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IMPORTANCE Accurate prediction of adverse outcomes after acute myocardial infarction
(AMI) can guide the triage of care services and shared decision-making, and novel methods
hold promise for using existing data to generate additional insights.

OBJECTIVE To evaluate whether contemporary machine learning methods can facilitate risk
prediction by including a larger number of variables and identifying complex relationships
between predictors and outcomes.

DESIGN, SETTING, AND PARTICIPANTS This cohort study used the American College of
Cardiology Chest Pain-MI Registry to identify all AMI hospitalizations between January 1, 2011,
and December 31, 2016. Data analysis was performed from February 1, 2018, to October 22,
2020.

MAIN OUTCOMES AND MEASURES Three machine learning models were developed and
validated to predict in-hospital mortality based on patient comorbidities, medical history,
presentation characteristics, and initial laboratory values. Models were developed based on
extreme gradient descent boosting (XGBoost, an interpretable model), a neural network, and
a meta-classifier model. Their accuracy was compared against the current standard
developed using a logistic regression model in a validation sample.

RESULTS A total of 755 402 patients (mean [SD] age, 65 [13] years; 495 202 [65.5%] male)
were identified during the study period. In independent validation, 2 machine learning
models, gradient descent boosting and meta-classifier (combination including inputs from
gradient descent boosting and a neural network), marginally improved discrimination
compared with logistic regression (C statistic, 0.90 for best performing machine learning
model vs 0.89 for logistic regression). Nearly perfect calibration in independent validation
data was found in the XGBoost (slope of predicted to observed events, 1.01; 95% CI,
0.99-1.04) and the meta-classifier model (slope of predicted-to-observed events, 1.01; 95%
CI, 0.99-1.02), with more precise classification across the risk spectrum. The XGBoost model
reclassified 32 393 of 121 839 individuals (27%) and the meta-classifier model reclassified
30 836 of 121 839 individuals (25%) deemed at moderate to high risk for death in logistic
regression as low risk, which were more consistent with the observed event rates.

CONCLUSIONS AND RELEVANCE In this cohort study using a large national registry, none of the
tested machine learning models were associated with substantive improvement in the
discrimination of in-hospital mortality after AMI, limiting their clinical utility. However,
compared with logistic regression, XGBoost and meta-classifier models, but not the neural
network, offered improved resolution of risk for high-risk individuals.
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A n assessment of risk of death after an acute myocar-
dial infarction (AMI) is useful for guiding clinical de-
cisions for patients and for assessing hospital

performance.1-4 New analytic approaches may enhance risk
prediction with existing data beyond traditional statistical ap-
proaches. Existing risk prediction models developed in the pre-
diction of AMI outcomes have been limited by lack of inclu-
sion of nonlinear effects and complex interactions among
variables in national samples or have only evaluated these ef-
fects in small patient groups.5-16 With advances in computa-
tion and analytics, however, it may be possible to create mod-
els in large and diverse patient groups, which may improve on
traditional models with existing information. Specifically, the
application of machine learning techniques has the potential
to improve on accuracy in the prediction of in-hospital mor-
tality after AMI.17-19

Accordingly, using data collected in the Chest Pain–MI Reg-
istry (CP-MI Registry; formerly known as the ACTION Regis-
try) of the National Cardiovascular Data Registry (NCDR), a na-
tional clinical quality program from the American College of
Cardiology, we assessed whether machine learning tech-
niques, compared with logistic regression, could improve pre-
diction of in-hospital AMI mortality. The CP-MI Registry in-
cludes information on more than 1 million AMI hospitalizations
at 1163 hospitals across the US. We used the most contempo-
rary published model for mortality after AMI, which used lo-
gistic regression,8,9 to compare the performance characteris-
tics of our models derived using machine learning.

Methods
This cohort study used the American College of Cardiology
CP-MI Registry to identify all AMI hospitalizations between
January 1, 2011, and December 31, 2016. Data analysis was per-
formed from February 1, 2018, to October 22, 2020. The Yale
University Institutional Review Board reviewed the study and
waived the requirement for informed consent given the dei-
dentified data. The study followed the Strengthening the Re-
porting of Observational Studies in Epidemiology (STROBE)
reporting guideline.

The CP-MI Registry
The CP-MI Registry collects data from participating hospitals
on patients admitted with AMI, including both ST-elevation
myocardial infarction (STEMI) and non-STEMI. Data are col-
lected through retrospective medical record review and sub-
mitted using a standardized data collection tool. Collected data
include patient demographics, presentation information, pre-
hospital vital signs, selected laboratory data from the hospi-
tal course, procedures, timing of procedures, and select in-
hospital outcomes. The NCDR data quality program enhances
data completeness and accuracy through audits and
feedback.20

Patient Population
Between January 1, 2011, and December 31, 2016, a total of
993 905 patients with AMI from 1128 hospitals were in-

cluded. Similar to the approach used in prior studies,21,22 pa-
tients transferred to another facility for management
(n = 47 308) or missing information on history of percutane-
ous coronary intervention, a key risk factor included in the cur-
rent standard for predicting mortality outcomes (n = 191 195),
were excluded (eTable 1 in the Supplement). Those patients
excluded had age and sex distribution similar to those of pa-
tients included in the analysis but slightly higher rates of STEMI
and unadjusted mortality (eTable 1 in the Supplement). After
the exclusion of these patients, 755 402 patients remained for
modeling. We also constructed a secondary cohort in which
patients were not excluded for missing variables and covari-
ates with missingness greater than 5% were excluded as pre-
dictors in the model (n = 946 597).

Patient Variables and Data Definitions
Patient variables available to a practitioner at the time of pre-
sentation were selected for modeling. These variables in-
clude patient demographics, medical history, comorbidities,
home medications, electrocardiogram findings, and initial
medical presentation and laboratory values. The outcome of
this study was death from any cause during hospitalization.

The current standard model for AMI mortality built within
the NCDR uses 9 variables to predict mortality and was de-
rived from 29 candidate variables using logistic regression by
McNamara et al.21 We included 2 sets of variables to build our
machine learning models. First, we included the 29 variables
used to derive the current NCDR standard.21 Second, we used
an expanded variable set with all other variables that would
be available to a practitioner at the time of hospital presenta-
tion with an AMI (eTable 2 in the Supplement). A priori, we in-
cluded variables that were available in at least 90% of pa-
tients, resulting in 8 candidate continuous variables and 48
categorical variables with a missing variable rate of less than
1%. For these variables, we imputed missing values to the mode
for categorical variables and median for continuous vari-
ables. In sensitivity analyses, we pursued multiple imputa-
tion using the multivariate imputation by chained equations

Key Points
Question Do contemporary machine learning methods improve
prediction of in-hospital death after hospitalization for acute
myocardial infarction (AMI)?

Findings In this cohort study of 755 402 patients with AMI in a
nationwide registry, machine learning models that used the same
data inputs as logistic regression were not associated with
substantially improved prediction of in-hospital mortality after
AMI. Two of these models, extreme gradient descent boosting and
meta-classifier, however, were associated with improved
calibration across the risk spectrum, reclassifying 1 in every 4
patients deemed to be at moderate or high risk for death in logistic
regression accurately as low risk, consistent with the actual
observed risk.

Meaning These findings suggest that machine learning models
are not associated with substantially better prediction of risk of
death after AMI but may offer greater resolution of risk, which can
better clarify the individual risk for adverse outcomes.
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method, which derives predicted values of the missing val-
ues using a regression-based approach. These analyses were
tested in a 5-fold validation exercise to evaluate the robust-
ness of our strategy. Finally, we evaluated models that in-
cluded patients who had been excluded from the primary
analyses because of missing covariates (threshold ≥5%),
thereby excluding key variables that are a part of the current
standard.

Modeling Strategies
We divided the data into an initial 75% subset (April 1, 2011,
through September 30, 2015) for model development and the
more recent 25% subset (October 1, 2015, through December
31, 2016) for model testing. The model development period was
further divided into 2 equal halves (April 1, 2011, to Septem-
ber 30, 2013, and October 1, 2013, to September 30, 2015) to
develop level 1 and level 2 models, respectively (Figure 1).

We compared 3 modeling strategies with logistic regres-
sion: (1) gradient descent boosting, (2) a neural network, and
(3) a meta-classifier approach that combined logistic regres-
sion with least absolute shrinkage and selection operator
(LASSO) regularization, a gradient descent boosting, and a neu-
ral network. Gradient descent boosting models make predic-
tions using a series of decision trees, representing an interpre-
table model. Unlike logistic regression, this model can include
higher-order interactions and account for complex nonlinear
relationships between model variables and outcomes. The
method of gradient descent boosting chosen was extreme gra-
dient boosting, or XGBoost.23 XGBoost incorporates a mea-
sure of how much model accuracy is improved by the addi-
tion of a given variable, with a higher gain value implying
greater importance in generating a prediction. Neural net-
works are a type of machine learning technique that, like the
human brain, connects layers of nodes (neurons) to model an
output. Finally, the meta-classification approach uses an XG-
Boost model to combine the outputs of 3 supervised learning
models, including LASSO, XGBoost, and a neural network
(Figure 1).24 Therefore, the meta-classifier was a level 2 model
that was based on the results of prediction models applied di-
rectly to patients (level 1 models).

The computational approach is shown in Figure 1. The first
half of the derivation cohort was used to train 4 methods; lo-
gistic regression, LASSO, XGBoost, and a neural network. The
second half of the derivation cohort was then used as a train-
ing set for the level 2 meta-classifier. We validated the vari-
ous approaches with the remaining 25% of the sample.

Statistical Analysis
Model discrimination was measured using the area under the
receiver operating characteristic curve (AUROC or C statistic)
and its 95% CIs.25 In addition, the positive predictive value (or
precision) and the sensitivity (recall) across all possible risk
thresholds for predicting mortality were plotted using the pre-
cision-recall curve. The precision-recall curve, unlike the AU-
ROC, is not affected by the number of true-negative results.
In data sets with small event rates and therefore a large ex-
pected true-negative rate, such as the one studied here, the
precision-recall curve is well suited for comparing different
models. For both the C statistic and area under the precision-
recall curve, values closer to 1 correspond to more accurate
models.

Because the objective of the models is to address predic-
tion at an individual level, we calculated the mean squared pre-
diction error for each model, which represents the mean prob-
ability of an inaccurate prediction for a patient. A lower value
suggests more accurate prediction. We also calculated the F
score, sensitivity, specificity, positive predictive value, and
negative predictive value. In addition, we calculated a Brier
score for each model as a measure of model accuracy. The score
represents the reliability of the model minus the resolution plus
an error term and represents the mean squared error be-
tween the observed and predicted risk.26,27 Further details are
included in the eMethods and eFigure 1 in the Supplement.

Model calibration was measured using (1) the calibration
slope, which was calculated as the regression slope of the ob-
served mortality rates across the deciles of predicted mortal-
ity rates; (2) the reliability component of the Brier score; and
(3) shift tables, in which we classified patients in the valida-
tion cohort into prespecified categories of low (<1%), moder-
ate (1%-5%), or high risk (>5%) of death based on logistic re-

Figure 1. Design of Machine Learning Algorithms

XGBoost

A. Initial 40% sample used
 to train level 1 classifiers

Logistic regression
with LASSO

XGBoost

Neural net

Level 1 Level 2

B. Second 40% sample input
 into level 1 classifiers

D. Final 20% sample used
 to test level 1 and
 level 2 classifiers

C. Level 1 classifier risk
 estimates are training
 set for level 2

Risk estimates
from level 1
classifiers

The level 1 classifiers consist of 3 independent models each trained on the same
initial training sample (sample A), including logistic regression with least
absolute shrinkage and selection operator (LASSO), extreme gradient descent
boosting (XGBoost), and a neural network. The next training sample (sample B)
is then input into the level 1 classifiers, resulting in 3 risk estimates for each

observation in sample B, 1 from each level 1 model. These 3 risk estimates are
then used to train the level 2 XGBoost classifier (sample C). A final sample
(sample D) is input into the level 1 classifiers to obtain risk estimates for input
into the level 2 classifier. Performance of the level 1 and level 2 classifiers is
assessed using this final training set D.
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gression and one of the machine learning models, creating a
9-way matrix of patients that included risk profiles assigned
by the 2 models (low-low, low-moderate, and so on). We then

calculated the actual rate of events in these groups, focusing
on discordant categories, and compared them against the ob-
served rates of mortality. We conducted sensitivity analyses
with risk thresholds set at less than 1.5%, 1.5% to 3%, and
greater than 3%.

All analyses were conducted using open-source Python,
version 3.8.0 (Python Software Foundation) and R software,
version 3.6 (R Foundation for Statistical Computing). The level
of significance was set at a 2-sided P < .05.

Results
Characteristics of Study Population
A total of 755 402 patients (mean [SD] age, 65 [13] years;
495 202 [65.5%] male) were identified during the study pe-
riod. Among the 755 402 patients in the primary study co-
hort, the overall in-hospital mortality rate was 4.4%. The deri-
vation cohort consisted of 281 997 patients used to derive the
level 1 classifiers, 282 921 to train the meta-classifier model
(level 2 model), and the remaining 190 484 patients for the test
cohort. Table 1 includes characteristics for the derivation and
validation cohorts. A total of 562 423 patients (74%) had hy-
pertension, 257 072 (34%) had diabetes, 188 297 (25%) had ex-
perienced a prior myocardial infarction, and 94 897 (13%) had
a diagnosis of heart failure. In addition, 292 784 (39%) pre-
sented with a STEMI, 95 240 (13%) with heart failure, 28 783
(4%) with cardiogenic shock, and 29 458 (4%) after cardiac ar-
rest (Table 1).

Model Discrimination
The current NCDR model with 9 variables had good dis-
crimination (AUROC, 0.867) using β coefficients in the origi-
nal model applied to the data. In models that used the
29-variable set that was used to derive the NCDR standard,
machine learning models achieved modest improvements
in discrimination over logistic regression using the same
data inputs (Table 2). The AUROC for all 3 models was
numerically higher than logistic regression in both the lim-
ited variable set and the expanded variable set, with corre-
sponding improvements in the area under the precision-
recall curve (Table 2; eFigures 2-5 in the Supplement). The
XGBoost and meta-classifier models achieved a discrimina-
tion of 0.898 (95% CI, 0.894-0.902) and 0.899 (95% CI,
0.895-0.903), respectively, applied to the expanded set of
variables compared with 0.888 (95% CI, 0.884-0.892) with
the logistic regression model. The XGBoost and meta-
classifier models had more accurate predictions at an indi-
vidual level than logistic regression models, with a lower
mean squared prediction error across both sets of variables,
but this effect was not observed with the neural network
(eFigure 6 in the Supplement).

Model Calibration
Of the 3 machine learning models, the XGBoost and the
meta-classifier models but not neural network had improve-
ments in calibration slopes compared with logistic regres-
sion, when they were applied to a limited or an expanded

Table 1. Baseline Characteristics of the Derivation
and Validation Cohortsa

Characteristic
Derivation cohort
(n = 564 918)

Validation cohort
(n = 190 484)

Demographic characteristics

Age, mean (SD), y 65 (14) 65 (13)

Weight, mean (SD), kg 87 (22) 88 (22)

Male sex 369 455 (65) 125 747 (66)

Race

White 479 428 (85) 161 567 (85)

Black 65 726 (12) 21 363 (11)

Medical history

History of diabetes 190 280 (34) 66 792 (35)

History of hypertension 419 803 (74) 142 620 (75)

History of dyslipidemia 344 758 (61) 116 511 (61)

Current or recent smoker 191 638 (34) 62 191 (33)

History of chronic lung disease 67 370 (14) 716 (11)

Current dialysis 14 153 (3) 4902 (3)

History of MI 140 878 (25) 47 419 (25)

History of HF 70 925 (13) 23 972 (13)

Prior PCI 142 900 (25) 50 279 (26)

Prior CABG 76 462 (14) 24 435 (13)

History of atrial fibrillation 44 164 (8) 18 148 (10)

Prior cerebrovascular disease 68 891 (12) 22 832 (12)

Prior peripheral arterial disease 52 660 (9) 15 167 (8)

Presentation

Presentation after cardiac arrest 22 368 (4) 7090 (4)

In cardiogenic shock 22 095 (4) 6688 (4)

In HF 72 621 (13) 22 619 (12)

Heart rate, mean (SD), beats/min 84 (24) 84 (24)

SBP at presentation, mean (SD),
mm Hg

146 (35) 148 (36)

Presentation ECG findings

STEMI 117 078 (39) 73 136 (38)

New or presumed new

ST depressions 219 648 (39) 19 261 (10)

T-wave inversions 64 294 (11) 12 918 (7)

Transient ST-segment elevation
lasting <20 min

43 873 (8) 1667 (1)

Initial laboratory values

Troponin ratio, mean (IQR) 2.5 (0.50-16.3) 3.5 (0.78-20.0)

Creatinine, mean (SD), mg/dL 1.3 (1.2) 1.3 (1.2)

Creatinine clearance, mean (SD),
mL/min

85 (43) 85 (42)

Hemoglobin, mean (SD), g/dL 14 (2) 14 (2)

Abbreviations: CABG, coronary artery bypass graft; ECG, electrocardiography;
HF, heart failure; IQR, interquartile range; MI, myocardial infarction; PCI,
percutaneous coronary intervention; SBP, systolic blood pressure; STEMI,
ST-elevation myocardial infarction.

SI conversion factors: To convert creatinine to micromoles per liter, multiply by
88.4; to convert creatinine clearance to mL/s/m2, multiply by 0.0167; to convert
hemoglobin to grams per liter, multiply by 10.
a Data are presented as number (percentage) of patients unless otherwise

indicated.
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set of variables (Figure 2; eFigures 7 and 8 in the Supple-
ment). The components and overall Brier score for the dif-
ferent models are included in Table 2. Models with lower
values of reliability indicate higher agreement between pre-
dicted and observed risk and therefore have better perfor-
mance. Even with the limited set of model variables, the
mean (SD) reliability measure of the meta-classifier
(2.3 [2.1] × 10−6) and XGBoost models (9.5 [3.8] × 10−6) but
not the neural network (224.0 [26.1] × 10−6) were smaller
(and therefore more accurate) compared with the logistic
regression model (28.4 [9.2] × 10−6). The machine learning
models also had significantly greater resolution (higher
range of accurate prediction across the spectrum of risk)
than the model based on logistic regression. The highest
mean (SD) resolution was found in the meta-classifier
(5.9 [0.1] × 10−3) and XGBoost (5.8 [0.1] × 10−3) models fol-

lowed by the logistic regression model (5.6 [0.1] × 10−3) and
the neural network (5.4 [0.1] × 10−3).

All 3 machine models more accurately classified patients
in clinically relevant categories of risk. In shift tables (eTable 3
in the Supplement), predicted risk across each of the ma-
chine learning models (<1%, 1%-5%, and >5%) were individu-
ally compared against the predicted risk categories across lo-
gistic regression models. In these analyses, individuals with
a predicted risk that was discordant between 1 of the machine
learning methods and logistic regression was evaluated against
the actual rate of observed events in the group. Each of the 3
machine learning models more accurately identified the ac-
tual rate of mortality for a group of patients when discor-
dance was found. For example, among patients predicted to
be at low risk based on the meta-classifier or XGBoost models
and low, moderate, or high risk based on logistic regression, a

Table 2. Performance Characteristics of Models for Predicting In-Hospital Mortality
in Acute Myocardial Infarction

Characteristic
Logistic
regression LASSO Neural network XGBoost Meta-classifier

Variables included in the model of McNamara et al21

Model performance metrics

AUROC
(95% CI)

0.878
(0.875-0.881)

0.874
(0.870-0.879)

0.874
(0.870-0.878)

0.886
(0.882-0.890)

0.886
(0.882-0.890)

Precision-recall AUC 0.372 0.367 0.371 0.395 0.398

F score 0.415 0.408 0.411 0.432 0.432

Sensitivity 0.42
(0.41-0.43)

0.43
(0.42-0.45)

0.41
(0.40-0.42)

0.44
(0.43-0.45)

0.43
(0.42-0.44)

Specificity 0.97
(0.97-0.97)

0.97
(0.97-0.97)

0.97
(0.97-0.97)

0.97
(0.97-0.97)

0.98
(0.97-0.98)

PPV 0.41
(0.40-0.42)

0.38
(0.37-0.39)

0.41
(0.40-0.42)

0.42
(0.41-0.43)

0.44
(0.43-0.45)

NPV 0.97
(0.97-0.97)

0.97
(0.97-0.98)

0.97
(0.97-0.97)

0.98
(0.97-0.98)

0.97
(0.97-0.98)

Brier score

Reliability, mean (SD),
×10−6

28.4
(9.2)

96.3
(16.5)

224.0
(26.1)

9.5
(3.8)

2.3
(2.1)

Resolution, mean (SD),
×10−3

5.6
(0.1)

5.5 (0.1) 5.4 (0.1) 5.8
(0.1)

5.9
(0.1)

Uncertainty 0.04 0.04 0.04 0.04 0.04

Overall, ×10−2 3.52 3.54 3.56 3.49 3.48

Expanded variables included from the CP-MI Registry

Model performance metrics

AUROC
(95% CI)

0.888
(0.884-0.892)

0.886
(0.882-0.890)

0.885
(0.881-0.889)

0.898
(0.894-0.902)

0.899
(0.895-0.903)

Precision-recall AUC 0.421 0.415 0.406 0.451 0.453

F score 0.436 0.436 0.428 0.458 0.459

Sensitivity 0.47
(0.45-0.48)

0.42
(0.41-0.43)

0.43
(0.42-0.44)

0.45
(0.44-0.47)

0.43
(0.42-0.44)

Specificity 0.97
(0.97-0.97)

0.98
(0.98-0.98)

0.97
(0.97-0.98)

0.98
(0.98-0.98)

0.98
(0.98-0.98)

PPV 0.41
(0.40-0.42)

0.45
(0.44-0.46)

0.43
(0.42-0.44)

0.46
(0.45-0.47)

0.49
(0.48-0.50)

NPV 0.98
(0.98-0.98)

0.97
(0.97-0.98)

0.97
(0.97-0.98)

0.98
(0.98-0.98)

0.97
(0.97-0.98)

Brier score

Reliability, mean (SD),
×10−6

229.4
(25.6)

40.6
(10.3)

55.7
(11.2)

6.5
(3.5)

4.3
(2.6)

Resolution, mean (SD),
×10−3

6.0
(0.1)

5.9
(0.1)

5.8
(0.1)

6.4
(0.2)

6.5
(0.2)

Uncertainty 0.04 0.04 0.04 0.04 0.04

Overall, ×10−2 3.50 3.49 3.50 3.43 3.42

Abbreviations: AUROC, area under
the receiver operator characteristic
curve; AUC, area under curve; CP-MI
Registry, National Cardiovascular
Data Registry’s Chest Pain–MI
Registry; LASSO, least absolute
shrinkage and selection operator;
NPV, negative predictive value; PPV,
positive predictive value.
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negligible difference was found in the mortality rate among
those also predicted to be at low risk by logistic regression (mor-
tality rate, 0.3%) or moderate or high risk (mortality rate, 0.5%),
despite predicted mortality risk of greater than 1% by logistic
regression. In contrast, patients who were at low risk based on
logistic regression had an observed mortality rate of 2.2% if
at moderate or high risk based on the meta-classifier model.
A similar pattern was observed for all, compared with logistic
regression models applied to the same data.

Notably, 30 836 of 121 839 individuals (25%) deemed to be
at moderate or high risk by logistic regression were more ap-
propriately classified as being at low risk by the meta-
classifier, consistent with their actual observed rates of mor-
tality after AMI, even with models using the same model inputs.
Moreover, 2951 of 68 645 individuals (4%) who were deemed
to be at low risk by logistic regression were reclassified as mod-
erate to high risk (Table 3). There was a similar reclassifica-
tion of risk in the XGBoost model, which reclassified 32 393 me-
dium-high risk individuals (27%) based on logistic regression
to low risk, which is more consistent with the observed rates.
Furthermore, 3452 patients (5%) classified as low risk by lo-
gistic regression were reclassified as medium-high risk by XG-
Boost (Table 3). The reclassification of low-risk individuals to
moderate-high risk was also not consistent with observed
events with machine learning models. The models based on
expanded variables more accurately categorized patient risk
than the limited set of variables, with machine learning mod-
els offering additional calibration of risk for the same set of vari-
ables. The observations on reclassification were consistent in
sensitivity analyses using different risk thresholds (<1.5%, 1.5%-
3%, and >3%), wherein patients reclassified by XGBoost and
meta-classifier but not neural networks had observed event
rates consistent with the classified groups (eTable 4 in the
Supplement).

The improvements in calibration were consistent across
imputation strategies for missing variables, including the mode
imputation and 5-fold multiple imputation strategies (eTable 5
in the Supplement). Furthermore, in an additional sensitivity
analysis that included most patients by using a smaller num-
ber of features, XGBoost achieved an AUROC of 0.899 (95% CI,
0.895-0.904) and meta-classifier achieved an AUROC of 0.901
(95% CI, 0.896-0.905), largely similar to logistic regression (AU-
ROC, 0.890; 95% CI, 0.886-0.895).

Subgroup Analyses
In assessments of subgroups of age, sex, and race, logistic re-
gression models were less well calibrated in patients who were
younger and White compared with older (calibration slope,
0.90; 95% CI, 0.87-0.93 in those 18-44 years of age vs 0.94;
95% CI, 0.91-0.97 in ≥65 years of age) and Black patients (cali-
bration slope, 0.93; 95% CI, 0.92-0.95 in White patients vs 0.95;
95% CI, 0.89-1.00 in Black patients). In contrast, the meta-
classifier model was well calibrated across patient groups. Of
the other models, XGBoost, but not the neural network, was
better calibrated in patient subgroups relative to logistic re-
gression (eTable 6 in the Supplement).

Discussion
In this cohort study, in a large national registry of patients with
AMI, machine learning models did not substantively improve
discrimination of in-hospital mortality compared with mod-
els based on logistic regression. However, 2 of these models
were associated with improvement in the resolution of risk over
logistic regression and with improved classification of pa-
tients across risk strata, particularly among those at greatest

Figure 2. Predicted Risk of In-Hospital Mortality by Machine Learning
and Logistic Regression Models
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meta-classifier model (C), using the 29-variable input used in the development
of the model by McNamara et al.21 The shaded areas denote standard error of
the calibration.
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risk for adverse outcomes. One of these models, XGBoost, is
interpretable and represents the collection of individualized
decision trees that address complex relationships among vari-
ables. The second model, meta-classifier, which aggregated in-
formation from multiple machine learning models, also had
better model calibration than logistic regression. Despite al-
most no improvements in discrimination, these models led to
reclassification of 1 in every 4 patients deemed moderate or
high risk for death with logistic regression as low risk, which
was more consistent with their observed event rates. How-
ever, machine learning models were not uniformly superior to
logistic regression, and a neural network model had worse per-
formance characteristics than a logistic regression model based
on the same inputs.

The study builds on prior studies5-13,15 that used machine
learning in predicting AMI outcomes. Most of these studies5-13,15

found improved prediction with applications of classifica-
tion algorithms of varying complexity. However, they were lim-
ited by smaller patient groups, with limited generalizability in
the absence of standard data collection.5-13,15 In a large na-
tional registry with standardized data collection across more
than 1000 hospitals, improvements in risk prediction for in-
hospital mortality with machine learning models were small
and likely do not meet the threshold to be relevant for clinical
practice.

However, there are notable aspects of the new models.
Without the cost of collecting additional data or a reliance on
literature review or expert opinion for variable selection, the
models achieved similar model performance characteristics as
logistic regression, which is relevant for predictive modeling
in clinical areas where disease mechanisms are not well de-
fined. Moreover, 2 of the 3 models were much better cali-
brated across patient groups based on age, sex, race, and mor-
tality risk and were therefore better suited for risk prediction
despite only modest improvement in overall accuracy. Nota-
bly, this improvement in predictive range occurred in critical
areas by accurately reclassifying individuals at high risk to cat-
egories more accurately reflecting their risk. A focus on tradi-
tional measures of accuracy underperform in capturing the
scale of these improvements because the events are rare and

model discrimination is driven by patients not experiencing
the mortality event.28,29 In this respect, the Brier score offers
a more comprehensive assessment of model performance,
combining model discrimination and calibration. The Brier
score represents the mean squared difference between the pre-
dictions and the observed outcome. A perfect model has a Brier
score of 0, and when 2 models are compared, a smaller Brier
score indicates better model performance. Both XGBoost and
meta-classifier models had scores that were lower than the lo-
gistic models by several multiples of the SDs of the score. Given
the only marginal improvements in model discrimination, the
lower Brier scores reflect the improved calibration noted in the
calibration slope and shift tables.

Of note, 1 of the models that performs well is interpre-
table because it represents a collection of decision trees,
thereby ensuring transparency in its application that specifi-
cally addresses the concerns with black-box machine learn-
ing models. Furthermore, although their development is com-
putationally intensive, their eventual deployment at an
individual patient level does not require substantial compu-
tational resources. Therefore, the clinical adoption of these
models likely depends on whether their gains in prediction ac-
curacy are worth their computationally intensive develop-
ment and lack of interpretability. Some machine learning mod-
els may, therefore, have greater clinical utility in higher-
dimensional data where they can uncover complex
relationships among variables30-32 and of variables with out-
comes but only provide limited gains in relatively low-
dimension registry data. Furthermore, not all machine learn-
ing performed well. The neural network model developed using
all available variables in the registry was inferior to the logis-
tic regression based on similar inputs, indicating that not all
machine learning models are uniformly superior to tradi-
tional methods of risk prediction.

Limitations
This study has limitations. First, although the CP-MI registry
captures granular clinical data on patients with AMI, relevant
information, such as duration of comorbidities and control of
chronic diseases (besides diabetes), was not captured in the

Table 3. Performance of the XGBoost and Meta-Classifier Models Compared With Logistic Regressiona

Model

Expanded LR, No. of patients (% observed mortality)

<1% 1%-5% >5% All
XGBoost vs LR

Expanded XGBoost

<1% 65 193 (0.27) 31 971 (0.65) 422 (1.18) 97 586 (0.40)

1%-5% 3384 (0.95) 44 486 (2.21) 13 155 (3.91) 61 025 (2.51)

>5% 68 (2.94) 2899 (6.21) 28 906 (20.79) 31 873 (19.42)

All 68 645 (0.30) 79 356 (1.73) 42 483 (15.37) 190 484 (4.26)

Meta-classifier vs LR

Expanded meta-classifier

<1% 65 694 (0.27) 30 661 (0.65) 175 (0.00) 96 530 (0.39)

1%-5% 2930 (1.06) 45 726 (2.17) 9033 (3.55) 57 689 (2.33)

>5% 21 (0.00) 2969 (6.03) 33 275 (18.66) 36 265 (17.61)

All 68 645 (0.30) 79 356 (1.73) 42 483 (15.37) 190 484 (4.26)

Abbreviation: LR, logistic regression.
a Pairwise comparisons of the same

patients classified into low (<1%),
medium (1-5%), and high (>5%) risk
of death based on logistic
regression and XGBoost (top) and
meta-classifier (bottom).
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registry and is, therefore, not included in the assessment. Fur-
thermore, certain prognostic characteristics of the patients’
general health are not included.33,34 Second, although mod-
els are based on sound mathematical principles, the study does
not identify whether the excess risk identified with the mod-
els is modifiable. Third, shift tables judge classification across
risk thresholds but may overemphasize small effects around
thresholds. However, other calibration metrics also suggest
more precise risk estimation by XGBoost and the meta-
classifier among patients classified as being at high risk by lo-
gistic regression. Fourth, the study was not externally vali-
dated. Therefore, although the observations may be
generalizable to the data in the NCDR CP-MI Registry, they may
not apply to patients not included or hospitals not participat-

ing in the registry. However, because the data are collected as
a part of routine clinical care at a diverse set of hospitals, other
hospitals that collect similar data could likely apply these mod-
eling strategies.

Conclusions
In a large national registry, machine learning models were not
associated with substantive improvement in the discrimina-
tion of in-hospital mortality after AMI, limiting their clinical
utility. However, compared with logistic regression, the
models offered improved resolution of risk for high-risk
individuals.
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