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Use of Markov-encoded sequential information
in numerical signal detection*
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Twelve Ss made binary decisions with feedback on numbers from one of two normal distributions with equal
variances and unequal means. Sequences of distribution choices corresponded to first-order two-state Markov processes
with probabilities of change of state of PI = P2 = .50, p, = P2 = .75, and p, = P2 = .25. Performance was best (in d'
terms) when p, = P2 * .50. First-order sequential response dependencies tended to mirror the first-order stimulus
dependencies. Violations of a fixed cutoff point decision rule were concentrated in the region of the average critical
point, with a bandwidth of about 1/2a, in which violations were strikingly more frequent than would be expected if
they had occurred randomly. These results imply that in this task Ss are using a criterion-band decision rule instead of a
fixed cutoff point rule, and that they are basing decisions in the region of the criterion band on information extracted
from the sequence of decisions presented to them, The average bandwidth is generally different from the optimum
bandwidth used by an ideal 0 in combining the two sources of information.

The present study was designed to investigate whether
and how people detect and use sequential information in
making binary numerical detection decisions. This
problem is important for at least two reasons. First,
many investigators have found that Ss, in identification
and detection tasks with sensory stimuli, typically
exhibit response biases, often called "sequential effects,"
which have been interpreted as active searching for
nonexistent sequential information in the sequence of
stimuli presented to them for judgment (Ward &
Loackhead, 1971). Typically, with many stimuli, the
response to a particular stimulus is assimilated to the
immediately preceding stimulus and response and
contrasted with stimuli and responses from about 2-6
trials back in the sequence (Ward & Lockhead, 1971).
When there is no information feedback, the assimilation
seems to be extended further back in the sequence
before the contrast appears (Ward & Lockhead, 1971).
When there are only two stimuli, feedback also affects
the form of the sequential effects, with contrast between
the response to a particular stimulus and the
immediately preceding stimulus being reported when
there is no feedback (parducci & Sandusky, 1965) and
assimilation when feedback is given (Tanner, Rauk, &
Atkinson, 1970). Also, some recent studies show that
sequential patterns can, in fact, be discriminated from
each other (e.g., Pollack, 1971), so it is plausible that Ss
may detect and use sequential information if it is
available,

Second, a recent paper by Kubovy, Rapoport, and
Tversky (1971) indicated that in a detection task free
from sensory components, Ss seem to use a fixed cutoff
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point decision rule of the type proposed for the ideal 0
in signal detection theory (SDT-Green & Swets, 1966).
In their study, Kubovy et al (1971) had Ss decide from
which of two overlapping normal distributions numerical
stimuli were drawn. The Ss made several thousand
judgments before experimental data were collected so
that they would be familiar with the distributions from
which the stimuli were drawn and learning effects would
be minimized. In addition, the only pay received by the
Ss was contingent on their performance. This was done
to ensure that Ss would be motivated to use an optimum
decision strategy. Kubovy et al (1971) found that, in
general, a deterministic (fixed cutoff point) model of
decision making fit the data rather well, much better
than a generalized (probabilistic) micromatching model
similar to that proposed by Lee and his associates (Lee,
1971). However, the test passed by the deterministic
model was a statistical one, and, as Kubovy et al (1971)
point out, that model is intolerant of any error. In an
analysis of the violations of the deterministic model,
they found' that on average 5.87% of the decisions made
by their Ss violated the model, and this after several
thousand practice trials. In several conditions, for some
Ss, there were over 15% violations.

Although the study by Kubovy et al (1971) seems to
have been somewhat successful in controlling sensory,
learning, and motivational components in the decision
process, the presence of violations of the proposed
model leaves doubt as to whether it wholly explains
decision behavior in binary detection situations. It is
possible that, similarly to binary detection situations in
which sensory stimuli are used, Ss' decisions are subject
to sequential response biases which are giving rise to the
observed violations of the model. In the present study,
therefore, sequential information was introduced into
the situation, and analyses of performance, sequential
response dependencies, and violations of the
deterministic model were performed in an effort to
expose the reasons for the violations of that model.
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Table I
ct' Measures of Decision Performance

S Order ALT(1) RAN(2) RUNS(3)

3 123 1.008 .807 1.428
5 132 .760 1.106 .900

10 123 1.787 1.101 1.349
12 132 .921 .511 1.492

1 213 1.114 1.054 1.526
4 231 .890 .800 1.147
8 213 1.223 .744 .965

11 231 1.232 .977 1.058

2 321 1.257 .899 1.483
7 312 .430 .605 .783

13 312 1.072 .551 1.227
14 321 1.155 .874 1.299

Mean 1.071 .836 1.221

METHOD

Sequential Information

If the sequence of stimuli in a binary detection task is viewed
as a first-order two-state Markov process, then it can be seen that
run length and frequency, and frequency of stimulus occurrence,
can be manipulated by manipulating the probabilities of change
of state in the transition matrix of the Markov process. When the
matrix is symmetrical about the main diagonal, overall
probabilities of occurrence of the two states will be equal. This is
the case for all of the matrices used in this study.

Three conditions varying in the amount and type of sequential
information present were created by choosing sequences of
stimuli according to probabilities of change of state of .25, .50,
and .75. A sequence with probabilities of change of state of p, =
p. = .50 corresponds to the typical "random" sequence of
stimuli, and there is no information present in the sequence as to
which of the two stimuli is more likely on a given trial. However,
when p, = P. = .25, there will be more and longer runs of the
same state (stimulus) than in the "random" sequence, and on a
given trial the probability that the stimulus is identical to that of
the previous trial is .75. When PI = P. = .75, the situation is
reversed, with the probability of an alternation from the
stimulus of the preceding trial equal to .75. Thus, in the latter
two conditions, probabilistic information relevant to the identity
of the stimulus is present in the sequence of stimuli.

Stimuli

In the present study, each state of the Markov process
discussed above corresponded to the selection of a number from
a particular one of two overlapping normal distributions with
standard deviations of a I = a. = 100 and means of JJ., = 1,500
and JJ.. = 1,600. The task of the S, when presented with a
number (integer) drawn at random from one of these two
distributions, was to say from which distribution it was drawn
by responding" 1" or "2."

Procedure

Ss were run on a Datel remote terminal connected to the
time-sharing facility (Call 360/0S) of the IBM 360/67 computer
at Rutgers. A program written in the BASIC language controlled
stimulus selection and presentation. The program decided what
state of the Markov chain it was in on a given trial according to
the appropriate probabilities of change of state for the particular
condition being run, selected an integer at random from the
indicated normal distribution, presented the number to the S,
recorded his response, and provided feedback as to the correct

response on that trial. Fourteen volunteer Ss (undergraduates at
Rutgers University) were run in the study; the data of two of
these were discarded without analysis when serious procedural
violations were discovered. Each of the remaining 12 Ss had 100
practice and 400 experimental trials in each of the three
conditions ou tlined above. Conditions were run in
counterbalanced order in a repeated measures design; two Ss
were run in each of the six possible orders of the three
conditions. Ss had one condition per 1.5-h session and one
session per day.

In an attempt to make the situation comparable to that of
Kubovy et al (1971). Ss were given a sheet of paper on which
were drawn two prototypical overlapping normal distributions
together with a brief explanation about probability distributions
and the expected frequency of occurrence of numbers at various
places on the continuum. The means of the distributions were
those actually used in the experiment, but the variances were not
veridically displayed. It was hoped that this would at least
partially compensate for the small number of practice trials
allowed Ss. In addition, Ss also received monetary compensation
contingent upon their performance for participation in the
experiment. A symmetric payoff matrix was used, in which each
correct answer was worth .7 cents and each incorrect answer was
worth nothing. Ss stopped every 100 trials to calculate their
payoffs for the preceding 100 trials. Ss made an average of $6
for the whole experiment, paid after all conditions were
completed. It might be noted that about half of the Ss were
relatively sophisticated with respect to probability theory,
having completed a first course in statistics during the previous
semester. The other half of the Ss were relatively naive. Degree
of sophistication in general made no difference in the results to
be reported.

RESULTS AND DISCUSSION

Performance

The d' measure of performance was calculated in two
ways. First, the overall percentages of hits and false
alarms for the data of each S in each condition were
used to calculate the traditional d' measure. These d's
are displayed in Table 1. For the data, ANOVA shows
no effect of order of running in the different conditions
and no interaction between order and condition.
However, the average d's of the three conditions are
significantly different (F 7.53, P < .005). A
Newman-Keuls test on the pairs of means indicates that
the ALT and RUNS conditions do not differ at the .05
level, but that each is significantly different from the
RAN condition.

A second set of d's, in which any first-order sequential
response dependencies were taken into account, was
calculated for the same data (see Sandusky, 1971, for
details of the analysis). ANOVA of these d's yielded no
significant differences over the three conditions,
indicating that the differences in the ordinary d'
measures reported above were due to the presence of
first-order sequential response dependencies in the data,
and not to improved discriminability of the
distributions.

These sequential dependencies were analyzed further
by forming a Sn-l by Rn (Stimulus on Trial N - 1 by
Response on Trial N) matrix for each S for each
condition. Chi-square tests of significance on these
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matrices indicated that every S in the ALT condition
had a significant tendency (p < .05 or better) to give the
response different from the immediately previous
correct response, every S in the RUNS condition had a
significant tendency to repeat the immediately previous
correct response, and 9 of 12 Ss showed no significant
sequential response dependencies in the RAN condition.
In the latter condition, 2 of the 12 showed a significant
tendency to alternate and 1, a significant tendency to
repeat the immediately previous correct response. Thus,
the first-order sequential response dependencies tended
to mirror the transition probabilities of the Markov
chain of stimuli. This result is very similar to that found
by Anderson (1960) for a two-choice learning situation,
and in combination with the second d' analysis above
indicates that the differences in the first d' analysis are
due to Ss' tendency to respond in a fashion that utilizes
available sequential information.

However, it is easily seen that the available sequential
information was not used optimally. An S who
combined the two sources of information (distributional
and sequential) in an ideal way would use a criterion
band decision rule (see Appendix), which would give a
maximum (ordinary) d' for the ALT and RUNS
conditions of about 1.454. In the RAN condition, the
criterion band would have zero width, leading to a
cutoff point decision rule and a d' of 1.0. Of course, if
the simple cutoff point rule was used in the ALT and
RUNS conditions, d' would be 1.0 over a large number
of trials in those conditions also.

It can be seen in Table 1 that in no condition is the
average d' very near the ideal maximum, although several
of the individual entries do approach it. In addition,
since the mean d's are significantly different from each
other, it is unlikely tha t Ss are simply using a fixed
cutoff point decision rule in this experiment, especially
in the RAN and RUNS conditions, where the average d'
is also significantly different from 1.0 (tRAN = -3.02,
P < .02; tRUNS = 3.34, P < .01).

It seems reasonable to assert that use of available
sequential information in the ALT and RUNS conditions
is leading to a response advantage in those conditions. It
is also possible that unsystematic attempts to use
sequential information that is not there is causing
lowered performance in the RAN condition ..Since the
sequential and stimulus information are uncorrelated,
such behavior should often show up as violations of a
fixed cutoff point decision rule. An analysis of these
violations might indicate where and how this
information is being used.

Violations of the Fi~ed
Cutoff Point Decision ~ule

A critical point (a stimulus value for which the
number of violations of the fixed cutoff point decision
rule is minimal-see Kubovy et ai, 1971) was calculated
for the data of each S in each condition. The critical

Table 2
Frequency of Violation of the Simple Deterministic Model

S Order ALT(l) RAN(2) RUNS(3) Mean

3 123 11 51 132
5 132 56 32 34

60.810 123 99 49 84
12 132 25 82 75

1 213 33 13 76
4 231 37 78 46 44.58 213 9 52 29

11 231 89 20 52

2 321 102 48 98
7 312 135 72 43 73.813 312 99 110 20

14 321 37 37 85
Mean 61.0 53.7 64.5

point was treated as a hypothetical cutoff point, and
each of the 14,400 decisions made in this experiment
were checked for violation of a fixed cutoff point
decision rule. A violation was recorded when a response
of "1" was made to a stimulus value above the
hypothetical cutoff point for the particular Sand
condition, and when a response of "2" was made to a
stimulus value below the hypothetical cutoff point.
There was no systematic variation in the calculated
critical points. The average critical points were 1,554 for
the ALT condition, 1,558 for the RAN condition, and
1,552 for the RUNS condition, all quite near the ideal
cutoff point of 1,550 for this situation, indicating no
significant bias in favor of one of the two responses.

There were 2,150 violations (14.9%) in the 14,400
trials checked. This is more than found by Kubovy et al
(1971) for a similar situation. However, they introduced
no sequential information, and the introduction of such
information in the present study might have led to more
violations of the model. Therefore, only the violations
found in the data of the RAN condition for the Ss who
had that condition first were considered, this being the
best comparison to Kubovy et al (1971). Of the 1,600
decisions in that condition, 10.3% were violations of the
simple model. This is closer to the 5.87% reported by
Kubovy et al (1971), but still larger. It must be
presumed that, although a good deal of the larger
number of violations in the present study is due to the
introduction of sequential information, at least some of
the difference may be due to less experience with the
distributions used.

Table 2 di plays the number of violations of the
cutoff point ecision rule for each S and each condition.
Although the average number of violations in each
condition mi rors the average performance data, the
differences a e not statistically significant. The only
significant ef ct in the data of Table 2 is the effect of
order of pres ntation of conditions (F = 4.59, P < .05).
Ss who ran i the RUNS condition first produced the
most violatio s overall; Ss who had the RAN condition
first produc d the least. This is evidence that the
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Fig. 1. Observed and expected frequency distributions of the
simple deterministic model for stimulus values between 1,404.5
and 1,694.5. The data are collapsed over Ss and conditions.

detection of sequential information and its use in
appropriate situations is conducive to more attempts to
use it even when it is inappropriate. It can also be seen,
by comparison of Tables 1 and 2, that for the Ss whose
performance indicates use of sequential information to
improve performance, the overall number of violations
of the cutoff point decision rule increases over sessions.
This is the opposite of what would be happening if
continuing learning of the stimulus distributions were
producing closer correspondence of the Ss' decision
behavior to the simple decision rule. On the other hand,
some Ss do seem to show fewer violations in their later
sessions, and, indeed, they are generally those Ss who
did not seem to make use of the sequential information
to increase performance in the ALT and RUNS
conditions. These Ss could be said to be learning the
distributions, although, as will be pointed out, they did
not differ from the others as to where their violations
occurred, and their data showed similar sequential
response dependencies.

Perhaps a more interesting question concerns where
the violations of the simple decision rule are occurring.
Several authors, in investigating sequential effects found
in sensory identification and detection situations, have
suggested that attempted use of sequential information
occurs mainly in areas of the stimulus continuum where
the S is highly uncertain as to the appropriate response
(parducci & Sandusky, 1965; Sandusky, 1971; Ward &
Lockhead, 1971). In fact, Parducci and Sandusky (1965)
proposed that Ss used a criterion-band decision rule in
their position-detection task. As would the ideal
combiner of stimulus and sequential information, Ss
seemed to base decisions on stimulus information for
stimuli outside the criterion band, and at least partly on
"response biases" associated with the previous sequence
of stimuli for stimuli within the band. If Ss are using a

nOBSERVE0

l'l EXPECTED

2: 0 ~
200 ~
ISC i

~ '60 ~

similar variant of the ideal criterion-band decision' rule in
the present situation, then there should be an area of the
stimulus range in which violations of a cutoff point
decision rule are more frequent than in other areas; this
area would correspond to the criterion band. A

>- reasonable place to look for this band would be around
~ •40 i the ideal critical point as calculated from the simple
: 120 1 'l model, since in this region the likelihood ratio between
o ",,' '1 the two distributions is closest to 1.0, implying
~ .,' ;"'1 J maximum stimulus uncertainty. Of course, the ideal
~ 8:· ~..;JL,~'~ criterion band is centered about the ideal critical point
z. 60 ~ ~_;j-U "I and, in the RAN condition, is identical to it.

ao ~ :-r;~J L In order to investigate the above speculations, the
20 J

1
1--cJ -. '. .. . i ...~~ interval between 1,404.5 and 1,694.5 on the stimulus

o -L-.......,:.-........-..--,., "'.... -rr-...:,·:i.--'.r4~-;-+--continuum (a range of about 30) was divided into 29
-e- -:;::; ':;. :;. equal intervals, and the number of violations that
';; ~ ~:;:; $ occurred to stimulus values within each interval (and the

INTERVA, p.ou"rwl:ES regions on each end) was compiled separately for each S
and each condition. The overall result of this analysis is
displayed in the observed frequency distribution of
violations in Fig. 1. The expected distribution of
violations is calculated on the assumption that if
violations occurred at random over the range of stimulus
values, the probability of a violation in a particular
interval would be equal to the probability of a stimulus
occurrence in that interval. To get the expected
frequencies of violations, these probabilities were simply
multiplied by the overall frequency of violations
(2,150). The distributions displayed in Fig. 1 do not give
quite a veridical picture, since there were a number of
violations observed and expected beyond the region of
intensive analysis. In the region below 1,404.5, 49
violations were observed, while 208.98 were expected
there. In the roughly corresponding region above
1,694.5, 39 violations were observed, while 213.28
would have been expected if violations occurred at
random over the range of stimuli. The figures match the
relation in the tails of the two distributions in Fig. 1; in
general, fewer violations than expected occurred there.
However, in the middle of the range of stimulus values in
Fig. 1; centered roughly about the average critical point
of 1,555, there is a region in which the occurrence of
violations of the simple deterministic model is far more
frequent than expected. Because of these differences,
the observed distribution of violations is significantly
different from the expected distribution (X2 = 709.25,
df = 31). The shape of the observed distribution is
identical for each S in each condition, although, of
course, more variable. Especially interesting in this
connection is the observed distribution for the RAN
condition for those Ss who had that condition first, and
thus had not been exposed to sequential information at
the time they made their judgments in this condition.
The shape of that distribution is identical to the overall
distribution, and it, too, is statistically significantly
different from the expected distribution of violations
(x2 = 180.1,df=31).

These data are evidence for the use of a criterion-band
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APPENDIX

P(x I 2)
Q(x) = P(x I 1) ,

This appendix contains a brief discussion of the
performance of the ideal 0 in combining the two sources
of information used in the present study, distributional
information and sequential information. In what
follows, the ordinary simplifying assumptions of SDT
are made. In addition, only symmetric payoff matrices
and symmetric transition matrices of first-order
two-state Markov chains of stimulus presentations with
feedback are considered. Changes in these conditions
change the analysis somewhat and require somewhat
more general statements. However, the general ideas
presented remain valid with such changes.

In the simple SDT situation, the ideal 0 is assumed to
know or to calculate some monotonic function of the
likelihood ratio

where the value x is given rise to by a stimulus which
could have come from either of two probability
distributions. In the present case, x is given directly as a
number, and it could have been chosen from either of
two normal distributions (labeled I and 2) with 01 = 02

and fJ.l < fJ.2. A simple cutoff point decision rule is used,
so that the ideal 0

provided (e.g., Tanner, Rauk, & Atkinson, 1970).
Sandusky (1971) suggests that repetition of the
immediately previous correct response is the rule within
the criterion band in experiments of this type. This
suggestion is based on experiments in which the
probability of occurrence of stimuli was manipulated
(asymmetric transition matrices in Markov chains of
stimuli). This manipulation could lead to perception of
an overall lower than .5 probability of change of state
when one stimulus was more probable, and could give
rise to a tendency to repeat the immediately previous
correct response. An earlier study by Friedman and
Carterette (1964), in which several varieties of transition
matrices were used to generate Markov chains of
auditory stimuli for detection in noise with feedback,
lends credence to this view. Performance results in that
study were similar to those in the present study, and
analyses of sequential response dependencies in the data
indicated that Ss' decision behavior seemed to track the
sequential contingencies of the various transition
matrices used, including the asymmetric ones.

Thus, it seems that in many types of judgment
situations, Ss attempt to combine two sources of
information, using "general" or specific sequential
information to mediate uncertainty in areas where
stimulus information is ambiguous. They do not,
however, seem to combine the two sources optimally,
indicating either a general fixed response strategy or a
lack of ability to discriminate accurately the relative
usefulness of the two types of information. Which of
these is the case is an interesting question for further
investigation.

decision rule by the Ss in this experiment for all
conditions, regardless of the presence or absence. of
sequential information. We may even speculate about
the width of the criterion band from observing the width
of the sharp peak in the distribution of observed
violations in Fig. I. This peak is roughly five intervalf (or
50 numbers) wide; with 01 = 02 = 100, the av rage
criterion bandwidth in the present situation is abou 720.
This is quite different from the optimum bandwidt for
the present situation of 220 units, or 2.20 fo the
ALT and RUNS conditions and zero for the N
condition (see Appendix), and of course may not e the
bandwidth over all judgment situations. In fact'fince
bandwidth can be thought of as related to the re ative
weighting given sequential information, it may var in a
systematic way as the experimental parameter are
changed. For example, when bandwidths are estimated
separately for the three conditions of the pt,sent
experiment, the widest bandwidth is found in the UNS
condition (about .60), the next widest in the I RAN
condition (about .50), and the narrowest in the ALT
condition (about 040). This is exactly the order of
conditions when the distance of the average d' I from
the d' predicted by a fixed cutoff point decision rule is
considered. It could be speculated that sequential
information is most salient, and thus most heavily
weighted, when long runs of one stimulus or the other
occur. This was also found by Anderson (1960) for
two-choice learning situations. The fact that the d' in the
ALT condition is not significantly different from 1.0
may be due to relatively light use of sequential
information in that condition.

Although the criterion-band model of decision
behavior has been found useful in explaining data in
both "sensory" and "nonsensory" judgment situations,
there may be differences in Ss' decision behavior within
the criterion band depending on type and availability of
extradistributional information. For example, a recent
study by Sandusky (197 I) found better performance in
a no-feedback sensory detection situation when the
probability of change of state washigh (ALT) than when
it was low (RUNS). Sandusky's analysis indicated that
this relative response advantage was due to a tendency of
Ss over all conditions to alternate responses more often
than stimuli would alternate in a random sequence. In
the no-feedback experiment, sequential information,
even if present, is not available to the Ss with any
certainty, and Ss may attempt to use their general
"knowledge" about sequences to mediate their
uncertainty in the region of the criterion band. Several •
authors have reported that most people think that
random sequences have fewer and shorter runs than
they, in fact, do have (Baken, 1960; Chapanis, 1963;
Jenkins & Cunningham, 1949). This would explain the
tendency to alternate responses in no-feedback
experiments.

Just the opposite tendency seems to be operating in
some sensory detection experiments where feedback is
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11/. 1</
responds 121 wnen Q(x) I> I (3 = Q(xc ) .

where Xc is the cutoff point or criterion. In essence. the
likelihood ratio Q(x) is a measure of the relative
discriminability of the two distributions from one
another-the farther from 1.0 is Q(x), the more
discriminable are the distributions. Ideally, the response
chosen on every trial would be the one which asserted
that the distribution most likely to have given rise to a
particular X did, in fact, do so.

However, in the present situation,
likelihood ratios available on each
(redefined) ratio calculated from
probability distributions,

Q(x) =:i: :;~ for P(x Ii» P(x I j), i,j = 1,2,

and second,

• P(5" =5,,-1)

P(sn *" Sn-l)
Q'(x) =

P(sn *" Sn-l)

P(sn = Sn-l)

where P(sn =sn-l) {~} P(sn *" sn-l),

which is the same for all x and is calculated from the
probabilities of the (symmetrical) transition matrix of
the Markov chain of stimulus presentations.

The ideal 0, confronted with Q(x) and Q'(x), would
use whichever one gave the best discrirninability (i.e.,
value farthest from 1.0). For Q'(x) = k and Q(x)
calculated for x from two normal distributions with
equal variance and unequal means, there would be a
region of the stimulus continuum in which Q'(x) > Q(x),
and regions to either side of the points where Q'(x) =
Q(x) [Xci and x c u ] , in which Q(x) > Q'(x). The best
decision rule in this case would be

for x ~ XcI

respond 2 for x ;;;. xc u

R n for XcI < X < x c u

where

Thus, the region Xci < x < xc u is a criterion band,
outside of which responses are determined by
distributional information and inside of which sequential
information is used. Of course, where the probabilities in
the transition matrix of the Markov chain of stimulus
presentations are all .5 (the case of "random" stimulus
presentation order), Q'(x) would equal 1.0, and the
criterion band would be of zero width and would
correspond to the cutoff point in SDT.

For the present situation. the performance of the
ideal ° can be calculated quite easily. Since PI == P2 =.5
in the RAN condition. the criterion band has zero width
and the ideal cutoff point is 1.550. Maximum d' here is
1.0 over a large number of trials. For the AL T and
RUNS conditions. Q'(x) = .75/.25 = 3.0. The criterion
band extends from xci = 1.440 to xc u = 1.660 [at these
points Q(x) = 3.0]. a width of 220 numbers, or 2.20.
Maximum d' in these conditions over a large num ber of
trials is about 1.454 if the ideal decision rule described
above is used. This is calculated by weighting expected
P(HIT) and P(FA) for x inside and outside of the
criterion band by the relative proportion of observations
occurring overall in these regions (Wi and wo ) , i.e ..

P(HIT)T == wiP(HIT)i + woP(HIT)o'

P(FA)T = wiP(FA)i + woP(FA)o:

Wi+ wo=1.0.

The d' is then calculated from the composite hit and
false alarm rates.

REFERENCES

Anderson, N. H. Effect of lust-order conditional probability in a
two-choice learning situation. Journal of Experimental
Psychology, 1960.59.73-93.

Bakan, P. Response-tendencies in attempts to generate random
binary series. American Journal of Psychology. 1960. 73.
127-131.

Chapanis, A. Random number guessing behavior. American
Psychologist, 1953, 8, 332.

Friedman, M. P., & Carterette, E. C'. Detection of Markovian
sequences of signals. Journal of the Acoustical Society of
America, 1964,36,2334-2339.

Green, D. M., & Swets, J. A. Signal detection theory and
psychophysics. New York: Wiley, 1966.

Jenkins, W.O., & Cunningham. L. M. The guessing-sequence
hypothesis, the spread of effects, and number guessing habits.
Journal of Experimental Psychology. 1949,39, 158-169.

Kubovy, M., Rapoport, A., & Tversky, A. Deterministic vs
probabilistic strategies in detection. Perception &
Psychophysics, 1971,9,427-429.

Lee, W. Decision theory and human behavior. New York: Wiley,
1971.

Parducci, A., & Sandusky, A. Distribution and sequence effects
in judgment. Journal of Experimental Psychology, 1965, 69,
450-459.

Pollack, I. Discrimination of restrictions upon sequentially
encoded information: Variable length periodicities. Perception
& Psychophysics, 1971,9,321-326.

Sandusky, A. Signal recognition models compared for random
and Markov presentation sequences. Perception &
Psychophysics, 1971, 10,339-347.

Tanner, T. A., Rauk, J. A., & Atkinson, R. C. Signal recognition
as influenced by information feedback. Journal of
Mathematical Psychology, 1970, 7, 259-274.

Ward, L. M., & Lockhead, G. R. Response system processes in
absolute judgment. Perception & Psychophysics, 1971, 9,
73-78.

(Received for publication December 11, 1972;
revision received April 16, 1973.)


