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IMPORTANCE Altered neurodevelopmental trajectories are thought to reflect heterogeneity
in the pathophysiologic characteristics of schizophrenia, but whether neural indicators of
these trajectories are associated with future psychosis is unclear.

OBJECTIVE To investigate distinct neuroanatomical markers that can differentiate aberrant
neurodevelopmental trajectories among clinically high-risk (CHR) individuals.

DESIGN, SETTING, AND PARTICIPANTS In this prospective longitudinal multicenter study, a
neuroanatomical-based age prediction model was developed using a supervised machine
learning technique with T1-weighted magnetic resonance imaging scans of 953 healthy
controls 3 to 21 years of age from the Pediatric Imaging, Neurocognition, and Genetics (PING)
study and then applied to scans of 275 CHR individuals (including 39 who developed
psychosis) and 109 healthy controls 12 to 21 years of age from the North American Prodrome
Longitudinal Study 2 (NAPLS 2) for external validation and clinical application. Scans from
NAPLS 2 were collected from January 15, 2010, to April 30, 2012.

MAIN OUTCOMES AND MEASURES Discrepancy between neuroanatomical-based predicted
age (hereafter referred to as brain age) and chronological age.

RESULTS The PING-derived model (460 females and 493 males; age range, 3-21 years)
accurately estimated the chronological ages of the 109 healthy controls in the NAPLS 2
(43 females and 66 males; age range, 12-21 years), providing evidence of independent
external validation. The 275 CHR individuals in the NAPLS 2 (111 females and 164 males; age
range, 12-21 years) showed a significantly greater mean (SD) gap between model-predicted
age and chronological age (0.64 [2.16] years) compared with healthy controls (P = .008). This
outcome was significantly moderated by chronological age, with brain age systematically
overestimating the ages of CHR individuals who developed psychosis at ages 12 to 17 years
but not the brain ages of those aged 18 to 21 years. Greater brain age deviation was associated
with a higher risk for developing psychosis (F = 3.70; P = .01) and a pattern of stably poor
functioning over time, but only among younger CHR adolescents. Previously reported
evidence of accelerated reduction in cortical thickness among CHR individuals who
developed psychosis was found to apply only to those who were 18 years of age or older.

CONCLUSIONS AND RELEVANCE These results are consistent with the view that
neuroanatomical markers of schizophrenia may help to explain some of the heterogeneity of
this disorder, particularly with respect to early vs later age of onset of psychosis, with younger
and older individuals having differing intercepts and trajectories in structural brain
parameters as a function of age. The results also suggest that baseline neuroanatomical
measures are likely to be useful in estimating onset of psychosis, especially (or only) among
CHR individuals with an earlier age of onset of prodromal symptoms.
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B oth early (prenatal and perinatal) and late (adoles-
cent) neurodevelopmental disturbances are hypoth-
esized to play a role in the abnormalities of brain

structure and function associated with schizophrenia.1,2

Disturbances originating earlier in life (eg, resulting from
the interplay of genetic factors and obstetric complications)
would be expected to affect brain integrity from birth on-
ward and could therefore help to explain children with subtle
motor, cognitive, and social-affective deficits during child-
hood and earlier ages at onset of full psychosis (ie, early to
mid-teens).1,3-13 In contrast, disturbances that emerge during
late adolescence and early adulthood (eg, via abnormal neu-
romaturational events and/or environmental factors) could
help to explain individuals with normal premorbid psycho-
logical health and a more acute onset of psychotic symptoms
and functional impairment in the late teens and early 20s.1,2,13-17

Although these 2 sets of processes likely co-occur in at least
some cases, in isolation they lead to differential estimations
concerning the extent to which neuroanatomical measures can
aid in the detection of risk for psychosis prior to onset
(Figure 1).1,2,18,19 Specifically, individuals who are relatively
more affected by early neurodevelopmental disturbances
would be expected to manifest greater neuroanatomical
deviation relative to age-matched peers prior to onset of
psychosis,5,6 while those who are relatively more affected
by later neurodevelopmental disturbances would be ex-
pected to be neuroanatomically similar to age-matched peers
throughout most of the premorbid period but to show a rap-
idly increasing deviation prior to the onset of psychosis.1,2,14,17

Consistent with the theoretical framework just outlined,
prior work has observed a general pattern of greater neuroana-
tomical compromise among patients with schizophrenia who
have a history of early-life risk exposures (eg, obstetric compli-
cations) and/or an earlier age at onset of schizophrenia.5-7,9,20

However, these cross-sectional case-control studies cannot
comment on the timing of the appearance or course of the
neuroanatomical changes or their potential relevance to esti-
mation of onset of psychosis. To address these questions more
definitively, prospective longitudinal evaluation is required.

Here, we relied on the early vs late neurodevelopmental
influences model to guide our set of hypotheses, given that this
model makes differential estimations related to the timing of
onset of psychosis in association with different trajectories of
neurodevelopmental disturbances. To quantify deviation from
a normative neuromaturational trajectory on an individual ba-
sis, we sought a computationally efficient method to capture
variance in a comprehensive set of neuroanatomical mea-
sures most sensitive to age-related differences using a ma-
chine learning approach. Prior studies using this method have
yielded “brain age” estimates based on magnetic resonance
imaging (MRI) scans that closely track with the true chrono-
logical ages of typically developing individuals.21,22 Such a met-
ric has been shown to be highly replicable,23-29 heritable,23 and
robust to confounders, such as scanner-related noise24,26 and
head motion.24

Prior studies of adult samples of patients with schizophre-
nia have applied this framework to show a pattern of acceler-
ated brain aging in the patient groups compared with

controls.25,27 However, it remains unknown whether greater
deviation in neuroanatomical maturity is associated with clini-
cal outcomes in adolescents and young adults with a risk of
psychosis. In this study, we generated a neuroanatomical-
based age prediction model using the Pediatric Imaging, Neu-
rocognition, and Genetics (PING) study MRI data set, which
consists of scans from typically developing individuals across
a wide age range from childhood to early adulthood.21,30 We
then validated the PING-derived model in application to the
baseline MRI scans of the healthy controls (HCs) and individu-
als at clinically high risk (CHR) at the baseline evaluation in the
North American Prodromal Longitudinal Study 2 (NAPLS 2)
sample.14,31

We hypothesized that the PING-derived model would
accurately predict individuals’ chronological ages when
applied to the scans from the healthy cohort in the NAPLS 2,
providing evidence of independent external validation. We
then used the validated model to test our primary hypoth-
eses that CHR individuals who were younger at the time of
ascertainment (as a proxy for an earlier age at onset of pro-
dromal symptoms) will show an estimated neuroanatomical-

Figure 1. Model of Neurodevelopmental Trajectories of Cortical Synaptic
Density in Association With Onset of Psychosis
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Key Points
Question Are deviations from the normal neuroanatomical
maturation pattern associated with future psychosis among
clinically high-risk individuals?

Findings In this longitudinal multicenter study, clinically high-risk
individuals between 12 and 17 years of age showed exaggerated
deviation in neuroanatomical maturity at the time of baseline
evaluation, which in turn was associated with a greater risk for
developing psychosis and a pattern of stably poor functioning,
while accelerated reduction in cortical thickness among clinically
high-risk individuals who developed psychosis was found to apply
only to those who were 18 years of age or older.

Meaning Clinically high-risk individuals expressing prodromal
symptoms of psychosis in early adolescence show
contemporaneous signs of neuroanatomical vulnerability, which
may be useful for estimating onset of psychosis.
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based predicted age older than their chronological ages
and that this greater deviation in neuroanatomical maturity
will be associated with a greater risk for developing psychosis
and a pattern of stably poor functioning during 1 year of
follow-up.

Methods
The current study was approved by expedited review by the
Yale University Human Subjects Committee. The study pro-
tocol and consent form were reviewed and approved by the
institutional review boards at each of the 8 participating data
collection sites (University of California, Los Angeles; Emory
University; Harvard Medical School; Zucker Hillside Hospi-
tal; University of North Carolina; University of California, San
Diego; University of Calgary; and Yale University). All partici-
pants provided written informed consent.

PING Cohort
Publicly available PING data were obtained through the PING
portal (http://pingstudy.ucsd.edu) and used for building

multivariate models predicting chronological age in typically
developing individuals using their T1-weighted MRI scans
(N = 953; 3-21 years of age).

NAPLS 2 Cohort
Clinically high-risk individuals and their matched HCs were
recruited through the NAPLS 2 Consortium, which con-
sisted of 8 sites in North America studying the prodrome
period of psychosis.31 The CHR individuals were assessed
based on the Structured Interview for Psychosis Risk
Syndromes.32

The NAPLS 2 participants included in this study were
those with T1-weighted MRI scans available who were
between 12 and 21 years of age at the baseline assessment.
Scans from NAPLS 2 were collected from January 15, 2010, to
April 30, 2012. In total, 39 CHR individuals developed psy-
chosis (“converted”; CHR-C), 236 CHR individuals did not
convert to psychosis (CHR-NC), and 109 were HCs. The
demographic characteristics of the 3 groups are shown in the
Table (see eAppendix in the Supplement and previous publi-
cations for additional details about the PING21,30 and NAPLS
214,31,33 Consortia).

Table. Demographic Characteristics of Participants

Characteristic HC (n = 109)
CHR-NC
(n = 236)

CHR-C
(n = 39)

Statistical Test for Significance
(2-Tailed) P Value

Post Hoc Tukey
Testa

Age, mean (SD), y 17.02 (2.44) 17.30 (2.10) 17.20 (2.23) F = 0.61 .55 NA

Male sex, No. (%) 66 (60.6) 142 (60.2) 23 (59.0) χ2 = 0.038 .98 NA

Education level, mean (SD), y 10.31 (2.44) 10.37 (2.07) 10.35 (2.26) F = 0.03 .96 NA

Paternal education score, mean (SD)b 6.43 (1.73) 6.14 (1.66) 6.42 (2.01) F = 1.32 .99 NA

Maternal education score, mean
(SD)b

6.87 (1.46) 6.26 (1.52) 6.56 (1.74) F = 5.94 .003 HC,
CHR-C > CHR-NC

Race/ethnicity, No. (%)

White 58 (53.2) 151 (64.0) 26 (66.7) χ2 = 5.73 .06 NA

Hispanic or Latino 24 (22.0) 40 (16.9) 7 (17.9) χ2 = 1.43 .49 NA

Black 24 (22.0) 30 (12.7) 4 (10.3) χ2 = 5.46 .07 NA

Asian 8 (7.3) 17 (7.2) 3 (7.7) χ2 = 0.14 .99 NA

First Nations 2 (1.8) 5 (2.1) 1 (2.6) χ2 = 0.14 .93 NA

Interracial 14 (12.8) 24 (10.2) 3 (7.7) χ2 = 0.13 .93 NA

Taking antipsychotics, No. (%)c 0 53 (22.5) 12 (30.8) χ2 = 1.25 .26d NA

Scale of Prodromal Symptoms score,
mean (SD)

Positive 1.14 (1.58) 11.89 (3.59) 13.05 (3.59) F = 459.8 <.001 CHR-C > CHR-
NC > HC

Negative 1.92 (2.75) 12.11 (6.20) 12.21 (6.28) F = 134.9 <.001 CHR-C,
CHR-NC > HC

Disorganization 0.67 (1.21) 4.94 (3.08) 7.67 (4.29) F = 119.6 <.001 CHR-C > CHR-
NC > HC

General 1.51 (2.41) 9.34 (4.24) 9.21 (3.89) F = 166.6 <.001 CHR-C,
CHR-NC > HC

GAF scores at baseline 82.18 (11.41) 48.50 (10.72) 46.28 (9.63) F = 166.6 <.001 HC > CHR-C,
CHR-NC

Abbreviations: CHR-C, clinically high-risk individuals who converted to
psychosis; CHR-NC, clinically high-risk individuals who did not convert to
psychosis; GAF, Global Assessment of Functioning; HC, healthy controls;
NA, not applicable.
a The greater than symbol indicates direction of the significant results.
b Parental education scored as follows: 1, no schooling; 2, some primary school;

3, completed primary school; 4, some high school; 5, completed high school;
6, some college, technical school, or undergraduate education; 7, completed

college, technical school, or undergraduate education; 8, some graduate or
professional school; and 9, completed graduate or professional school.

c Because this was a naturalistic study, individuals were treated in their
respective communities according to prevailing standards and the judgment
of the treating clinicians, who were often primary care physicians rather than
psychiatrists.

d χ2 Test performed within CHR group.
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Neuroimaging Data Acquisition and Image Processing
High-resolution, T1-weighted brain images were acquired using
3-T scanners for PING and NAPLS 2. Image postprocessing steps
were performed using the FreeSurfer software suite, version
5.3 (http://surfer.nmr.mgh.harvard.edu/)34-37 (eAppendix in the
Supplement).

Multivariate Modeling for Estimating Age
We preselected a limited number of neuroanatomical mea-
sures (N = 92) to minimize redundant information, yet we
included volume measures from all parcels provided by the
Desikan atlas38 (see eTable 1 in the Supplement for a com-
plete list). Prior to model fitting, sex differences and scanner-
specific offsets were estimated per predictor and adjusted using
a linear mixed model. For model training, we used penalized
regression with L2 norms (ridge regression) to avoid overfitting.39

For simplicity, the predicted age from neuroanatomical mea-
sures will be referred to as the brain age. The deviation of the
predicted age from the individuals’ chronological age (brain
age − chronological age) will be referred as the brain age gap. To
directly compare the magnitude of the brain age gap across
the full age range, the bias was estimated and accounted for in
the model (see eAppendix, eFigure 1, and eFigure 2 in the
Supplement for methodological details).

Model Training, Validation, and Application
All structural scans available from the PING data set were
used as the discovery data set to build a model estimating
individuals’ true ages. A repeated, nested cross-validation
method was used to optimize the tuning parameter λ and
derive unbiased estimates of model performance, which
were evaluated by minimizing the mean absolute error
(MAE).40 For the purpose of assessing generalizability, the
PING-derived model was then applied without modification
to the baseline MRI data of the HCs and CHR individuals
from NAPLS 2 and adolescents with a first episode of psy-
chosis (n = 14) as an additional external validation test (eAp-
pendix in the Supplement).

Association With Clinical Measures
We examined associations between brain age gap and prodro-
mal status based on the Structured Interview for Psychosis Risk
Syndromes32 and the Global Assessment of Functioning Scale41

as an index of overall functioning assessed at baseline and 12-
month follow-up or at conversion to psychosis.

Statistical Analysis
To compare brain age across groups, the generalized linear
model was used with chronological age, group, and chrono-
logical age × group interaction as independent variables. When
a chronological age × group interaction was detected, second-
ary analyses were performed on the brain age gap using analy-
sis of variance when clinical samples were partitioned into
younger (12-17 years of age) and older adolescents (18-21 years
of age) because the deflection point underlying a significant
chronological age × group interaction occurred at around 17
years of age (which is also the median age in the included
sample). Age at baseline evaluation was highly correlated with

age at onset of psychosis among individuals who converted
(eFigure 3 in the Supplement) because most developed full-
blown psychotic symptoms in less than a year from ascertain-
ment. A receiver operating characteristic analysis was used to
estimate classification accuracy between CHR-C and CHR-NC
individuals using the brain age gap as the sole predictor. For
post hoc t tests, a Bonferroni correction was applied for mul-
tiple comparisons as noted. Statistical tests were 2-sided with
significance set at P < .05.

Results
Brain Age Model Performance and External Validation
Magnetic resonance imaging scans of typically developing in-
dividuals from the PING cohort (n = 953; age range, 3-21 years;
460 females and 493 males) were used for the model training
phase. Then, the validated PING-derived model was applied
to MRI scans of the HCs (n = 109; age range, 12-21 years; 43 fe-
males and 66 males) and CHR individuals (n = 275; age range,
12-21 years; 111 females and 164 males) in the NAPLS 2 sample
for external validation and clinical application. The models
built using the cross-validation procedure in the PING cohort
explained 84% of the chronological age variance (P < .001) with
an MAE of 1.69 years (Figure 2A). When this PING-derived
model was applied to an independent external data set (ie, the
HC group in the NAPLS 2 cohort), it accounted for 51% of the
variance (P < .001) in chronological age, with an MAE of 1.41
years (Figure 2B). This degree of generalizability is compa-
rable to the cross-validation results within the PING sample
when the age range was restricted to match that of the NAPLS
2 sample (age range, 12-21 years; n = 449; MAE = 1.55;
R2 = 65%; P < .001). See eTable 2 in the Supplement for
model parameters.

Association of Psychosis Risk With Brain Age Gap
Next, the validated brain age model was applied to CHR indi-
viduals. Overall, the CHR group showed a significantly in-
creased mean (SD) brain age gap (0.64 [2.16] years) compared
with HCs (P = .008). As shown in Figure 2B, a significant
chronological age × CHR group interaction (t = –1.99; P = .047)
was observed, whereby brain age was systematically overes-
timated among younger adolescents (≤17 years of age) in both
CHR-C and CHR-NC individuals but not among those 18 years
of age or older. To further characterize chronological age as a
potential moderating variable, statistical tests were per-
formed for younger and older adolescents separately, de-
fined using a median split of 17.04 years (eTable 3 in the Supple-
ment). Among younger adolescents, the mean brain age gap
was significantly greater than zero for CHR-C individuals (1.59
years; P < .001, corrected) and CHR-NC individuals (0.67;
P = .004, corrected) but not for HCs (0.06; P = .99, cor-
rected). Furthermore, the brain age gap differed significantly
across groups for younger adolescents (F = 3.70; P = .01). Post
hoc tests revealed that the brain age gap of CHR-C individuals
was significantly higher compared with HCs (1.58 years; P = .02,
corrected). The brain age gap for CHR-NC individuals was also
greater than for HCs but not significantly so (0.67 years; P = .15,
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corrected). There were no significant differences in brain age
gap between groups among older adolescents (F = 1.09;
P = .35).

In the receiver operating characteristic analysis among CHR
individuals 17 years of age or younger, the brain age gap was a
significant predictor of conversion to psychosis with an area
under the curve of 0.63 (P = .046, permutation test with 5000
iterations; eFigure 4 in the Supplement), and these effects were
not explained by exposure to antipsychotic medication (eFig-
ure 5 in the Supplement).

Brain Age Gap in Adolescents With a First
Episode of Psychosis
Adolescents with a first episode of psychosis also exhibited
a significantly greater mean brain age gap compared with

their matched controls (1.17 years; P = .001, permutation
test). When divided into younger and older groups based
on chronological age and compared with data from the
NAPLS 2 cohort, younger patients with a first episode of
psychosis showed a larger brain age gap compared with HCs
(1.86 years; P = .02, permutation test) but did not signifi-
cantly differ from CHR-NC individuals or CHR-C individu-
als. Generalized linear model analysis revealed a significant
linear association of the severity of psychotic illness with
the brain age gap only in younger adolescents (categorical
variables ordered as ordinal variables: HCs < CHR-NC in-
dividuals < CHR-C individuals < individuals with a first
episode of psychosis; group as ordinal variable; t =
3.31; P = .001; Figure 2C) and not in older adolescents
(Figure 2D).

Figure 2. Brain Age Model Building, Validation, and Application
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A, Cross-validation results within the Pediatric Imaging, Neurocognition, and
Genetics (PING) study sample with bias adjustment. Estimated brain age is
plotted as a function of observed chronological age at baseline magnetic
resonance imaging scan. The solid diagonal line indicates linear fit, and the dashed
diagonal lines indicate the 95% prediction interval. Colors correspond to different
scanners (R2 = 0.84; mean absolute error [MAE] = 1.69 years; mean
error = –0.001 year). B, Optimized brain age model trained with the PING sample
was applied without modification to the healthy control (HC), clinically high-risk
with no conversion to psychosis (CHR-NC), and clinically high-risk with conversion
to psychosis (CHR-C) individuals in the North American Prodrome Longitudinal
Study 2 (NAPLS 2). A significant CHR group by chronological age interaction was
observed (P = .047). Colors correspond to different groups, and the dashed line

indicates where predicted and chronological age perfectly meet (R2 = 0.51;
MAE = 1.41 years; mean error = –0.06 year). C, Bar plots of mean (SE) brain age
gap by diagnostic groups among younger adolescents (<17 years of age). Both
CHR-C individuals and patients with a first episode of psychosis (FE) showed an
increased brain age gap compared with HCs (CHR-C, P = .02; FE = 0.02). The
dashed line indicates MAE for brain age model performance in NAPLS 2 HCs. D,
Bar plots of mean (SE) brain age gap by diagnostic groups among older
adolescents and young adults (17-21 years of age). There were no significant
differences of brain age gap by group (P > .10). The dashed line indicates MAE for
brain age model performance in NAPLS 2 HCs. All error bars indicate SE.
a P < .05, corrected.
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Association of Brain Age Gap With Global
Functioning Outcome
Next, we evaluated the association between brain age gap and
Global Assessment of Functioning Scale scores at baseline and
12-month follow-up or at conversion to psychosis among the
CHR individuals from NAPLS 2. Overall, Global Assessment of
Functioning Scale scores assessed at follow-up significantly im-
proved compared with the baseline scores (t = 6.01; P < .001).
The younger adolescent group of CHR individuals was di-
vided into 3 groups with a threshold set by ±MAE of the brain
age model in external validation. As shown in Figure 3, CHR
individuals falling within the expected range showed im-
proved functioning at follow-up relative to baseline (10.21
points; t = 3.87; P < .001, corrected), whereas the Global As-
sessment of Functioning Scale scores of the individuals with
a brain age gap beyond ±MAE showed a stable pattern of poor
functioning during this interval. Similar results were ob-
served when CHR-C individuals were excluded (eFigure 6 in
the Supplement).

Prediction of Conversion to Psychosis
Among CHR Individuals
In the interest of completeness, we also attempted to use
baseline neuroanatomic al measures derived f rom
T1-weighted MRI data to directly predict conversion to psy-
chosis among the NAPLS 2 CHR sample (71 converters and
436 nonconverters) using standard machine learning
approaches, but the trained models derived from our data
set did not significantly predict conversion to psychosis (see
eAppendix in the Supplement for methodological details,
results, and discussion).

Discussion
In this study, we successfully reproduced a neuroanatomical-
based age prediction model using a typically developing co-
hort (PING sample) and successfully validated the model in an
independent sample (NAPLS 2 HCs). When a validated brain age
prediction model is applied to structural MRI data from ado-
lescent and young adult individuals at CHR for psychosis, the
CHR individuals show a systematic overestimation of brain age
that in turn is associated with a higher risk for conversion to psy-
chosis and a pattern of stably poor functioning. Consistent with
the neurodevelopmental framework, these associations were
found to be specific to individuals with earlier ages at onset of
prodromal symptoms of psychosis (≤17 years of age) and also
generalized to younger individuals with a first episode of psy-
chosis, possibly representing an aberrant neurodevelopmen-
tal trajectory with a lower y-intercept (Figure 1).1,2,18,19 Be-
cause the model primarily fitted cortical gray matter measures
with negative weights, older predicted age in these samples
would be generally associated with reduced gray matter struc-
tures. This pattern of findings is consistent with the notion that
contemporaneous neuroanatomical vulnerability is character-
istic of individuals expressing prodromal symptoms in early
adolescence5-7,9,20 and imply that a greater brain age gap may
be useful in prediction of early-onset forms of psychosis.

Progressive Changes in Brain Structures
in Converters to Psychosis
According to the neurodevelopmental framework
(Figure 1),1,2,18,19 older adolescent and young adult CHR indi-
viduals with more acute-onset forms of psychosis would be ex-
pected to show normal brain maturation premorbidly and an
increasing deviation around the time of onset of psychosis.1,2,14

Prior studies of longitudinal changes in brain structure in this
sample (NAPLS 2) demonstrated an accelerated rate of cortical
thinning in the superior and medial prefrontal regions and a
greater rate of expansion of the third ventricle among CHR in-
dividuals who converted to psychosis compared with those who
did not and with HCs.14,42,43 Age was assessed as a covariate in
these studies; the reported outcomes were robust to age when
its effects were “regressed out” in this way. However, given the
results of the present investigation and the predictions of the
neurodevelopmental framework (Figure 1),1,2,18,19 it may be more
informative to evaluate age as a moderator in such analyses. To
do so, we revisited the longitudinal data14 and plotted annual-
ized rates of change in these neuroanatomical structures as a
function of age at the time of the baseline scan. As shown in
Figure 4,14,42,43 the differential rates of change in structural brain
parameters among those who converted to psychosis apply only
to those who were 18 years of age or older at baseline. In con-
trast, among younger individuals (12-17 years of age), the groups
did not differ in the rate of prefrontal cortical thinning or third
ventricle expansion.

Given that the neuroanatomical parameters in prefron-
tal regions undergo robust maturational changes during

Figure 3. Course of Functioning From Baseline to 12-Month Follow-up
by Brain Age Gap
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Global Assessment of Functioning Scale (GAF) scores at baseline and 12-month
follow-up among clinically high-risk individuals according to whether their brain
age gap scores were in the expected range vs underestimated or overestimated
using the mean absolute error of the brain age model as a threshold
(underestimated: brain age gap < −1.5; expected: −1.5 � brain age gap �1.5
years; and overestimated: 1.5 < brain age gap). Mean GAF scores improved from
baseline to follow-up when the brain age gap was within the mean absolute
error range (P < .001) but did not improve for individuals with an
underestimated or overestimated brain age gap. Clinically high-risk individuals
who converted to psychosis were disproportionately represented among those
with an overestimated brain age gap (underestimated, n = 0; expected, n = 8;
overestimated, n = 9), and a similar pattern was observed even when
converters were excluded (eFigure 6 in the Supplement).
a P < .001, corrected.
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later adolescence44-47 and that the converters exhibiting an
accelerated rate of cortical thinning are overrepresented
in this age range, CHR individuals with an earlier age at
onset of prodromal symptoms of schizophrenia with a con-
temporaneous neuroanatomical deficit (lower y-intercept)
may still be at risk for experiencing later neuromaturational
disturbances (aberrant slope) once they become older
adolescents.

Limitations
Although the brain age approach can quantitatively assess de-
viations in brain maturation at the single individual level, such
deviations are not likely to be specific to a particular disorder.
By design, the fitted model parameters are data driven, char-
acterizing the regularized maturation pattern among brain
structures that tracks with variations in chronological age
among typically developing individuals. In other words, this
composite metric is not optimized for detecting risk of schizo-
phrenia per se and would presumably be sensitive to any con-
dition in which individuals deviate from the normal pattern
of age-related neuroanatomical change during childhood or
adolescence. However, the regional brain measures that con-
tribute heavily to estimating chronological age in a typically
developing population (ie, our top 25 hits as shown in eTable
2 in the Supplement) show considerable overlap with key re-
gions in which prior studies have shown gray matter differ-
ences between CHR individuals who convert to psychosis and
those who do not.17,48 These overlapping regions include re-
gional gray matter volume measures, including the frontal,
temporal, and parietal cortex, as well as hippocampal and
amygdala volume.

Training models to predict conversion to psychosis as a
categorical outcome seems like an intuitively appealing
approach, but we were not successful in building such mod-

els using our data set. The performance of such models may
be limited by the difficulty in adequately accounting for the
backdrop of variation in normative adolescent brain develop-
ment and the likelihood of heterogeneity in the pathways
leading to full psychosis among individuals at CHR. However,
it may be possible to increase the sensitivity to outcomes on
the schizophrenia spectrum by constraining the spatial topo-
logic parameters of brain age classifiers to brain regions pre-
viously associated with risk of psychosis and by incorporat-
ing neuroimaging parameters from other modalities.
Eventually, the brain age and outcome-based machine learn-
ing approaches may be combinable with other clinical
predictors49,50 to provide added traction on the problem of
predicting the onset of psychosis among CHR individuals. To
further validate whether our findings are in accord with the
neurodevelopmental model, additional investigation is
required to confirm whether neuroanatomical abnormality
among younger CHR individuals is in fact affected by expo-
sure to early neurodevelopmental risk factors (eg, obstetric
complications) and/or present with an insidious onset in
terms of premorbid functioning.

Conclusions
The brain age approach used in this study captured neuro-
maturational deviation associated with risk of psychosis only
among younger CHR adolescents. This finding and the evi-
dence that only CHR converters at the age of 18 years or older
show a differential rate of progressive neuroanatomical changes
over time are consistent with the view that differing inter-
cepts and trajectories in structural brain parameters as a func-
tion of age contribute to heterogeneity in the timing of the
onset and course of schizophrenia.

Figure 4. Annualized Rate of Percentage Change
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A, Annualized rate of percentage change in the right superior frontal thickness,
plotted as a function of age at baseline. B, Annualized rate of percentage
change in third ventricle volume, plotted as a function of age at baseline. Locally
weighted smoothing curve with 95% CI (colored area) is shown for each
diagnostic group. With the use of a generalized linear model, a significant group
(clinically high risk with conversion to psychosis [CHR-C] vs healthy control

[HC]) by chronological age interaction was observed (right superior frontal
thickness: P = .03; third ventricle: P = .001). Outliers defined by studentized
deleted residuals exceeding ±3 were excluded (2 HCs, 4 individuals at clinically
high risk with no conversion to psychosis [CHR-NC], and 2 individuals at CHR-C).
Further details about demographics, image processing steps, and principal
findings are reported in prior publications.14,42,43
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