training and testing stages. 

3. Results 

The observed mean nitrate concentration in groundwater in the 250 
piezometric wells was determined between 0.7 and 113.3 mg/l with a 
mean concentration in Mazandaran plain of 23.4 mg/l. According to the 
Iranian drinking water standard, the maximum concentration of nitrate 
in drinking water is 50 mg/l. Therefore, groundwater in 35 of the 250 
studied wells had nitrate concentrations exceeding the Iranian drinking 
water standard. The maximum concentration of nitrate of 220 mg/l in 
summer and the minimum value of 0.1 mg/l in winter were observed in 
two different wells. In summer, industry activities and agricultural ac-
tivities (nitrate fertilizer consumption) increase in the study area. 

Groundwater depth data showed that the mean annual depth of 
groundwater in the study plain varies between 1 and 40 m. In addition, 
the transmissivity of aquifer formations varies between 50 and 3,500 
m2/day based on past studies (Mazandaran Regional Water Company 
MRWC, 2020; Gholami et al., 2021) and existing hydrogeologic maps. 
Minimum values are observed in heavy-textured (fine-grained) forma-
tions and maximum values are found in light-textured (coarse-grained) 
formations. The minimum elevation at the coasts of the Caspian Sea is 
− 27 m below mean sea level and the maximum elevation is about 100 m 
on the border of the plain and the highlands area. In terms of distance 
from water sources and residential centers, the multiplicity of rivers, 
wetlands, lakes and residential centers has caused the distance of study 
wells to vary from a few meters to several kilometers. Annual precipi-
tation varies in the plain between 600 and 1300 mm. The maximum 
precipitation in the western part of the study plain is due to the prox-
imity of the sea and mountains and the effect of the Caspian Sea. Annual 
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evaporation varies between 600 and 1000 mm per year, the maximum of 
which is observed in the eastern part of the plain due to higher tem-
peratures. The population density in the area is highly variable and its 
amount varies between 0 and 6000 people per square kilometer. The 
highest values are observed in cities and lowest values in forests or 
agricultural lands. Based on agricultural areas and exploitation values in 
active exploitation wells in the operating radius of wells (1000 m), 
annual exploitation values were estimated between 0.1 and 3.66 million 
m3 per year. 

Statistical analysis was performed between inputs data (factors 
affecting the nitrate concentration in groundwater) and model output 
(nitrate concentration in groundwater). The correlation coefficients 
between nitrate concentrations and input data show involvement of 
input factors in nitrate pollution in groundwater and can be found in 
Table 1. Moreover, to determine the optimal inputs and to determine the 
effective factors influencing the nitrate concentration in groundwater, a 
sensitivity analysis of inputs in the used models has been carried out 
(Fig. 5). The results in Fig. 5 show that factors such as distance from 
industry, population density, evaporation and groundwater depth have 
the greatest effect on variations in nitrate concentration in groundwater 
in the study plain. Other studies showed similar results (Shivasorupy 
et al., 2012; Gholami et al., 2015; Alighardashi and Mehrani, 2017). The 
FI analysis showed similar results in determining the main inputs for 
nitrate concentration in groundwater. 

On the other hand, in the modeling process, a trial and error method 
was used to determine the optimal inputs showing that the factors dis-
tance from industry, population density, groundwater depth, and 
evaporation are the optimal inputs in modeling nitrate pollution. The 
model training process used in all three methods showed good results, 
which are presented in Table 2. The inputs of all three models were 
exactly the same. Based on the results, the EGB and the DNN methods 
show an acceptable performance in estimating the nitrate concentration 
in groundwater. However, in the training phase, the EGB method was 
more efficient and had lower error rates compared to the other two 
methods. After training the models, testing was performed and the re-
sults of the test phase of the three methods are presented in Table 2 as 
well. Based on the results and evaluation of the indices values, the EGB 
method is the most efficient model to predict the values of nitrate con-
centration in groundwater. Further, comparison between the predicted 
and measured values in the training and test stages of the three models is 
presented in Fig. 6. Based on the results, the EGB model has the highest 
correlation (R-squred in Table 2 and Fig. 6) between the predicted and 
measured values in the training and test phases. 

Finally, the tested EGB model was used as the most efficient method 
to predict the values of nitrate concentration in groundwater in the 

entire area of Mazandaran plain. The maps of the optimal inputs of the 
model including distance from industries, annual evaporation, ground-
water depth and exploitation values in GIS were prepared. Finally, we 
used these inputs and tested the EGB model to predict the nitrate con-
centration in groundwater in the Mazandaran plain as shown in Fig. 7. 
Furthermore, two methods were used to evaluate the performance of the 
methodology and the accuracy of the results. First, the measured values 
of nitrate concentration in groundwater in 250 wells used in the 
modeling process (training and testing) were compared with the pre-
dicted values. According to the results, a high accuracy was observed (R- 
sqr = 0.8). Second, the nitrate concentration values in groundwater 
were measured in 10 pumping wells (Fig. 7) other than the wells used for 
training and testing (east of the study plain) and used as verification 
wells. Therefore, the observed values of nitrate concentration in these 
wells were compared with the values of the map of nitrate concentra-
tion. In the verification stage, the R-sqr between the predicted values 
and the measured values was equal to 0.79. 

The model used in predicting nitrate concentration shows a good 
performance and the resulting map has the appropriate accuracy to be 
used as a source of information for planning and management for 
groundwater resources. It is important in the modeling process of nitrate 
concentration to identify places with excessive rates of nitrate concen-
tration (>50 mg/l) to take the necessary measures and planning to 
reduce the concentration and manage associated risks and adverse 
effects. 

4. Discussion 

Evaluation of measured nitrate concentrations and factors affecting 
nitrate concentration of groundwater in study wells showed that 
maximum values are mainly observed in industrial and residential 
centers (towns) with a high population density. Moreover, maximum 

Table 1 
Pearson’s correlation coefficients between the nitrate concentrations of 
groundwater in the 250 piezometric wells, and the input factors (nitrate con-
centration is in mg/l).  

Input factor Correlation with nitrate 
concentration 

Significance (P- 
value) 

Groundwater depth − 0.15 0.01 
Transmissivity of aquifer 0.1 0.03 
Elevation 0.07 0.49 
Slope 0.02 0.37 
Annual evaporation 0.15 0.01 
Distance from water 

resources 
0.09 0.06 

Distance from Caspian sea 0.14 0.01 
Annual precipitation − 0.08 0.08 
Population density 0.56 0.00 
Distance from residential 

areas 
− 0.06 0.1 

Distance from industries − 0.57 0.00 
Groundwater exploitation 0.14 0.00 
Well depth − 0.06 0.1  

Fig. 5. Sensitivity analysis of the input variables of the optimum model (EGB) 
using feature importance (FI). Factors with a larger effect on nitrate concen-
tration in groundwater are marked in blue and less important factors are 
marked in red. Factors are arranged in order of influence on nitrate concen-
tration from top to bottom. 

Table 2 
Performance of the three models in the training and test stages for modeling 
nitrate concentration in groundwater.   

NSE NRMSD R-squared 

Training Test Training Test Training Test 

Extreme gradient 
boosting (EGB) 

0.98 0.84 0.01 0.45 0.98 0.86 

Deep neural network 
(DNN) 

0.81 0.54 0.4 0.84 0.83 0.57 

Multiple linear 
regression (MLR) 

0.75 0.45 0.7 0.97 0.77 0.48  
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correlation coefficients were found between industrial and residential 
centers and nitrate concentration in groundwater. Therefore, the factors 
industrial and residential centers are the most important factors influ-
encing groundwater nitrate concentration in Mazandaran plain. The 
distance from industries had the highest correlation (R = − 0.57). The 
secondly most effective factor was the population density of residential 

centers (R = 0.56). Among the factors affecting groundwater quality that 
have been investigated in the present study, the factors of distance from 
industries, population density, annual evaporation values and ground-
water depth have a significant and strong relationship with nitrate 
concentrations in groundwater (Nemcic-Jurec and Jazbec, 2017; 
Motevalli et al., 2019). Industrial centers, depending on the type of their 

Fig. 6. The performance evaluation of the three models (EGB, DNN, and MLR) in the training and test phases of predicting nitrate concentration in groundwater 
(mg/l). 
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products, have effluents and wastewaters with high amounts of nitrate 
(Band et al., 202; Khalifa et al., 2021). On the other hand, these in-
dustries in the study area often do not have standard wastewater 
treatment systems. In residential centers, human sewage, household 
wastewater, gardens and paddy fields, small livestock farms and ceme-
teries are important factors in increasing nitrate concentration (Wells 
et al., 2021). The higher the population density in residential centers, 
the larger the number of activities and the more effluent and sewage will 
be produced. 

Another important factor is the depth of the groundwater. Ground-
water depth is inversely related to nitrate concentration values (FI =
0.12, R = − 0.15), but does not have a strong relation with nitrate 
concentration. According to the results, places where the groundwater 
depth is less (water table is higher), the vulnerability of the groundwater 
and the spread of contamination is higher (Gholami et al., 2015; Nem-
cic-Jurec and Jazbec, 2017). Further, the depth of the wells, the location 
of the well screen, and the length of the well screen are influencing the 
vulnerability of the groundwater (Dash and SarangiSingh, 2010). 
Shallow aquifers have a higher potential for pollution, and the high 
water table in areas with paddy lands, orchards and industrial centers 
increase the conditions for the spread of pollution. 

Another effective factor explaining the nitrate concentration is 
evaporation (R = 0.13). Evaporation has a significant, but weak relation 
with nitrate concentration. In places with more evaporation, tempera-
ture is higher and precipitation is less, and as a result, groundwater 
recharge will be lower. Further, more industries are observed in these 
areas of the study plain. As a result, nitrate concentration in ground-
water is larger (Savard et al., 2007). Evaporation also indirectly affects 
the quality of water resources and increasing the concentration of pol-
lutants in water resources (Awasthi et al., 2005; Maliqi et al., 2020). 

Consumption of nitrogen fertilizers in agriculture lands is an 
important factor influencing nitrate pollution in groundwater. The 
development of agriculture and especially the second cultivation of rice 
in summer (twice per year) have increased the consumption of nitrogen 
fertilizers in the region, which has led to an increase in nitrate con-
centration. The predominant landuse of the study plain is paddy lands 
where agricultural lands have a greater role in non-point pollution and 
point nitrate pollution is more affected by existing industries (Motevalli 
et al., 2019). Unfortunately, no exact data are available on the use of 
nitrogen fertilizers in the study plain. If there is industrial activity in 
areas between paddy and residential lands, the values are much higher 

than the allowable nitrate concentration. 
In the northern half of the study plain, due to high precipitation and 

significant river discharge, the groundwater depth is high (water table 
<5 m) and the risk of pollution is high (Gholami et al., 2015; Khalifa 
et al., 2021). In many areas of paddy lands, the groundwater depth 
varies between 1 and 5 m (shallow aquifer) and there is a high potential 
for vulnerability of groundwater resources in unconfined aquifers in this 
area (Nemcic-Jurec and Jazbec, 2017; Motevalli et al., 2019). The 
amount of groundwater recharge is very effective to improve the quality 
of groundwater. The groundwater quality after six month recharging 
during clod seasons (in the beginning of spring) is more proper and in 
the beginning of autumn (end of summer) low quality of groundwater 
will generally be observed (Qin et al., 2011). Other studied factors have 
a weak correlation or no significant relationship with the nitrate con-
centration (P value > 0.05). 

The process of predicting nitrate concentrations in groundwater was 
performed using three machine learning methods. Based on the results, 
the performances of the three methods used varied. EGB model showed 
the highest performance and the MLR model had the lowest perfor-
mance in modeling nitrate concentration values. Past research also in-
dicates that the EGB model has a very high performance in comparison 
with other methods of machine learning and artificial intelligence in 
hydrological modeling for the prediction of water quantity and quality 
(Mason et al., 2000; Chen and Guestrin, 2016; Bedi et al., 2020). Ma-
chine learning is a subset of artificial intelligence that enables machines 
to learn without prior planning and using previous data and experience. 
In artificial intelligence, we design intelligent systems to do anything 
like humans and this includes has a wide range of modeling methods and 
requires high expertise and experience. Machine learning tries to build a 
model that can perform only the specific tasks for which it is trained. 

Evaluation of test results by comparing error indices and comparing 
observational and predicted values indicate a high performance of the 
EGB model in the modeling process. However, the performance of the 
proposed models in predicting the minimum, average and maximum 
values of the mean monthly nitrate concentration in groundwater is not 
the same. The three used models generally predict average values with a 
high accuracy and show larger errors in predicting minimum and 
maximum values. The EGB model has the highest performance in pre-
dicting the minimum and maximum nitrate values compared to the 
other two methods. One of the reasons for this is that in the model 
training data we have mainly used minimum and average values, the 

Fig. 7. Map of nitrate concentration in groundwater (mg/l) was generated using the outputs of the tested EGB model in GIS. The measured nitrate values in the 
groundwater (training, testing, and verification wells) fall within the predicted ranges on the map (to evaluate the accuracy of the results). The R-sqr, NSE, and 
NRMSD values for the verification wells were 0.79, 0.7, and 0.5, respectively. 

V. Gholami and M.J. Booij                                                                                                                                                                                                                   



Journal of Cleaner Production 360 (2022) 131847

11

number of observed values of maximum nitrate concentration was 
limited. Such a problem is observed in many environmental modeling 
studies (Gholami et al., 2021). The importance of identifying and zoning 
areas with too high concentrations of nitrate in groundwater is well 
known. Therefore, to analyze and solve these problems, one should try 
to use wells or samples with maximum values in the modeling process, in 
particular in the training data. 

In the modeling process, the data of the main inputs of the model 
(distance from industries, population density, evaporation, and 
groundwater depth) can be used to estimate nitrate concentration rates 
in groundwater in each place. The map of nitrate concentration can be 
an effective information source for water resources management as well 
as sharing the results of machine learning modeling for everyone. An 
important point about the models used to predict the nitrate concen-
tration in groundwater is that the main inputs are the distance from 
industry, population density, evaporation, and groundwater depth, all of 
which are accessible or measurable. 

Further, the inputs of industrial and residential lands and population 
density will change over time, which makes it possible to use the present 
models for temporal changes in nitrate concentration or to study the 
effect of different scenarios of industrial, agricultural and population 
development on nitrate pollution in groundwater. 

5. Conclusion 

Determining nitrate concentration and monitoring its changes is 
essential in water resources management. However, sampling and 
testing are time consuming and costly. Therefore, new modeling 
methods such as the use of machine learning methods can be used as an 
aid in the study of water resources quality. It should be noted that such 
modeling is not a substitute for sampling and testing but an addition to 
water quality studies to increase operating speed and reduce costs. In the 
modeling process, a suitable number of measured output data (nitrate 
concentration) is needed, and a higher number of samples will lead to a 
more accurate and efficient model. 

In the modeling process with machine learning, three models were 
used. The goal is to obtain an efficient model that can be used in the 
study area with an effective number of main inputs. Based on the results 
of the present study, the EGB model has a very high ability to estimate 
the nitrate concentration values in groundwater. This model can be used 
by using GIS as a preprocessor and post-processor to predict spatial 
variations in nitrate concentration, monitor nitrate concentration, and 
finally identify areas with excessive concentrations. The first step in the 
modeling process of the nitrate concentration in groundwater is to 
determine the optimal inputs and accurately estimate them and subse-
quently the correct use of a model or machine learning algorithm. In the 
modeling process, we can present models with different inputs or up-to- 
date modeling methods with local conditions and available data in a 
short time and with high performance that can be connected to ther 
systems like GIS. The present modeling can also be used to predict 
spatial and temporal changes in nitrate concentrations in groundwater 
in other areas. In discussing temporal changes, different scenarios of 
population growth and industry development or other input factors can 
be used for the model and their effects on changes of nitrate concen-
tration can be predicted using a tested model. For future studies, it is 
suggested that other input data and methods of artificial intelligence 
such as fuzzy neural networks, self-organizing maps or neural networks 
be used to predict nitrate concentration with a higher accuracy and for 
zoning of nitrate pollution in groundwater. 
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