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BACKGROUND: Nutritional metabolomics is rapidly evolv-
ing to integrate nutrition with complex metabolomics
data to discover new biomarkers of nutritional exposure
and status.

CONTENT: The purpose of this review is to provide a
broad overview of the measurement techniques, study
designs, and statistical approaches used in nutrition
metabolomics, as well as to describe the current knowl-
edge from epidemiologic studies identifying metabolite
profiles associated with the intake of individual nutrients,
foods, and dietary patterns.

SUMMARY: A wide range of technologies, databases, and
computational tools are available to integrate nutritional
metabolomics with dietary and phenotypic information.
Biomarkers identified with the use of high-throughput
metabolomics techniques include amino acids, acylcar-
nitines, carbohydrates, bile acids, purine and pyrimidine
metabolites, and lipid classes. The most extensively stud-
ied food groups include fruits, vegetables, meat, fish,
bread, whole grain cereals, nuts, wine, coffee, tea, cocoa,
and chocolate. We identified 16 studies that evaluated
metabolite signatures associated with dietary patterns.
Dietary patterns examined included vegetarian and lac-
tovegetarian diets, omnivorous diet, Western dietary pat-
terns, prudent dietary patterns, Nordic diet, and Medi-
terranean diet. Although many metabolite biomarkers of
individual foods and dietary patterns have been identi-
fied, those biomarkers may not be sensitive or specific to
dietary intakes. Some biomarkers represent short-term
intakes rather than long-term dietary habits. Nonethe-
less, nutritional metabolomics holds promise for the
development of a robust and unbiased strategy for mea-
suring diet. Still, this technology is intended to be com-
plementary, rather than a replacement, to traditional well-
validated dietary assessment methods such as food

frequency questionnaires that can measure usual diet, the
most relevant exposure in nutritional epidemiologic studies.
© 2017 American Association for Clinical Chemistry

Recent high-throughput technologic developments in
molecular biology, namely, genomics, transcriptomics,
proteomics, and metabolomics, are leading us toward a
new era in epidemiologic research. In the past few years,
the scientific community has focused on a more inte-
grated systems epidemiology approach, in which several
fields converge to integrate traditional knowledge with
novel -omics techniques (1 ). Nutritional epidemiology
has not been the exception, and several studies in this
field have incorporated -omics data in the past decade (1 ).
Along these lines, the concept of precision nutrition has
recently emerged (2) and refers to the integration of -omics
techniques to personalize diets based on individual genetic
makeup to achieve better prevention or management of dis-
ease. Among all the -omics, metabolomics plays a crucial role
in the field of nutrition because it is more time sensitive than
other -omics and can reflect the current biological status of
an individual (3). The human metabolome can be influ-
enced by several factors, such as age, diseases, drugs, envi-
ronment, genetic factors, lifestyle, and nutrition (3).

Metabolomics can provide a comprehensive picture
of overall dietary intake by measuring the full profile of
small molecule metabolites in biological samples such as
saliva, blood, and urine. Thus, it could help deepen our
knowledge of metabolic pathways relevant to human nu-
trition (3 ). Importantly, because nutritional epidemio-
logic studies frequently rely on self-reported dietary as-
sessment methods that are subject to recall bias and
measurement error and because objective biomarkers do
not exist for all nutrients and foods (4 ), metabolomics
can be a promising technique to objectively identify di-
etary biomarkers. Metabolite profiling accounts for in-
trinsic variability in metabolism by measuring down-
stream components or metabolic products of foods, and
might therefore accurately reflect true exposure as com-
pared with traditional methods that measure individual
food intake (5 ). Thereby, nutritional metabolomics, which
refers to the integration of metabolic profiling with nutri-
tion in complex biosystems, can be applied to discover new
biomarkers of nutritional exposure and status and can help
disentangle the molecular mechanisms by which diet affects
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health and disease. Diet can have effects on 2 different com-
ponents of the metabolome: the endogenous metabolome,
referring to all metabolites present in a biological sample of
the host, and the food metabolome, which includes metab-
olites that are derived from food consumption and their
subsequent metabolism in the human body (6). Food
metabolome not only includes metabolites of known micro-
and macronutrients but also nonnutrient food compounds
with biological roles yet to be elucidated.

To date, several studies have identified metabolomic
signatures associated with the intake of specific foods and
food groups, including fruits, vegetables, meat, fish, nuts,
whole-grain bread, wine, coffee, and cocoa (6 ). A grow-
ing body of evidence has also emerged relating metabolic
profiles with overall dietary patterns. Therefore, the pur-
pose of this review is 2-fold: (a) to provide a broad over-
view of the metabolite measurement techniques, study
designs, and statistical approaches used in nutrition
metabolomics studies, and (b) to describe the current
knowledge from epidemiologic studies identifying me-
tabolite profiles associated with the intake of individual
nutrients, foods, and dietary patterns.

Methods and Approaches in Studies of
Nutritional Metabolomics

MEASUREMENT OF METABOLITES

Metabolomics refers to the systematic analysis of low mo-
lecular weight biochemical compounds in a biological
sample. Urine, serum, and plasma samples are the most
common biofluids used in nutritional metabolomics stud-
ies. One of the major differences between urine and plasma
is that urine contains a higher concentration of nonmetabo-
lites and nonnutrient compounds (representing noncon-
tributory information or noise) that are derived from food
phytochemicals and other chemicals. However, most of the
metabolites in urine are excreted faster than those from
plasma and can serve as acute markers of frequently con-
sumed foods. For example, urine excretion of proline be-
taine is known to peak within a few hours after intake and be
almost completely excreted within 24 h (7). Blood, on the
other hand, contains a higher concentration of metaboli-
cally active compounds, and lipid-soluble metabolites are
present only in plasma, not in urine (3).

In general, 2 different metabolomics techniques
have been applied: (a) mass spectrometry coupled with
gas- or liquid-phase chromatography, and (b) proton
(1H) nuclear magnetic resonance (NMR)4 spectroscopy

(8 ). Other platforms, such as inductively coupled plasma
mass spectrometry, are also used to detect trace minerals
and other electrolytes in biological samples (9 ). Targeted
approaches that focus on a specific subset of predefined
metabolites, as well as more agnostic untargeted ap-
proaches that analyze many measurable compounds in
the sample, including chemical unknowns, have been
implemented (8 ). Although targeted approaches are usu-
ally less expensive and follow a hypothesis-driven ap-
proach of metabolites of known identity, untargeted
metabolomics detect thousands of unknown metabolites
that may provide novel information on biological path-
ways with clinical relevance. However, because of the
higher cost of the latter approach, the high density of the
data acquired, and the methods required for complex
statistical analysis, several epidemiological studies so far
have relied solely on targeted metabolite profiling. Hu-
man metabolic databases, such as the Human Metabo-
lome Database, can be a useful resource for nutritional
metabolomics. The Human Metabolome Database in-
cludes more than 6800 fully annotated metabolites, such
as metabolic intermediates, hormones, drugs, and food
components (10 ). Despite the existence of many metab-
olites, the nutrition community is particularly interested
in metabolic pathways in which nutrients are involved,
including carbohydrate, lipids, amino acids, and energy
metabolism pathways, along with mineral, trace ele-
ments, and vitamin metabolism pathways (3 ).

STUDY DESIGNS USED IN NUTRITIONAL METABOLOMICS

Intervention studies. Metabolomics can be used as a key
tool in the search for novel biomarkers of dietary intake.
Studies of nutritional metabolomics need to account for
intersubject metabolic variation and should be able to
deal with measurements of subtle metabolic modulations
against relatively low doses of bioactive food nutrients or
supplements (11 ). One method is to conduct controlled
dietary intervention trials; in acute feeding studies, par-
ticipants consume the food of interest in a single meal.
For short- to medium-term trials, participants typically
consume the food of interest in repeated meals over a
given period, ranging from a few days up to several
months. For this purpose, a crossover study design has
traditionally been favored over a parallel design because it
effectively deals with intersubject variation as each par-
ticipant serves as his or her own control. Biofluids can be
collected before and after the consumption of the food of
interest in acute studies; in short- and medium-term tri-
als, biofluids are usually collected at baseline and at the
end of the intervention period (6 ). Any biomarker iden-
tified in acute studies must ideally be validated with
longer intervention studies and replicated in different
populations. Given the need to detect accurate mea-
surements of dietary exposures, nutritional metabolo-

4 Nonstandard abbreviations: NMR, nuclear magnetic resonance; FFQ, food frequency
questionnaire; PCA, principal component analysis; PLS-DA, partial least-square discrim-
inant analysis; O-PLS-DA, orthogonal partial least-squares discriminant analysis; TMAO,
trimethylamine-N-oxide; EPIC, European Prospective Study into Cancer; BCAA,
branched-chain amino acids.
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mics can be a useful tool for identifying objective markers
of relatively short-term response to diet interventions, as
well as compliance with such dietary interventions. In
addition, well-conducted clinical trials are less prone to
confounding and measurement errors compared with
observational studies.

Observational studies. One of the advantages of nutri-
tional metabolomics studies is the possibility to identify a
wide range of dietary biomarkers instead of a single bio-
marker. Indeed, multimetabolite biomarker panels can
offer a better estimation than single biomarkers and in-
crease the accuracy and precision of dietary assessment
when combined with a food frequency questionnaire
(FFQ). In this context, observational studies with re-
peated measurements of diet over time, which provide
information of usual diet, play an important role. Epide-
miologic studies in this field compare low and high con-
sumers of nutrients/foods using FFQ, food records, and
other dietary assessment tools, and then characterize ob-
jective biomarkers that are reflective of habitual intake or
related to the intake of specific nutrients and food
groups. These studies can also be used to detect metabo-
lite signatures associated with overall dietary patterns. It
is important to note that many of the foods consumed are
highly correlated, and there is a risk of identifying bio-
markers that are not specific to the particular food of
interest (6 ). For example, vitamin C, several carotenoids,
and flavonoids are common to many fruit and vegetables;
therefore, they can be used as generic biomarkers of total
fruit and vegetable intake but not specific to individual
fruits or vegetables (12 ).

A number of these observational studies have ap-
plied cross-sectional designs comparing groups of partici-
pants at a single time point (i.e., consumers vs noncon-
sumers). Another possible approach to identify dietary
biomarkers through metabolomics is the study of longi-
tudinal variations in metabolite concentrations and their
associations with diet and particular health outcomes or
markers in population-based studies and clinical trials
(6 ). With these prospective designs, individuals or pop-
ulations exposed to different environments, lifestyles, or
dietary patterns can be distinguished and metabolic dif-
ferences can be identified.

Nevertheless, it is worth mentioning that most of the
observational studies in nutritional metabolomics have
small sample sizes and have not been replicated. One of
the reasons that may account for the lack of replication in
metabolomics studies is the fact that such analyses have
not yet been standardized and homogenized, especially
compared with genome-wide, large-scale studies (13 ).
Several differences across studies exist, including storage
of biological samples, different platforms for analyses of
specimens, quality control and data preparation, and rel-
ative vs absolute quantification of metabolites. There-

fore, there is an urgent need to evaluate metabolite sta-
bility and biological variability in large populations
before markers of food intake or dietary patterns can be
properly validated (13 ).

STATISTICAL APPROACHES

Analyses of high-throughput nutritional metabolomics
data require the use of advanced bioinformatics and
computational tools. Challenges with metabolomics
analyses include data preparation and normalization,
data reduction into fewer dimensions, and interpreta-
tion. In the section below, we briefly provide an over-
view of the statistical approaches commonly used in
nutritional metabolomics studies.

Data preparation. The first step in metabolomics analysis
is to prepare the metabolic profile of raw data generated
by the analysis of biological samples. Raw data undergo
data preprocessing, data alignment, data normalization,
and signal correction before application of statistical
methods (14 ). The first step is preprocessing; in mass
spectrometry, this step includes peak detection, peak
matching, retention time alignment, peak integration,
and peak filling (13 ). Data alignment consists of match-
ing peaks (m/z) and retention times to standards to align
the different sample profiles. Some software tools also
include gap filling, which checks raw data for any peak
that has not been detected in a sample but was found in
others. Quality control is also undertaken in this phase
with the use of repeatability filters (i.e., filtering out fea-
tures with coefficient of variation �30% or lower cut-
points for targeted biomarkers) (13 ). In most laborato-
ries, internal standards and pooled study samples are used
to standardize data across data sets. In NMR, preprocess-
ing needs to account for peak overlap and peak shift.
Binning (or grouping) of metabolite signals based on
correlation structure is commonly used to account for
peak shift (15 ). Peak fitting can address peak shifting and
overlap, but it is time consuming (16 ). Batch normaliza-
tion, scaling, and outlier removal are also important parts
of data preparation; normalization is used to account for
uncontrolled metabolome-wide effects like dilution.
Normalization is aimed to remove any unwanted varia-
tion in the spectrometric signal that cannot be controlled
for or removed in any other way (17 ). Annotation of
metabolites is usually the last step before applying statis-
tical analysis. Comparing peaks with standards, data-
bases, and commercial software is an important part of
the process to avoid “putative annotation” because each
feature could correspond to multiple metabolites. Al-
though these methods are generally applied to targeted
and untargeted data, identification of individual metab-
olite from untargeted peaks is challenging. Although on-
line databases of annotated metabolites are growing,
many unknown compounds still need to be identified.
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Missing values in metabolomics data sets occur
widely and can arise from different sources, including
technical and biological reasons. Several methods to deal
with missing data in metabolomics analysis have been
examined (18–21). In mass spectrometry data analysis, a
common approach is to remove from the analysis indi-
vidual metabolites when a large proportion of partici-
pants have missing values or to remove a participant with
many missing metabolites (21 ). Other standard methods
of missing value imputation include the replacement of
missing values with a nonzero value while maintaining
data structure (i.e., minimum value, mean, or median
value between 0 and the detection limit). Importantly,
results and interpretation of the data can vary depending
on the imputation method used (18 ). Other algorithms,
including K-nearest neighbors, Bayesian principal com-
ponent analysis (PCA), local least-squares regression, sin-
gular value decomposition, and random forest, can also
be used to impute missing data in metabolomics analysis
(19, 22 ). In a study comparing 5 different imputation
methods on unsupervised and supervised analyses, ran-
dom forest provided better classification rates for PCA
and partial least-squares discriminant analysis (PLS-DA)
(19 ). However, in a recent study comparing 7 imputa-
tion methods, no imputation method was perfect, but
the simple substitution methods (half minimum and
mean) consistently performed poorly (22 ).

Statistical methods to derive metabolomics fingerprints of
diet. To maximize the recovery of information and to
help in the interpretation of high-dimensional data sets,
advanced statistical and bioinformatics tools are applied
(11 ). Clustering methods are often used to reduce and
divide the data into groups with a high degree of similar-
ity (23 ). The most popular clustering techniques in nu-
tritional metabolomics include multivariate analysis such
as simple unsupervised clustering algorithms, PCA, and
supervised techniques like PLS-DA and its variant com-
bining a data-filtering step such as orthogonal signal cor-
rection and orthogonal partial least-squares discriminant
analysis (O-PLS-DA) (24 ). These techniques create sub-
groups of metabolites without a priori hypotheses of met-
abolic pathways or the association with dietary informa-
tion. Unsupervised PCA derives a linear transformation
that preserves as much of the variance in the original data
as possible while maximizing intergroup variation and
minimizing within-group variation. PLS-DA, on the
other hand, maximizes the covariance between scores in x
(predictor) and y (outcome) spaces, and it accounts for
both systematic variations in the metabolic profiles and
correlations between metabolomics data and the out-
come. Partial least-squares analysis is often used for dis-
criminant analysis to classify metabolic profiles according
to categories (i.e., dietary patterns) (13 ).

PCA is usually the starting point for an exploratory
analysis, as it allows visualization of biological sets based
on the resemblance of samples with respect to their bio-
chemical composition, as well as allowing the extraction
of information on factors contributing to the difference
among samples (25 ). PCA creates a reduction summary
of the data, which can be analyzed graphically using
scores plot and loading plots (11 ). PCA can facilitate the
comparison of many complex data such as biofluid spec-
tra and can provide information on metabolite changes.
This technique is particularly efficient for the identifica-
tion of outliers. Although PCA can help to reduce the
dimension of the data set, it does not give an insight of
the association between metabolite signatures and dietary
components. Other techniques such as correlations and
multivariate regression analyses are then applied to test
the associations between the factors extracted from PCA
with dietary patterns and food groups.

Supervised multivariate analyses are commonly used
in nutritional metabolomics. PLS-DA provides a way to
filter out metabolic information that is not correlated to
the predefined classes, whereas the PLS-DA loadings,
similarly to PCA loadings, yield information on which
spectral signals are associated with the observed cluster-
ing (11 ). The O-PLS-DA method is similar to PLS-DA,
but the interpretation of the models is improved because
the structured noise is modeled separately from the
variation common to the matrices. O-PLS-DA enables
a more straightforward and accurate interpretation of
metabolomics data (24 ). O-PLS-DA models the meta-
bolic profile that is linearly predictive of the dietary com-
ponent of an individual but also captures external factors
not linearly related to the outcome, such as age, sex, and
batch effects. These techniques are useful in exploring the
relation of any features in the metabolomics profiling
data set with an external variable (i.e., intake of a specific
food based on a questionnaire or any biological outcome
marker).

All these statistical methods require rigorous model
validation using cross-validation and permutation testing
[i.e., using a proportion of the data as the test set (usually
10%) and building the model in the remaining training
set] and ideally external validation in independent studies
to avoid false-positive discoveries and to ensure model
robustness (13 ). Moreover, as a comprehensive way of
interpreting the data, it is highly recommended to report
Bonferroni adjustment and false-positive discovery rate
procedures to account for multiple comparison testing, as
well as P values and CIs, effect size, and adjustment for
covariates (26 ).

Fig. 1 depicts an example of scores (A) and loading
plots (B) obtained from O-PLS-DA. Data in Fig. 1 are
hypothetical and used only for the purpose of illustrating
scores and loading plots. Fig. 1A could represent
O-PLS-DA of 1H NMR of urine data and dietary inter-
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ventions. Blue dots in the figure represent control diet,
and red triangles represent dietary pattern intervention.
Component 1 and component 2 are extracted from
O-PLS-DA analysis. Loading scatterplot (Fig. 1B) shows
the individual compounds.

Pathway analyses and other systems biology approaches. Be-
cause of the efforts to analyze complex genomic data and
their integration with bioinformatics in the past decades,
several metabolic databases, such as KEGG, MetaCyc,
and BiGG families, have been developed (27, 28 ). These
databases can help to elucidate underlying metabolic
pathways and integrate targeted and untargeted metabo-
lomics data. Semisupervised pathway analysis, such as the
web-based tool Metabolic Set Enrichment Analysis (29 )
(which includes �1000 predefined metabolite sets cov-
ering various metabolic pathways, biofluids, and tissue
locations), follows the principle of gene enrichment anal-
ysis to derive metabolic sets. These techniques, often used
for the prediction of health outcomes, can also be applied
to nutritional metabolomics to evaluate the associations
between these enriched metabolite sets and dietary pat-
terns. Agnostic network models are commonly used to
combine significant metabolites identified from the tar-
geted approach with the untargeted method to discover
and validate metabolomics signatures. Correlation net-
works, a systems biology tool that enables visualization of
the complex correlation structure between metabolites
and clinical parameters (30 ), can be combined with al-
gorithms for detecting active subnetworks to integrate
data into metabolic pathways. These software tools, al-
though not yet widely used in nutrition metabolomics,
can help in the understanding and visualization of meta-

bolic networks, as well as the description and prediction
of metabolic pathways, and also constitute an important
resource for nutrition research (25 ). Most of the statisti-
cal approaches that are currently used for genomics and
metabolomics data treatment can serve as a founda-
tion for nutritional studies, for which high-throughput
metabolomics data are becoming extensively available. A
schematic summary work flow of nutritional metabolo-
mics approaches is presented in Fig. 2.

Metabolomic Fingerprinting of Diet

Metabolomic techniques have been applied to several
clinical and population settings to characterize metabolic
effects of nutrients, foods, and dietary patterns. Biomark-
ers identified with the use of high-throughput metabolo-
mics (usually mass spectrometry and NMR) have been
measured in urine, plasma, and serum, and fall into dif-
ferent subclasses, including polar metabolites (amino ac-
ids, acylcarnitines, carbohydrates, bile acids, metabolites
from purine and pyrimidine) and apolar metabolites
(lipid classes). Briefly, most studies focused on the iden-
tification of dietary biomarkers of specific food and food
groups, whereas fewer identified biomarkers of single nu-
trients (6 ). The most extensively studied food groups
include fruits, vegetables, meat, fish, bread, whole-grain
cereals, nuts, wine, coffee, tea, cocoa, and chocolate (6 ).
The number of participants in these studies ranged from
4 to 500 participants, and a majority used a cross-
sectional study design to identify specific metabolites of a
food or food group differing between consumers and
nonconsumers (6 ).

Fig. 1. Example of scores (A) and loading plots (B) of O-PLS-DA.
Data in this figure are hypothetical and used for the only purpose of illustrating scores and loading plots. (A) could represent O-PLS-DA of 1H
NMR of urine data and dietary interventions. Blue dots represent control diet, and red triangles represent dietary pattern intervention.
Component 1 and component 2 are extracted from O-PLS-DA analysis. Loading scatterplot (B) shows the individual compounds.
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BIOMARKERS AND METABOLITES OF SINGLE NUTRIENTS

Several biomarkers of single nutrients including fiber and
protein intake have been identified. In a randomized in-
tervention study, concentrations of metabolite markers
2,6-dihydroxybenzoic acid and 2-aminophenol sulfate
increased after participants followed a high-fiber diet
(mean intake 48 g compared with the low-fiber group at
30.2 g) for 5 weeks (31 ). In another controlled interven-
tion study in which participants were randomized to a
high or low glycemic index diet for 6 months, hippuric
acid was correlated with dietary fiber intake (32 ). How-
ever, none of the biomarkers identified in the first study
were confirmed in the second. The lack of consistency
across studies may be explained because of differences in
study duration (5 weeks vs 6 months), interventions
(high-fiber diet in the first study consisted of oat bran, rye
bran, and sugar beet fiber incorporated into test food
products, whereas the intervention diets in the second
study were designed to achieve a difference of 15 glyce-
mic index points), or the age of participants (37–45 years

vs 30–70 years). This highlights the need to validate and
replicate biomarkers in different populations to identify
consistent biomarkers for the same nutrient.

In another crossover feeding trial of two 28-day diet
periods of high and low glycemic load diet, concen-
trations of kynurenate and trimethylamine-N-oxide
(TMAO) were found to be significantly higher after con-
sumption of a low glycemic load diet (33). A cross-sectional
analysis of 1003 participants from the Twins UK cohort
showed that protein intake was positively associated with
several plasma amino acids, including valine, phenylalanine,
and tyrosine, and inversely associated with glutamine (34).
In a randomized, crossover feeding study including 11 obese
nondiabetic participants, plasma concentrations of trypto-
phan, phenylalanine, and kynurenine were increased after a
high-fat meal with whey protein isolate (35).

METABOLOMIC FINGERPRINTS OF SPECIFIC FOOD GROUPS

Several studies have identified biomarkers of total poly-
phenol intake and polyphenols from specific food

Fig. 2. Work flow of nutritional metabolomics approaches.
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groups, including polyphenols from cocoa powder
(36–38), red wine and grape juice (39, 40 ), almond skin
(41 ), nuts (42 ), and orange juice (43 ). In the PRE-
DIMED study, a randomized, parallel, clinical trial for
primary prevention of cardiovascular disease, using an
untargeted metabolomics analysis of urine from 32 con-
sumers of cocoa-derived products and 32 controls, the
discriminant biomarkers of cocoa consumption were re-
lated to the metabolic pathways of theobromine and
polyphenols (38 ). In another study of 57 volunteers at
high cardiovascular risk, tartrate was associated with wine
polyphenol consumption (40 ). Hydroxyphenylvaleric,
hydroxyphenylpropionic, and hydroxyphenylacetic acids
were identified in human urine samples after the con-
sumption of flavan-3-ols from almond skin in an acute
feeding study (41 ). Betonicine, stachydrine, methyl glu-
copyranoside (� � �), dihydroferulic acid, and galacto-
nate were proposed as new metabolic signatures to
distinguish the intake of orange juice with different
polyphenol content in the BIONAOS study, which com-
pared a normal-polyphenol orange juice with a high-
polyphenol orange juice for 12 weeks in a randomized
parallel study (43 ). Moreover, a recent study evaluating
metabolic profiles in urine of 481 subjects from the Eu-
ropean Prospective Investigation into Cancer (EPIC) and
Nutrition cohort identified �80 polyphenol metabolites
associated with the consumption of 6 polyphenol-rich
foods (coffee, tea, red wine, citrus fruit, apples and pears,
and chocolate products) (44 ).

As extensively reviewed by Scalbert et al. (6 ), many
biomarkers identified using metabolomics were associ-
ated with the consumption of fruits, vegetables, and spe-
cific markers of citrus fruit and cruciferous vegetables. As
an example, proline and betaine were identified as bio-
markers of citrus intake in an acute feeding study of 8
participants and then validated with 499 participants
from INTERMAP (7 ) and another cross-sectional
study (45 ). At the same time, urine concentrations of
S-methyl-L-cysteine sulfoxide were found to be related to
the intake of cruciferous vegetables in a short-term inter-
vention study that included 20 healthy men who con-
sumed 250 g/day of cruciferous vegetables (broccoli and
Brussels sprouts) for 14 days (46 ). Metabolite biomark-
ers of tomato sauce consumption have also been charac-
terized (47 ). Specifically, serum concentrations of crea-
tine, creatinine, leucine, choline, methionine, and acetate
were found to be increased after a 4-week intervention
with 160 g/day of high-lycopene tomato sauce, and
ascorbic acid, lactate, pyruvate, isoleucine, and alanine
were increased after the intervention with 160 g/day of
normal-lycopene content tomato sauce (47 ).

Potential markers of nut intake identified in inter-
vention studies ranging from 12 weeks to 6 months
(42, 48, 49 ) include conjugated fatty acids, serotonin
metabolites, and microbial-derived phenolic metabolites.

In the PREDIMED study, walnut consumption was
characterized by the presence of 18 urinary metabolites,
including markers of fatty acid metabolism, ellagitannin-
derived microbial compounds, and intermediate metab-
olites of the tryptophan/serotonin pathway (38 ).

Metabolomics fingerprints of beverage consump-
tion have been extensively examined as well. Coffee has
been reported to be positively associated with specific
classes of sphingomyelins and negatively associated with
long- and medium-chain acylcarnitines (50 ). In a case–
cohort study of type 2 diabetes incidence including 1610
EPIC-Potsdam participants, in which 163 metabolites
were targeted, coffee consumption was inversely associ-
ated with diacylphosphatidylcholine C32:1 in both
men and women and phenylalanine in men, whereas in
women, coffee intake was positively associated with acyl-
alkyl-phosphatidylcholines C34:3, C40:6, and C42:5
(51 ). Other confirmed metabolite markers of coffee ex-
posure included methylxanthines and reduced, sulfated,
and methylated forms of hydroxycinnamates (52–54),
which are coffee-derived metabolites. Recently, among
participants of a 3-stage coffee trial in which 47 partici-
pants refrained from drinking coffee in the first month,
consumed 4 cups of filtered coffee per day in the second
month, and 8 cups of coffee per day in the third month,
115 plasma metabolites, evaluated with a nontargeted
metabolomic profiling approach, were significantly asso-
ciated with coffee intake (55 ). Five metabolic pathways
were significantly enriched: (a) xanthine metabolism,
which includes caffeine metabolites, (b) benzoate metab-
olism that reflects polyphenol metabolite products of
gut-microbiota metabolism, (c) steroid, which is novel
but may reflect sterol content of coffee, (d) fatty acid
metabolism (acyl choline), a novel link to coffee; and (e)
endocannabinoid, a novel link to coffee (55 ).

Metabolites linked with carnitine metabolism and
sulfation of tyrosine are among the set of metabolites
linked to cocoa intake (37, 38 ). Findings from the Ath-
erosclerosis Risk in Communities study suggested that
sugar-rich foods and beverages were inversely associated
with 5 metabolites in the 2-hydroxybutyrate-related sub-
pathway and 7 unsaturated long-chain fatty acids, and
positively associated with 5-�-glutamyl dipeptides (56 ).
Hippuric acid, previously identified as a marker of fiber
intake (32 ), has also been identified as a marker of tea
consumption, especially green and black tea, in several
intervention and cross-sectional studies (48, 57, 58 ).
The nonspecificity of the biomarkers to 1 specific food
highlights the limitation of using nutritional metabolo-
mics for the characterization of markers of food intake.
As another illustration, hydroxytyrosol, which is a minor
dopamine metabolite that derives from oleuropein, is a
well-established biomarker of olive oil consumption
(59 ). Plasma and urinary hydroxytyrosol levels have been
shown to increase in a dose-dependent manner with the
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phenolic content of food (i.e., olive oil) (60 ). However,
recently, findings from the PREDIMED study have re-
vealed a direct association between red wine consump-
tion and urinary hydroxytyrosol, independent of the
amount of olive oil consumed (59 ). Thus, hydroxyty-
rosol cannot be considered a specific biomarker, as
it cannot differentiate between olive oil and red wine
consumption.

In a randomized, crossover, feeding study of 19 post-
menopausal women comparing the intake of refined
wheat, whole-meal rye, and refined rye breads providing
50 g of carbohydrates, and in which 189 metabolites were
targeted, 8 amino acids (leucine, isoleucine, citrulline,
ornithine, proline, asparagine, methionine, and lysine)
were significantly influenced by intervention (P � 0.01).
Branched-chain amino acids (BCAA) were higher after
refined wheat bread consumption compared with the
other breads at 45 and 60 min (61 ). Other metabolites,
including 3-(3,5-dihydroxyphenyl)-1-propanoic acid
sulfate, enterolactone glucuronide, azelaic acid, and
2-aminophenol sulfate, have also been detected as mark-
ers of whole-grain rye bread intake (62 ). Finally, a tar-
geted metabolomics study of �300 lipid metabolites
suggested that lysophosphatidylcholine, lyso-platelet-
activating factor, and several phospholipid fatty acids
were associated with consumption of full-fat dairy prod-
ucts (63 ). In addition, a recent 24-week energy-restricted
intervention study with low [0–1 dairy products/day
(�600 mg calcium/day)] or high [4–5 dairy products/
day (approximately 1200 mg calcium/day)] dairy intake
showed that high dairy consumption increased urinary
citrate and creatinine and decreased the urinary excretion
of TMAO and hippurate (64 ).

METABOLOMICS SIGNATURES OF DIETARY PATTERNS

Several studies have evaluated metabolite profiles related
to overall dietary patterns. We searched PubMed for
studies published in English from database inception to
April 2017 using the search terms {[“metabolomics”
(MeSH Terms) OR “metabolomics” (All Fields)] OR
[metabolite (All Fields)] AND profiling (All Fields)]}
AND {[“diet” (MeSH Terms) OR “diet” (All Fields) OR
“dietary” (All Fields)] AND [pattern (All Fields)] OR
[“diet therapy” (MeSH Terms)] OR [“diet” (All Fields)
AND “therapy” (All Fields)] OR “diet therapy” (All
Fields) OR [“dietary” (All Fields) AND “intervention”
(All Fields)] OR “dietary intervention” (All Fields)}
NOT [“review” (Publication Type) OR “review litera-
ture as topic” (MeSH Terms) OR “review” (All Fields)]
AND “humans” (MeSH Terms). We excluded nonhu-
man studies, studies in children, reviews, and commen-
tary articles. We further excluded studies focusing on
dietary supplementation and single foods because of a
recent comprehensive review by Scalbert et al. (6 ) on
metabolomics studies on food groups. After exclusions,

the search identified 130 studies, of which 16 (summa-
rized in Table 1) evaluated biomarkers of dietary patterns
or dietary interventions using metabolomics profiling.

Most studies included healthy participants and ap-
plied mass spectrometry or NMR in blood and urine to
extract metabolite profiles. Nine articles included cross-
sectional analyses discriminating consumers from non-
consumers of specific dietary patterns. Nine studies were
intervention studies that evaluated the effect of overall
dietary patterns on metabolic profiles. Several dietary
patterns have been studied in the context of nutrition
metabolomics, including vegetarian and lactovegetarian
diets, omnivorous diet, Western dietary patterns, pru-
dent dietary patterns, Nordic diet, and Mediterranean
diet.

Using a cross-sectional study design, Bouchard-
Mercier et al. investigated the associations between di-
etary patterns and metabolic profiles (65 ). In a targeted
mass spectrometry analysis of 14 amino acids and 41
acylcarnitines, a PCA-derived Western dietary pattern
was associated with a metabolite signature characterized
by high levels of BCAA (leucine), aromatic amino acids
(phenylalanine), and short-chain acylcarnitines (65 ). In
another cross-sectional analysis of 2380 EPIC-Potsdam
participants (127 serum metabolites were analyzed using
mass spectrometry), a dietary pattern characterized by
high intakes of red meat and fish and low intakes of
whole-grain bread and tea was directly related to high
plasma levels of hexose and phosphatidylcholines (66 ). A
pattern consisting of high intake of potatoes, dairy prod-
ucts, and cornflakes was associated with higher methi-
onine and BCAA concentrations (66 ). Another cross-
sectional study of women from the Twins UK cohort,
characterized by metabolites associated with several
nutritional scores, including fruit and vegetable in-
take, high alcohol intake, low meat intake pattern,
hypocaloric dieting, and traditional English diet;
phosphatidylcholine-dyacil C38:6 and acylcarnitine
C9 were significantly and positively associated with
hypocaloric dieting (34 ).

Another interesting study aimed to investigate the
differences in concentrations of 118 circulating metabo-
lites between male meat eaters, fish eaters, vegetarians,
and vegans was conducted in the Oxford EPIC cohort.
The study found that concentrations of 79% of metabo-
lites differed significantly by diet groups. Concentrations
of acylcarnitines, C-0, C-4, and C-5 were highest among
meat eaters, followed by fish eaters, vegetarians, and veg-
ans. At the same time, concentrations of acylcarnitines,
C-3 and C-16, 61 glycerophospholipids, and 12 sphin-
golipids were highest among meat eaters and lowest
among vegans. In contrast, fish eaters and vegetarians had
the highest concentrations of amino acids (such as leu-
cine, valine, lysine, methionine, tryptophan, and ty-
rosine) and biogenic amines (67 ).
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ió

n
co

n
DI

et
a

M
ED

ite
rrá
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Recently, Playdon et al. (58 ) identified metabolo-
mic fingerprints of diet quality [evaluated using different
dietary scores (Healthy Eating Index-2010, Alternate
Mediterranean Diet Score, WHO Healthy Dietary Indi-
cator, and Baltic Sea Diet)] in healthy male smokers from
5 nested case–control studies of the Alpha-Tocopherol,
Beta-Carotene Cancer Prevention study. Healthy Eating
Index-2010 was associated with 17 identifiable chemical
structure metabolites: 3 amino acids, 2 cofactors or vita-
mins, 9 lipids, and 3 exogenous xenobiotics. Alternate
Mediterranean Diet Score was associated with 21 identi-
fiable metabolites: 4 amino acids, 1 carbohydrate, 2 co-
factors or vitamins, 11 lipids, and 3 xenobiotics. WHO
Healthy Dietary Indicator was associated with 11 metab-
olites: 3 amino acids, 2 cofactors or vitamins, 4 lipids, and
2 xenobiotics. Baltic Sea Diet associated with 10 metab-
olites: 2 amino acids, 1 carbohydrate, 3 cofactors or vita-
mins, and 4 lipids. The lysolipid pathway contained the
largest number of metabolites associated with diet quality
(68 ).

Several randomized intervention trials evaluated the
effect of dietary interventions on metabolic profiles; how-
ever, most of these studies had small samples sizes and
short follow-up periods (Table 1). The effect of a Medi-
terranean diet intervention on the urinary metabolome
was assessed in the PREDIMED trial by comparing a
subsample of nondiabetic subjects at 1 and 3 years of
follow-up (69 ). Findings from this study showed that the
most relevant metabolic signatures related to a Mediter-
ranean diet intervention were metabolites of carbohy-
drate pathways (3-hydroxybutyrate, citrate, and cis-
aconitate), creatine, creatinine, amino acids (proline,
N-acetylglutamine, glycine, BCAA, and derived metab-
olites), lipids (oleic and suberic acids), and microbial co-
metabolites (phenylacetylglutamine and p-cresol) (69 ).

The RESMENA study was an intervention study
that included 72 subjects with metabolic syndrome fea-
tures who consumed either an energy-restricted Mediter-
ranean diet or an energy-restricted control diet (low fat)
for 6 months (70 ). Metabolomics in plasma samples
showed that the Mediterranean diet intervention resulted
in significant changes in the metabolic profile at 2
months (mainly phospholipids and lysophospholipids),
but differences were attenuated at 6 months (70 ).

Garcia-Perez et al. published the findings of a con-
trolled, crossover, feeding study of 19 healthy partici-
pants who followed 4 different diets for 72 h separated by
5 days (71 ). The 4 diets differed in compliance to the
WHO healthy eating guidelines: decreased sugar, salt,
and total fat consumption and increased intake of whole
grains, fruits, vegetables, and dietary fiber. Diet 1 was the
most concordant with the guidelines and diet 4, the least
concordant. The authors noted that 19 urinary metabo-
lites were significantly increased after consumption of
diet 1 compared with diet 4. Specifically, diet 1 resulted

in higher concentration of urinary biomarkers from in-
dividual healthy foods like hippurate (marker of fruit
and vegetable consumption), (N-acetyl-)S-methyl-L-
cysteine-sulfoxide (cruciferous vegetables), dimethyl-
amine and TMAO (fish), and 1-methylhistidine and
3-methylhistidine (oily fish and chicken). On the con-
trary, diet 4 was associated with higher concentration of 9
urinary metabolites, related to higher amounts of red
meat (O-acetylcarnitine, carnitine, and creatine) and sug-
ars (glucose) (71 ).

DIETARY BIOMARKERS DERIVED FROM GUT MICROBIOTA

METABOLISM OF DIETARY COMPONENTS

Microbial species in human gut can directly deliver com-
pounds from their metabolome, which are absorbed
and contribute to human metabolism (such as amino
acids, bile acids, short-chain fatty acids, vitamins, and
energy substrates) (3 ). On the other hand, the gut
microbiota can change constituents in food and make
them available to themselves or the host for additional
metabolism (3 ).

A number of metabolites that are related to diet and
can be metabolized by gut microbiota have been identi-
fied. For example, microbial enzymes can hydrolyze soy
isoflavones and release several metabolites, including
aglycons, daidzein, genistein, and glycetin (3 ). The gut
microbiota can also transform polyphenols to phenolic
breakdown products, including benzoate and various de-
rivatives of hydroxyphenylacetic and hydropropionic ac-
ids (3 ). In a randomized, parallel, controlled study
designed to compare a high-soy diet [104 (24) mg total
isoflavones/day] with a low-soy diet [0.54 (0.58) mg
total isoflavones/day] in 76 healthy young adults fol-
lowed for 10 weeks, concentrations of isoflavones and
their gut flora metabolites in plasma, urine, and feces
were significantly increased in participants who con-
sumed the high-soy diet. Fecal �-glucosidase activity
was significantly higher in the subjects who consumed
the high-soy diet than in those who consumed the
low-soy diet (72 ).

Some of the most studied gut microbiota-dependent
metabolites are those related to TMAO and its precursors
choline and carnitine. Foods such as meat and meat prod-
ucts, egg yolks, and high-fat dairy products, which are
high in phosphatidylcholine, choline, carnitine, and
trimethylamine (TMA), serve as precursors to TMAO
(73 ). TMAO has been found to be a potential biomarker
of meat intake, but it has also been reported as a bio-
marker of fish and seafood intake, and more recently, it
has been reported to be related to plant foods like soy-
beans (71, 74, 75 ). Although certain microbial metabo-
lites can be putative food biomarkers, there is a complex
relation between the food sources, gut microbiota, and
the food metabolites derived; thus, these biomarkers
should be interpreted with caution.
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Application of Metabolomics in the Field of
Nutritional Epidemiology

Widely used dietary assessment methods such as diet re-
cords and FFQ have been instrumental in their ability to
measure diet in large populations and in examining the
role of diet in human health (4 ). Because diet represents
a complex set of exposures that are intercorrelated, and
because foods are mixtures of known and unknown con-
stituents, assessing dietary intakes in the context of rela-
tively large within-individual variations is an ongoing
challenge in nutritional epidemiology (76 ). The integra-
tion of metabolomics into traditional nutritional epide-
miology can, to some extent, overcome the limitations of
traditional dietary assessment methods and can provide
important insights into mechanistic pathways. In Table
2, we briefly summarize and compare traditional dietary
assessment methods with biomarkers of dietary intake.
Traditional assessment methods are noninvasive and
have the advantage of providing useful information on
long-term dietary intake (FFQs and multiple-week diet
records). FFQs are easy to administer with a low respon-
dent burden; multiple-week records provide open-ended
dietary data and do not rely on memory (4 ). Neverthe-
less, they are subject to some biases, such as recall errors,
health consciousness bias, and errors in nutrient estima-
tion from food composition diets. On the other hand,

objective biomarkers, usually measured in serum,
plasma, and urine, can objectively assess dietary intakes,
represent the true “bioavailable” dose, and can serve as
validation markers of other assessment methods. How-
ever, they may not be sensitive to intakes, can have low
specificity, and are not available for many nutrients and
foods. In addition, they are expensive, more invasive, and
are subject to laboratory errors (4 ). Some examples of
these biomarkers include urinary nitrogen for protein
intake, 24-h urinary potassium and sodium, doubly la-
beled water for energy intake, plasma vitamin D, serum
and plasma folate, essential fatty acids and other vita-
mins, trace minerals, and metabolite biomarkers.

Nutritional metabolomics holds considerable prom-
ise for the development of a more robust and unbiased
strategy for measuring diet. However, there are impor-
tant issues to consider. Certain metabolites have a short
half-life and may, therefore, not represent usual intake,
which is the most relevant exposure in nutritional epide-
miology. Of note, a single measurement of metabolites is
not sufficient to represent usual intake. For a metabolite
to be a valid biomarker of dietary intake, it needs to be
sensitive to intake and should be relatively easy to mea-
sure in biofluids.

So far, an extensive list of potential biomarkers re-
lated to the intake of nutrients, foods, and diets has been
revealed by metabolomics. Compared with single bio-

Table 2. Comparison of traditional dietary assessment methods and biomarkers.

Self-reported measures of diet Objective measures of diet

Validated FFQ Multiple-week diet records
Biomarkers identified through metabolomics

approaches

Provides information on usual long-
term intake

Detailed dietary data that do not
rely on memory

Objective assessment of intake and
represents bioavailable dose

Estimating and recall errors Errors from incorrect estimate of
portion size and omission of
foods

Subject to laboratory errors

Easily administered and low
respondent burden

Participant burden is high Can be measured in stored biospecimens

Least expensive method and
noninvasive

Noninvasive but expensive Expensive and more invasive

Can assess usual dietary intake Can assess usual dietary intake if
measured multiple times over
the course of a year

May not be time-integrated or represent
usual long-term intake; may not be
sensitive or specific to intakes

Health consciousness bias Health consciousness bias Not applicable

Errors in nutrition estimation from food
composition tables

Errors in nutrition estimation
from food composition tables

Biomarkers are not available for many
nutrients and most foods

Culture and population specific Needs literate and motivated
participants

Biomarker variations may exist between
cultures and populations

Association analyses in large
epidemiologic studies

Validation of other methods and
assess compliance

Can be used to assess associations in
cohort or nested case–control studies

Adapted with permission from Satija et al. (4 ).
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markers of food consumption, nutritional metabolomics
is contributing to the discovery of biomarker patterns.
Metabolomics can also generate biomarker patterns to
evaluate the efficacy of nutritional interventions for
maintaining and improving health at the individual level.
However, it is unlikely that metabolomics biomarkers
will replace traditional dietary assessments using self-
reported methods because for most foods and nutrients,
sensitive and specific biomarkers are not available or have
not yet been identified. In addition, metabolomics assays
are expensive, rendering them infeasible to assess dietary
habits among hundreds and thousands of participants in
large cohort studies. Therefore, biomarkers identified
from metabolomics and traditional self-reported meth-
ods such as validated FFQs should be used in a comple-
mentary fashion. In the future, reproducible metabolo-
mics biomarkers may be used to validate self-reported
measurements of dietary intake, calibrate estimates of di-
etary intake, identify novel biomarkers of food consump-
tion, and provide objective biomarkers of adherence
to dietary interventions and dietary patterns. However,
more efforts are needed to develop, validate, and fine-
tune assessment methods that can capture the multidi-
mensional nature of diet.

From the standpoint of public health, the incorpo-
ration of nutritional metabolomics into traditional nutri-
tional epidemiology can help to identify subgroups that
differ in their response to specific dietary components so
that interventions can be tailored to those who will ben-
efit the most, reducing the cost and side effects for those
who will not (77 ). However, before nutritional metabo-
lomics can have a real impact on public health, there is an
urgent need to establish reference intervals based on ab-
solute metabolite concentrations in defined human bio-
fluids, improve the specificity of metabolite biomarkers
of certain foods, and to conduct studies with adequate

statistical power with independent replications in diverse
cohorts while considering ethnic and regional differences.

Finally, because recent metabolomics efforts have
focused on the analysis of known metabolites, current
efforts to characterize unknowns may enable more com-
prehensive investigations and the discovery of novel met-
abolic pathways. The field of nutritional epidemiology
will greatly benefit from the integration of other -omics
technologies, such as genomics, proteomics, epigenom-
ics, and metagenomics. Global initiatives are needed to
standardized data collection and analytic methods for
metabolomics in human nutrition (3 ) and to create con-
sortia of metabolomics studies including well-assessed di-
etary data across diverse populations in the world.
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nahones FJ, Andres-Lacueva C. Plasma metabolomic
biomarkers of mixed nuts exposure inversely correlate
with severity of metabolic syndrome. Mol Nutr Food
Res 2015;59:2480 –90.

50. Altmaier E, Kastenmüller G, Römisch-Margl W, Thorand
B, Weinberger KM, Adamski J, et al. Variation in the
human lipidome associated with coffee consumption
as revealed by quantitative targeted metabolomics.
Mol Nutr Food Res 2009;53:1357– 65.

51. Jacobs S, Kröger J, Floegel A, Boeing H, Drogan D, Pis-
chon T, et al. Evaluation of various biomarkers as
potential mediators of the association between coffee
consumption and incident type 2 diabetes in the EPIC-
Potsdam Study. Am J Clin Nutr 2014;100:891–900.

52. Stalmach A, Mullen W, Barron D, Uchida K, Yokota T,
Cavin C, et al. Metabolite profiling of hydroxycin-
namate derivatives in plasma and urine after the inges-
tion of coffee by humans: identification of biomarkers
of coffee consumption. Drug Metab Dispos 2009;37:
1749 –58.

53. Redeuil K, Smarrito-Menozzi C, Guy P, Rezzi S, Dionisi
F, Williamson G, et al. Identification of novel circulating
coffee metabolites in human plasma by liquid
chromatography-mass spectrometry. J Chromatogr A
2011;1218:4678 – 88.

54. Nagy K, Redeuil K, Williamson G, Rezzi S, Dionisi F,
Longet K, et al. First identification of dimethoxycin-
namic acids in human plasma after coffee intake by liq-
uid chromatography-mass spectrometry. J Chromatogr
A 2011;1218:491–7.

55. Cornelis M, Erlund I, Herder C, Westerhuis J,
Tuomilehto J. Metabolomics of coffee consumption.
FASEB J 2017;31 Suppl: 42.1.

56. Zheng Y, Yu B, Alexander D, Steffen LM, Boerwinkle E.
Human metabolome associates with dietary intake
habits among African Americans in the Atherosclerosis
Risk in Communities study. Am J Epidemiol 2014;179:
1424 –33.

57. Van Dorsten FA, Daykin CA, Mulder TPJ, Van Duyn-
hoven JPM. Metabonomics approach to determine
metabolic differences between green tea and black tea
consumption. J Agric Food Chem 2006;54:6929 –38.

58. Law WS, Huang PY, Ong ES, Ong CN, Li SFY, Pasikanti
KK, Chan ECY. Metabonomics investigation of human
urine after ingestion of green tea with gas chromatog-
raphy/mass spectrometry, liquid chromatography/
mass spectrometry and 1H NMR spectroscopy. Rapid
Commun Mass Spectrom 2008;22:2436 – 46.

59. Schröder H, de la Torre R, Estruch R, Corella D, Martı́nez-
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