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Abstract 

Background: A host can adopt two response strategies to infection: resistance (reduce pathogen load) and toler-

ance (minimize impact of infection on performance). Both strategies may be under genetic control and could thus be 

targeted for genetic improvement. Although there is evidence that supports a genetic basis for resistance to porcine 

reproductive and respiratory syndrome (PRRS), it is not known whether pigs also differ genetically in tolerance. We 

determined to what extent pigs that have been shown to vary genetically in resistance to PRRS also exhibit genetic 

variation in tolerance. Multi-trait linear mixed models and random regression sire models were fitted to PRRS Host 

Genetics Consortium data from 1320 weaned pigs (offspring of 54 sires) that were experimentally infected with a viru-

lent strain of PRRS virus to obtain genetic parameter estimates for resistance and tolerance. Resistance was defined as 

the inverse of within-host viral load (VL) from 0 to 21  (VL21) or 0 to 42  (VL42) days post-infection and tolerance as the 

slope of the reaction-norm of average daily gain  (ADG21,  ADG42) on  VL21 or  VL42.

Results: Multi-trait analysis of ADG associated with either low or high VL was not indicative of genetic variation in 

tolerance. Similarly, random regression models for  ADG21 and  ADG42 with a tolerance slope fitted for each sire did 

not result in a better fit to the data than a model without genetic variation in tolerance. However, the distribution of 

data around average VL suggested possible confounding between level and slope estimates of the regression lines. 

Augmenting the data with simulated growth rates of non-infected half-sibs  (ADG0) helped resolve this statistical 

confounding and indicated that genetic variation in tolerance to PRRS may exist if genetic correlations between  ADG0 

and  ADG21 or  ADG42 are low to moderate.

Conclusions: Evidence for genetic variation in tolerance of pigs to PRRS was weak when based on data from infected 

piglets only. However, simulations indicated that genetic variance in tolerance may exist and could be detected if 

comparable data on uninfected relatives were available. In conclusion, of the two defense strategies, genetics of toler-

ance is more difficult to elucidate than genetics of resistance.
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Background
Infectious challenges in domestic livestock do not only 

raise health and welfare concerns, but also have detri-

mental effects on livestock production. The impact of 

infections on an animal’s productive performance is con-

trolled by two alternative (albeit not mutually exclusive) 

host traits that may be amenable to genetic improve-

ment: resistance and tolerance. Resistance is defined as 

the ability of a host to prevent pathogen entry or inhibit 

replication of the pathogen, whereas tolerance refers 

to the ability of a host to limit the impact of infection 

on health or performance without interfering with the 

pathogen life-cycle per se [1]. Thus, animals with greater 

resistance are expected to harbor fewer pathogens that 

can lead to loss in performance. In contrast, animals with 

greater tolerance may harbor a high within-host patho-

gen load but are able to prevent or repair the damage of 

infection on health and performance [2, 3]. To date, most 

efforts to control infectious disease have targeted pri-

marily improvement of host resistance. More recently, 

the focus has expanded towards boosting host tolerance 

as an alternative means to counteract the detrimental 

impact of infection on health and performance [4, 5]. 

However, little is known about the extent to which toler-

ance is genetically controlled and thus suitable for genetic 

improvement.

Porcine reproductive and respiratory syndrome (PRRS) 

is an endemic virus, which causes one of the most devas-

tating swine diseases worldwide. PRRS causes considera-

ble reduction in the growth rate of piglets, with estimates 

ranging from 10 to 20%, depending on pig breed and 

virus strain [6], and results in production losses amount-

ing to an annual cost of $493.57 million to the U.S. swine 

industry alone [7]. Since vaccination has been largely 

unsuccessful [8], genetic solutions to PRRS have gained 

increased attention [9–11]. Recent large-scale PRRSV 

challenge studies carried out by the PRRS Host Genet-

ics Consortium (PHGC) have demonstrated consider-

able genetic variation in resistance of pigs to PRRSV 

(virus) infection, as well as in weight gain of infected 

piglets [10, 12, 13]. Furthermore, genetic correlations 

between resistance and weight gain were shown to be 

positive and strong (ranging from 0.57 to 0.75 for two 

different PRRSV strains) [10], indicating that selection 

for improved resistance is expected to simultaneously 

improve growth under infection and vice versa. However, 

it is not currently known whether pigs also differ geneti-

cally in their tolerance to PRRSV infection, or whether 

pigs with greater genetic resistance to PRRSV are also 

genetically more tolerant to PRRS.

Resistance can be measured as the inverse of within-

host pathogen load, whereas tolerance is related to the 

degree to which performance is reduced by infectious 

pathogens. Tolerance is mathematically defined as a 

reaction-norm of performance with respect to pathogen 

load [2, 14]. Assuming a linear relationship, reaction-

norms can be modelled by a linear regression of perfor-

mance against pathogen load, where the regression slope 

provides a measure of tolerance (Fig.  1). Thus, a slope 

of 0 indicates complete tolerance, while a more nega-

tive slope indicates lower tolerance. Statistically signifi-

cant differences in reaction-norm slopes associated with, 

e.g., different breeds or families are indicative of genetic 

variation in tolerance. For outbred populations, tolerance 

slopes for groups of related individuals can be estimated 

by random regression models, which provide estimates 

for genetic variance of tolerance and for genetic vari-

ance in host performance as a function of pathogen load 

when combined with pedigree or genomic information 

[15]. However, due to the large amount of data required 

to obtain unbiased variance estimates for reaction norm 

slopes [15–17], very few studies have applied this meth-

odology to gain insight into the genetic basis of tolerance 

in outbred populations [18]. The PRRS Host Genetics 

Consortium (PHGC) data, which provide simultaneous 

measures of growth and viral load for over 1500 pedi-

greed pigs infected with the same PRRS virus load offer 

a unique opportunity to estimate genetic parameters for 

tolerance.

The main aim of this study was to determine whether 

pigs that were previously found to differ genetically in 

resistance to a virulent strain of PRRSV also differ geneti-

cally in tolerance. Furthermore, by augmenting the data 

with simulated data, novel insights into data require-

ments to accurately estimate genetic variance in toler-

ance using random regression models were obtained.

Methods
Infection experiment and data

Data were provided by the PRRS Host Genetics Con-

sortium (PHGC) from nine different PRRSV challenge 

trials with an identical infection protocol [9, 10], which 

included 1569 pigs supplied by various commercial 

breeding companies, as outlined in Table 1.

All experimental protocols for these trials were 

approved by the Kansas State University Institutional 

Animal Care and Use Committee. In each trial, approxi-

mately 200 commercial crossbred piglets were trans-

ferred from high health farms at weaning age (mean 

age = 26 days, range = 17 to 32 days) to a research facil-

ity at Kansas State University. The source farms were 

controlled and found to be free of PRRSV, Mycoplasma 

hyopneumoniae, and swine influenza virus. Pigs were 

randomly placed in pens of 10 to 15 individuals. Fol-

lowing a 7-day acclimation period, pigs between 17 

and 32  days of age were experimentally infected both 
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intramuscularly and intranasally with  105 (TCID50) of 

NVSL-97-7985, a highly virulent PRRSV isolate [19]. 

Body weight (BW) and blood samples were collected at 

0, 7, 14, 21, 28, 35 and 42 days-post-infection (dpi). Pigs 

were then euthanized at 42 dpi and ear notches were col-

lected for genotyping. Trials 7 and 8 were terminated at 

35 dpi because of facility availability. Estimates for aver-

age daily gain (ADG) from 0  dpi until day of measure-

ment were obtained by dividing the difference in body 

weight between the day of observation and 0 dpi by the 

corresponding time period. Note that neither measure-

ments of ADG for these pigs prior to infection, nor ADG 

measurements for non-infected relatives were available.

Serum viremia, which was measured by using a 

semi-quantitative TaqMan PCR assay for PRRSV 

RNA, provided repeated (bi-weekly up to 14  dpi, 

then weekly) measures for  log10-transformed qPCR 

viremia, as described in Boddicker et  al. [12, 13, 20]. 

Mathematical functions were previously fitted to 

these  log10-transformed viremia measures to smooth 

the data and to obtain continuous viremia estimates 

over the 42-day observation period [21]. As out-

lined in Islam et  al. [21], the uni-modal Woods func-

tion and the extended bi-modal Woods function 

provided a good fit to the individual’s data with either 

uni-modal (y(t) = a1t
b1e−c1t) (~67%) or bi-modal 

Fig. 1 Graphical illustration of reaction norms for analysis of tolerance. Mean VL is indicated by the stippled line in each graph. Each line corre-

sponds to one of four hypothetical sires. a Null model, where all sires have equal tolerance and equal overall growth level. As such, there is only 

one (average) tolerance slope. b Reaction-norms of sires with equal tolerance. Sires differ in intercept (growth where VL = 0) and level (growth at 

mean VL), but have equal tolerance slopes. No re-ranking of sires occurs between growth associated with low and high VL, and genetic correlation 

between intercept and level is 1.00. c Reaction norms of sires with variation in intercept and tolerance slopes, but no variation in level. Re-ranking of 

sires occurs depending on whether offspring harbor low or high VL, respectively, as indicated by crossing over of lines before and after mean VL. d 

Reaction norms of sires where variation occurs at intercept, level and tolerance slope. Sire re-ranking occurs between low and high VL, and genetic 

correlation between intercept and level is below one
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(

y(t) = a1t
b1e−c1t + max

(

0, a2(t − t0)
b2e−c2(t − t0)

))

 

(~33%) viremia profiles, respectively, with strong cor-

relations between model predictions of VL and actual 

viremia measures (genetic and phenotypic correlation 

estimates were 0.98 ± 0.03 and 0.90 ± 0.01, respectively) 

[10].

Across all trials, 198 pigs died before 42 dpi. PRRS was 

identified as the primary cause of mortality, except for 

trial 6, for which mortality was higher (46% by 42  dpi) 

and was potentially caused by secondary bacterial infec-

tions [13]. These pigs were included in the analyses until 

their time of death.

Only offspring from sires with more than 10 progeny 

with phenotypes were considered in this study to reduce 

the risk of bias in tolerance estimates [15]. As such, the 

number of animals included was 1320 from 0 to 21  dpi 

and 1001 from 0 to 42 dpi, all originating from 54 sires.

Pedigree information and genomic information using 

genotypes from Illumina’s Porcine SNP60 Beadchip 

v.1 [22], was available for all pigs. The pedigree-based 

numerator relationship matrix (A) and genomic relation-

ship G-matrix (Gm), were constructed in ASReml 3.0 [23] 

using the VanRaden method for all animals used in the 

analysis. For the G-matrix, single nucleotide polymor-

phisms (SNPs) that were fixed in a trial were removed. 

Trials 1, 2, and 3 had the most extensive pedigree infor-

mation, with pedigree data up to two generations 

back, while the rest of the trials only had sire and dam 

recorded. As such, there were no relationships between 

animals in different trials, except for trials 1, 2, and 3, 

which consisted of animals from consecutive parities of 

the same breeding company (Table 1). Pedigree was cor-

rected using parental genotypes for all trials, as described 

by Boddicker et al. [13] and Hess et al. [10]. The G-matrix 

was constructed using the VanRaden method [24], and 

included relationships between animals across trials 

regardless of breed, as outlined by Hess et al. [10]. The A

-matrix was used for all the following statistical models, 

unless otherwise noted.

Resistance, tolerance, and performance without infection

Resistance is often quantified by a measure of within-

host pathogen load, whereby lower pathogen load reflects 

higher host resistance [2, 5, 16]. In this study, resistance 

to PRRS was defined as the inverse of serum viral load, 

whereby  VL42 represents the cumulative log-transformed 

viral load from 0 to 42 dpi from the Wood’s curve. Since 

viremia had decreased to undetectable levels within 

21  to  28  dpi for a large proportion of pigs, cumulative 

viral load (and thus resistance) was not only calculated 

for the entire observation period from 0 to 42  dpi, but 

also for the period from 0 to 21 dpi. This represents the 

acute phase of infection and yields two indicator traits for 

resistance  (VL21 and  VL42).

In this study, tolerance was assessed by regressing per-

formance measures (i.e.  ADG21 or  ADG42 on the y-axis) 

on pathogen load (i.e.  VL21 or  VL42, respectively on the 

x-axis). The regression of  ADG42 on  VL21 was also evalu-

ated to account for the possibility of a time-lag in growth 

response with respect to changes in pathogen load.

Growth performance of an infected individual is likely 

to depend on both their response to infection and per-

formance in the absence of infection. Performance in 

absence of infection (i.e. when pathogen load is equal to 

zero), commonly denoted in the tolerance literature as 

vigor [25], constitutes the intercept of the linear reaction-

norms (Fig.  1). Previous simulation studies indicated 

that performance measures in the absence of infection 

are important to obtain unbiased tolerance slope esti-

mates [15]. However, information on performance of the 

PRRSV challenged pigs in absence of infection was not 

available in this study.

Two approaches were adopted to overcome this lack of 

performance measures without infection. (1) In line with 

the standard approach of quantitative genetic studies of 

reaction-norms, the origin of the explanatory variable 

VL was shifted to the mean VL; this ‘shifted intercept’ 

for ADG is referred to as the ‘level’, in contrast to vigor 

[17, 26, 27] (Fig. 1); note that this approach does not pro-

vide accurate information about the genetic relationship 

between tolerance and vigor, as the genetic correlation 

between level and slope is not equal to the genetic cor-

relation between performance at VL =  0 and slope [28, 

29]. Furthermore, individual body weight at the start 

of the infection  (BW0) was included as a fixed covari-

ate in the corresponding statistical models to partially 

account for differences in vigor. (2) To gain better insight 

into data requirements for accurately estimating genetic 

Table 1 Animal, pedigree and  breed composition of  the 

PHGC trials

LW large white breed, LR landrace breed

Trial Number 
of animals

Number 
of sires

Number 
of dams

Breed cross

1 174 6 70 LW × LR

2 164 10 72 LW × LR

3 115 7 47 LW × LR

4 191 6 33 Duroc × LW/LR

5 182 10 38 Duroc × LR/LW

6 109 26 53 LR × LR

7 186 6 27 Pietrain × LW/
LR

8 158 15 43 Duroc × LW/LR

15 166 11 49 Pietrain × LW
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parameters for tolerance, and about how these estimates 

depend on the genetic relationship between growth 

in absence or presence of infection, growth records of 

infected pigs were augmented with simulated growth 

records of non-infected half-siblings, as outlined in step 

4 below.

Statistical analyses

All statistical analyses were carried out using ASReml 

3.0 [23]. Random regression reaction-norm models have 

been found to provide biased estimates if data require-

ments to disentangle intercept from slope are not met 

[15, 17, 30], thus a stepwise approach was adopted: (Step 

1) multi-trait animal models were used to estimate the 

genetic relationship between resistance and growth 

under infection; (Step 2) multi-trait models were used 

to provide evidence for genetic variation in tolerance of 

pigs to PRRS based on the genetic correlation between 

growth associated with low and high VL, respectively; 

(Step 3) a univariate random regression model was 

applied to obtain estimates for genetic variance in tol-

erance; and (Step 4) data were augmented using simu-

lated performance in the absence of infection (ADG0
21 

or ADG0
42), with increasing simulated genetic correla-

tion from weak to strong between ADG0
21 and  ADG21 or 

ADG0
42 and  ADG42, respectively. The random regression 

models from Step 3 were adapted to include variation in 

ADG0
21 or ADG0

42.

Step 1: multi‑trait models to estimate the genetic relationship 

between resistance and performance prior to and post 

infection

Our first step in analyzing variation in growth under 

infection was to estimate heritabilities and correlations 

between VL and growth in absence of and post-infection 

with PRRSV using the following trivariate animal model:

where y1, y2 and y3 are vectors of phenotypes for body 

weight at the start of infection  (BW0) (y1),  ADG21 or 

 ADG42 (y2), and  VL21 or  VL42 (y3), respectively; b1, b2 and 

b3 are the vectors of the fixed effects for the interaction of 

experimental trial and parity of the dam when offspring 

were born (trial-by-parity), sex of the offspring, and age 

(1)





y1
y2
y3



 =





X1 0 0

0 X2 0

0 0 X3









b1
b2
b3



 +





Z1 0 0

0 Z2 0

0 0 Z3









a1
a2
a3





+





U1 0 0

0 U2 0

0 0 U3









p1
p2
p3





+





M1 0 0

0 M2 0

0 0 M3









l1
l2
l3



 +





e1
e2
e3



,

at start of experimental infection, which was fitted as  a 

fixed covariate. Note that no breed effect was included 

in the model since trial and breed effects were fully con-

founded in this experiment. To account for differences 

between viremia profiles and the two mathematical func-

tions used to fit these, a binary variable associated with 

the viremia profile class (uni- or bi-modal) was also fit-

ted as fixed effect; a1, a2 and a3 are vectors of additive 

genetic effects for each trait, with Var





a1

a2

a3



 = G ⊗ A , 

where G is the genetic variance–covariance matrix and 

A the pedigree relationship matrix; p1, p2 and p3 are vec-

tors of pen effects nested within a trial for each trait, with 

Var





p1
p2
p3



 = I ⊗ K, where I is the identity matrix and K 

is the corresponding variance–covariance matrix of pen 

effects for the different traits; l1, l2 and l3 are the vectors 

of litter effects for each trait, with Var





l1

l2

l3



 = I ⊗ L , 

with the corresponding variance–covariance matrix L; 

e1 , e2 and e3 are the vectors of error terms for each trait, 

with Var





e1

e2

e3



 = I ⊗ R, where R is the variance–covari-

ance matrix for the residual effects for each trait; and X1 , 

X2 and X3, Z1, Z2 and Z3, U1, U2 and U3, and M1, M2 and 

M3 are the incidence matrices for the fixed, animal, pen 

and litter effects, respectively. In addition to the trivari-

ate animal model, corresponding bivariate and univariate 

models were also used to check the robustness of vari-

ance components. Since heritability estimates differed 

between models, heritability estimates were presented 

from the corresponding univariate models.

Step 2: multi‑trait models to examine evidence for genetic 

variation in tolerance—growth associated with low 

versus high VL

The trivariate model (1) from step 1 does not show how 

growth changes with respect to viral load, and, therefore, 

does not account for genetic variance in tolerance. A multi-

trait sire model for ADG of progeny with categorized VL 

was used to assess sire-by-VL interactions to get a first indi-

cation of whether sires varied genetically in tolerance to 

infection. If these genetic correlations are less than 1, this 

is indicative of sire rank changes when offspring are faced 

with low and high VL respectively, and provides evidence 

for genetic variation in tolerance slope. Hence, individu-

als were sorted according to their VL from 0 to 21 dpi or 

0 to 42 dpi, and partitioned into VL groups, where the low 
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and high VL groups (n = 330 each) consisted of individu-

als with VL values in the lower and upper quartiles, respec-

tively, and the mid-range group consisted of the middle half 

of the data (n = 660). A trivariate sire model was then fitted 

to measures of ADG associated with low, mid and high VL 

from 0 to 21/0 to 42 dpi  (ADGlow,  ADGmid and  ADGhigh), 

respectively. The fixed and random effects of this model 

were identical to those used in model (1), with exception 

of a, which now refers to sire effects on performance and 

explains one quarter of the additive genetic variance, and 

of e, where residual covariance was fixed at 0, because off-

spring have only a single record of ADG and therefore the 

residual covariance does not exist. Furthermore, the pedi-

gree relationship A-matrix was replaced with the genomic 

relationship matrix (G-matrix) to improve convergence.

Step 3: univariate random regression sire models 

for estimating genetic variance in tolerance

The multi-trait models in the previous steps provide 

evidence for genetic variation in tolerance but do not 

yield direct estimates of genetic variance in tolerance. 

A random regression reaction norm model was applied, 

whereby the origin of the reaction-norms was centered at 

the mean viral load values, thus providing only variance 

component estimates for level (ADG at mean VL) rather 

than vigor (ADG at zero VL). The following linear ran-

dom regression sire model (RRM) for ADG on centered 

values of VL, which will be referred to as the level-slope 

model (as shown in Fig. 1d), was used:

where y is the vector of  ADG21 or  ADG42, respectively; 

b is the vector of fixed effects outlined in model (1), 

with age and  BW0 included as additional fixed covari-

ates to account for variation in age and body weight 

at the start of infection; and bs is the population aver-

age tolerance slope; ai and as are the sire effects on level 

and on tolerance slope, respectively, assumed to follow 

a multi-variate normal distribution with mean zero and 

Var

[

ai

as

]

=
1

4
GRN ⊗ A, with GRN =

[

σ
2
ai

σaias

σaias
σ
2
as

]

, where 

σ
2
ai

 and σ2as are the variances of ai, and as, respectively, σaias 

is the covariance between sire effects for level and slope; 

other random effects p, l, and e were fitted as described 

in model (1); XVL and ZVL are the incidence matrices 

for population average tolerance slope and those associ-

ated with each sire, respectively, consisting of individual 

VL measures, and X is the incidence matrix for the fixed 

effects (including VL as fixed covariate) and Z is the inci-

dence matrix for the random sire effect on level (Z).

To test the significance of sire effects on level and slope 

and to determine which of the models illustrated in Fig. 1 

(2)y = Xb + XVLbs + Zai + ZVLas + Up + Ml + e,

best described the data, the model fit of the level-slope 

model (2) was compared with that of hierarchical models: 

(a) without any additive genetic effects (Fig. 1a), (b) with 

only sire effects for level (Fig. 1b), and (c) containing only 

sire effects on slope (Fig. 1c). Significance of each random 

effect was assessed using the likelihood ratio test (LRT) 

[31], with the LRT test statistics below assumed to fol-

low a χ2 distribution, with 1 degree of freedom for inclu-

sion of an additional sire effect (e.g. null to level model, 

including sire effect) and a mixture of 1 and 2 degrees of 

freedom for additional sire slope effects and covariance 

(for example, from level to level-slope model) [32, 33].

Step 4: random regression model using simulated 

performance in absence of infection for estimating genetic 

variance in tolerance

The random regression models fitted in Step 3 gener-

ated potential confounding between level and tolerance 

slope variance estimates i.e. genetic variance in slope was 

absorbed by genetic variance in level due to the limited 

distribution of VL around average VL required to estimate 

the genetic variance in level. To assess whether confound-

ing could be resolved by inclusion of performance meas-

ures of non-infected relatives in the statistical models, 

growth in the absence of infection (ADG0
21 or ADG0

42) was 

simulated for one hypothetical paternal half-sib for each 

individual with  ADG21 and  ADG42 records, respectively, 

thus doubling the size of the dataset. Data were simulated 

assuming a heritability of 0.4 for both ADG0
21 and ADG0

42 

[34]. With the expectation that a higher  rg between the 

traits would imply less genetic variance in tolerance, low 

(0.05), moderate (0.30), strong (0.60) or high (0.90) genetic 

correlations  (rg) between ADG0
21 and  ADG21, or ADG0

42 

and  ADG42, respectively, were simulated (see Additional 

file  1 for a detailed description of the simulations). Note 

that no assumptions were made with regards to genetic 

variance in tolerance. Ten thousand replicates of simulated 

half-sib records for ADG0
21 and ADG0

42 were generated.

The random regression models (2) were then applied 

to the extended datasets for each replicate, where the 

response vector y now comprised either simulated ADG0
21 

and measured  ADG21, or ADG0
42 and  ADG42. VL was no 

longer centered at mean VL, but comprised VL equal to 

zero for the non-infected pigs and  VL21 or  VL42 for the 

infected pigs. The remaining fixed and random effects 

were identical to those in model (2), except that no fixed 

effects or random pen or litter effects were fitted for the 

simulated half-sibs. Thus, by including simulated data of 

non-infected pigs, model (2) was replaced by an intercept-

slope model, with genetic variance estimated for growth 

in the absence of infection, and for tolerance slope.

As in Step 3, hierarchical models were fitted (a) without 

any additive genetic effects for intercept or slope (Fig. 1a, 
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null model), and (b) with additive genetic effects for 

intercept only (Fig. 1b, intercept-only model) and (c) with 

additive genetic effects for intercept and slope (Fig.  1d, 

intercept-slope model). The model fit was assessed using 

the loglikelihood ratio test outlined in Step 3 above. 

Results were evaluated based on the mean and standard 

deviation of the estimates over replicates.

Results
Step 1: relationship between resistance and performance 

prior to and post infection

ADG21 and  ADG42 ranged from a weight loss of 40 g/day 

to a weight gain of 720 and 680 g/day, respectively, with 

corresponding mean daily weight gains of 280 and 380 g/

day (Table 2).

Figure 2 depicts the distributions of growth and VL for 

the two observation periods between 0 to 21  dpi and 0 

to 42 dpi. The wide distribution of individuals with above 

average growth rate in spite of high VL  (ADG+VL+), and 

with low growth rate in spite of low VL  (ADG−VL−) may 

be indicative of phenotypic variation in tolerance.

Growth rate under infection and resistance were mod-

erately heritable and had large standard errors (Table 3). 

Heritability estimates were similar for the two time peri-

ods considered.

Although standard errors were high, genetic correla-

tions between VL and growth under infection were statis-

tically significantly different from 1 (p < 0.001, based on 

the LRT that compares models with and without genetic 

correlations fixed to 1), indicating that not all genetic vari-

ation of growth under infection was explained by genetic 

differences in resistance (inverse of VL) (Table  3). Fur-

thermore, genetic correlations between growth under 

infection and  BW0 were also significantly different from 1, 

implying that growth prior to and post infection were not 

under identical genetic regulation. Genetic correlations 

between growth under infection and VL were moderate to 

strong and negative whereas genetic correlations between 

growth under infection and  BW0 were moderately posi-

tive. Phenotypic correlations were of the same sign but 

generally weaker than the genetic correlations (Table  3). 

Phenotypically and genetically, these results indicate that 

pigs with greater resistance tend to grow faster.

Table 2 Summary statistics of resistance and growth traits

Body weight at 0 dpi  (BW0), average daily gain and viral load from 0 to 21 and 0 

to 42 dpi  (ADG21,  ADG42,  VL21 and  VL42), respectively

AUC is the area under the curve for the log-transformed estimates for viral load 

in blood as measured by RT-PCR

Trait Mean SD Min Max Number of records

BW0 (kg) 7.30 1.39 3.45 12.88 1320

ADG21 (kg/day) 0.28 0.12 −0.04 0.72 1319

ADG42 (kg/day) 0.38 0.11 −0.04 0.68 1001

VL21 (AUC) 115.69 9.37 77.04 153.62 1320

VL42 (AUC) 159.90 23.42 88.00 236.35 1001

Fig. 2 Scatter plots of data for ADG and VL from a 0 to 21 and b 0 to 42 dpi. ADG and VL from 0 to 21 and 0 to 42 dpi (n = 1320 and 1001, 

respectively) were distributed into one of four quadrants according to their growth and VL after infection with PRRS virus (n = 330 and 250 in each 

quadrant for 0 to 21 and 0 to 42 dpi, respectively). The quadrants  (ADG+VL− blue,  ADG+VL+ green,  ADG−VL− orange, and  ADG−VL+ red) refer to 

high growth rate and high resistance (low VL), high growth rate and low resistance (high VL), low growth rate and high resistance and low growth 

rate and high low, respectively. Quadrants were centered at mean VL and at mean ADG
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Step 2: multi‑trait models to examine evidence for genetic 

variation in tolerance

Trivariate models for growth at low, mid and high VL 

failed to converge for both time periods of infection. 

Using bivariate models for the upper and lower quar-

tiles for VL, high genetic correlations of 0.94 (0.18) and 

0.91 (0.13) between growth associated with low to high 

VL were identified for  ADG21 and  ADG42, respectively. 

Genetic correlations significantly less than 1 would imply 

that growth rates associated with different degrees of 

infection severity, as indicated by low versus high VL, 

are genetically distinct traits and would thus be indica-

tive of genetic variation in tolerance (Fig.  1). Genetic 

correlations close to 1 indicate limited reranking among 

sires between high and low levels of VL and, thus limited 

genetic variance in tolerance. Furthermore, there was no 

significant difference between genetic variances of ADG 

associated with low and high VL, for either the 0  to  21 

and 0 to 42 day period (where genetic variances for ADG 

associated with low and high VL were 2.10E−03 (1.22E−03) 

and 4.56E−03 (1.81E03) for 0  to  21  dpi, and 3.46E−03 

(1.24E−03) and 6.89E−03 (2.18E−03) for 0 to 42 dpi, respec-

tively). Referring to the expectations outlined in Fig.  1, 

the results of this multi-trait model imply that random 

regression models of Step 3 with the same tolerance slope 

for each sire would provide a better fit to the data than 

models with different slopes for each sire (Fig. 1c, d).

Step 3: estimation of genetic variance in tolerance using 

univariate random regression models

Univariate random regression models without genetic 

effects, but including VL as a fixed linear (and higher 

order polynomial) covariate were used to test the aver-

age association between growth and VL (null model in 

Table 4). These identified a statistically significant linear 

association between growth and VL (p < 0.0001), with a 

population average tolerance slope estimate of −2.78E−03 

(3.32E−04) and −1.28E−03 (1.51E−04) kg/day per unit of 

VL increase for  ADG21 regressed on  VL21 and  ADG42 

on  VL42, respectively. This corresponds to an average 

growth rate difference of 213 and 190 g/day between pigs 

with the lowest and highest observed VL for the 21- and 

42-day observation period, respectively, or differences 

in body weight of 4.5 and 8.0 kg over the 21- and 42-day 

observation periods, respectively. Similarly, body weight 

prior to infection had a significant association with ADG 

post infection  (BW0 p < 0.0001), with a positive regres-

sion coefficient of 0.025 (0.002) at 21  dpi and of 0.029 

(0.003) at 42 dpi.

The log-likelihood of the model improved significantly 

when genetic effects (random sire effects) were included 

in the model (level model) (p  <  0.0001) (Table  4). This 

indicates significant genetic variance in growth perfor-

mance of pigs infected with PRRSV. However, including 

sire effects of slope only (Fig. 1c) did not improve model 

fit over the null model (p > 0.60) and resulted in negligi-

bly small slope variance estimates.

Models with sire effects on both level and slope, as well 

as a genetic covariance between them, yielded a signifi-

cantly better model fit than the null model (p < 0.0001). 

However, the level-slope model did not provide a signifi-

cantly better fit than the level-only model for either 0 to 

21 and 42 dpi (p = 1.00 and 0.66, respectively) (Table 4).

All four models provided similar estimates of variance 

components for non-genetic random effects (Table  4). 

Estimates of the sire variance in level were very similar 

between the level-only model and the level-slope model 

and very low, whereas estimates for sire variance in tol-

erance slope differed slightly between the slope-only 

and the level-slope model (Table  4). The fact that addi-

tion of the slope did not affect the variance estimate 

for level suggests potential confounding of level and 

slope (see statistical considerations). The estimate of the 

covariance between level and slope was close to zero, 

and constrained at the boundary for both time periods, 

indicating numerical difficulties in accurately estimating 

these variance components. However, shifting the covari-

ate VL to ensure a zero covariance between the new level 

and slope has no effect on the model likelihoods, suggest-

ing that the results are robust.

Table 3 Estimates of heritability and correlations between resistance and growth traits

Heritability estimates (diagonal) and phenotypic (upper triangle) and genetic correlations (lower triangle) with standard errors (SE) from the trivariate animal model 

for body weight at 0 dpi  (BW0), average daily gain and viral load from 0 to 21 and 0 to 42 dpi  (ADG21,  ADG42,  VL21 and  VL42), respectively

Correlations between  ADG21 and  VL42 were not calculated, since VL is expected to impact ADG and not the other way around

Trait Trait

BW0 ADG21 ADG42 VL21 VL42

BW0 0.11 (0.10) 0.35 (0.03) 0.40 (0.03) −0.21 (0.07) −0.20 (0.03)

ADG21 0.48 (0.30) 0.29 (0.11) 0.80 (0.01) −0.29 (0.03) –

ADG42 0.24 (0.45) 1.00 (0.04) 0.34 (0.14) −0.33 (0.03) −0.36 (0.03)

VL21 −0.33 (0.45) −0.53 (0.27) −0.64 (0.26) 0.19 (0.11) 0.80 (0.01)

VL42 −0.54 (0.37) – −0.82 (0.16) 0.79 (0.14) 0.18 (0.10)
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In conclusion, the random regression models did not 

allow estimation of genetic variance in tolerance of pigs 

to PRRSV infection. Based on a statistical model fit alone, 

the level-only model accounting for genetic variance in 

growth rate at mean VL only constitutes a more appro-

priate model to describe genetic variation in growth 

response of infected pigs than the level-slope model 

accounting for genetic variance in both, growth rate at 

mean VL and tolerance. However, as outlined in more 

detail in the “statistical considerations” section below, it 

cannot be excluded that any genetic variance in tolerance 

that may exist is absorbed in the genetic variance for level 

because of the confounding between level and slope.

Step 4: random regression models including simulated 

performance in absence of infection for estimating genetic 

variance in tolerance

Models with genetic effects on both intercept and slope, 

as well as with a genetic covariance between them, con-

sistently yielded a significantly better model fit than the 

null model (p < 0.0001 for both 0 to 21 and 0 to 42 dpi), 

regardless of the simulated genetic correlation between 

ADG0
21 and  ADG21 or ADG0

42 and  ADG42. However, 

the intercept-slope model consistently provided a sig-

nificantly superior fit over the intercept-only model only 

when the simulated genetic correlation between growth 

in absence of infection and growth under infection was 

low to moderate (Table 5). Generally, the ability to iden-

tify genetic variance in tolerance decreased with an 

increase in the simulated genetic correlation, as indicated 

by reduced improvement in log-likelihoods and a lower 

proportion of replicates with significant genetic vari-

ation in tolerance slope (p  <  0.05) (Table  5). Somewhat 

surprisingly, for the 0  to  21  dpi observation period, the 

majority of replicates indicated significant genetic vari-

ation in tolerance, even for strong genetic correlations 

between ADG0
21 and  ADG21 (Table  5). In contrast, only 

low to moderate genetic correlations between ADG0
42 and 

 ADG42 resulted in significant genetic variance in toler-

ance for the majority of replicates for the 42 day observa-

tion period (Table 5).

Table 6 shows that random regression sire models when 

including records from both non-infected and infected 

siblings can generate robust genetic variance estimates 

for both intercept and slope. As expected, genetic vari-

ance estimates for tolerance slope tended to decrease 

with increasing genetic correlations between ADG0
21 and 

 ADG21 or ADG0
42 and  ADG42, whereas the genetic vari-

ance estimates in the intercept tended to increase (see 

Additional file  1). Genetic correlations beween ADG 

in absence of infection and ADG under infection also 

affected the estimated genetic correlations between 

intercept and tolerance slope. Low (simulated) genetic 

correlations between ADG0
21 and  ADG21 or ADG0

42 and 

Table 4 Variance components for ADG (kg/d) from 0 to 21 dpi and 0 to 42 dpi

Variance components estimated from random regression models: null model, containing no genetic effect; level-only model, containing only the overall sire effect 

on growth under infection; slope-only model, containing only sire effect on the slope of the regression line of growth over VL; and level-slope model, containing sire 

effects on level and slope, respectively

All other fixed effects/covariates and random effects were identical between models

Results for  ADG42 on  VL21 were similar to those for  ADG42 on  VL42 and are therefore not shown

ADG period (dpi) Null model Level‑only model Slope‑only model Level‑slope model

Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE)

0 to 21

 Level 2.01E−03 (7.68E−04) 2.01E−03 (7.68E−04)

 Covariance 2.21E−13 (1.04E−14)

 Slope 4.37E−06 (2.06E−07) 1.00E−10 (4.71E−12)

 Pen (trial) 4.12E−04 (1.45E−04) 3.97E−04 (1.42E−04) 4.12E−04 (1.45E−04) 3.97E−04 (1.42E−04)

 Litter 9.25E−04 (2.26E−04) 4.72E−04 (2.04E−04) 9.25E−04 (2.26E−04) 4.72E−04 (2.04E−04)

 Residual 6.18E−03 (2.91E−04) 6.18E−03 (2.91E−04) 6.18E−03 (2.91E−04) 6.18E−03 (2.91E−04)

 LogLikelihood 2482.98 2495.03 2482.98 2495.2

0 to 42

 Level 2.32E−03 (1.02E−03) 2.33E−03 (1.03E−03)

 Covariance −3.95E−15 (2.04E−16)

 Slope 8.60E−08 (1.47E−07) 3.41E−07 (5.94E−07)

 Pen (trial) 2.43E−04 (1.30E−04) 2.82E−04 (1.36E−04) 2.39E−04 (1.29E−04) 2.78E−04 (1.35E−04)

 Litter 1.76E−03 (3.27E−04) 1.23E−03 (2.98E−04) 1.75E−03 (3.27E−04) 1.22E−03 (2.98E−04)

 Residual 5.39E−03 (3.03E−04) 5.33E−03 (2.99E−04) 5.36E−03 (3.05E−04) 5.30E−03 (3.02E−04)

 LogLikelihood 1889.55 1911.18 1899.72 1911.35
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 ADG42, respectively, led to negative genetic correla-

tions between performance in the absence of infection 

and tolerance, whereas strong positive genetic correla-

tions between the growth traits suggested that pigs with 

greater genetic growth in the absence of infection were 

also genetically more tolerant to infection.

Discussion
Summary of findings

Performance of an infected individual is likely to depend 

on its ability to restrict pathogen load (resistance) and its 

ability to limit the impact of infection (tolerance). The 

extensive PHGC dataset has identified substantial genetic 

variation in resistance of growing pigs to PRRS and led to 

the discovery of a major quantitative trait locus associ-

ated with both resistance and growth of pigs under infec-

tion [10, 12, 13, 20]. Surprisingly, the dataset provided 

little evidence that pigs also vary genetically in tolerance 

to this virus. However, the simulations revealed that 

genetic variation in tolerance to PRRS may exist, depend-

ing on the performance in the absence of infection 

(vigor). Furthermore, this analysis raised numerous sta-

tistical difficulties associated with genetic improvement 

of host tolerance, which could be overcome by including 

measures of performance of infected and non-infected 

relatives in the analysis.

Focusing on data from infected pigs alone, genetic 

correlations between body weight prior to infection, 

Table 5 Effect of  the genetic correlation  (rg) between  simulated ADG in  the absence of  infection and  observed ADG 

under infection on evidence for genetic variance in tolerance

Effect of the genetic correlation  (rg) of simulated ADG0
21 with  ADG21 and ADG0

42 with  ADG42 on the average change in log-likelihood of the intercept-slope model over 

the intercept-only model (∆LogLikelihood), the average p-value of log likelihood improvement, provided by a log-likelihood ratio test, and the proportion of the 

10,000 replicates with significant genetic variance in tolerance (i.e. p value of LRT was <0.05)

SD over 10,000 replicates are shown in brackets

ADG period (dpi) rg ΔLogLikelihood p value Proportion with significant 
genetic variance for toler‑
ance (p < 0.05)

0 to 21 0.05 10.96 (4.19) 0.000 1.00

0.30 6.18 (3.39) 0.005 0.98

0.60 2.32 (1.49) 0.041 0.76

0.90 1.00 (2.12) 0.067 0.55

0 to 42 0.05 8.67 (4.40) 0.003 0.99

0.30 4.34 (3.16) 0.023 0.87

0.60 1.31 (1.56) 0.107 0.41

0.90 −0.80 (2.43) 0.187 0.06

Table 6 Variance components of intercept, slope and covariances from random regression models

Variance components estimated from random regression models based on simulated ADG0
21 and measured  ADG21 (kg/d) or ADG0

42 and  ADG42

Fitted models were the intercept-only model, containing only the overall sire effect on intercept; and the intercept-slope model, containing sire effect on intercept 

and slope for  ADG21 or  ADG42, respectively

All other fixed effects/covariates and random effects were identical between models

SE (in brackets) were calculated as the SD over 10,000 replicates

rg is the simulated genetic correlation between ADG0
21 or ADG0

42 and  ADG21 or  ADG42

ADG period (dpi) rg Intercept‑only model Intercept–slope model

Intercept Intercept Covariance Slope

0 to 21 0.05 7.65E−04 (2.24E−04) 9.93E−04 (2.98E−04) −7.57E−06 (3.97E−06) 2.24E−07 (5.80E−08)

0.3 9.20E−04 (2.53E−04) 9.95E−04 (2.99E−04) −3.03E−06 (3.27E−06) 1.44E−07 (5.09E−08)

0.6 1.13E−03 (2.71E−04) 1.03E−03 (2.84E−04) 1.54E−06 (2.13E−06) 5.54E−08 (3.24E−08)

0.9 1.34E−03 (2.31E−04) 1.19E−03 (1.95E−04) 3.35E−06 (1.06E−06) 1.25E−08 (6.33E−09)

0 to 42 0.05 9.20E−04 (2.83E−04) 1.10E−03 (3.47E−04) −5.80E−06 (3.59E−06) 1.18E−07 (3.87E−08)

0.3 1.09E−03 (3.05E−04) 1.12E−03 (3.47E−04) −1.90E−06 (2.85E−06) 6.85E−08 (3.23E−08)

0.6 1.28E−03 (3.15E−04) 1.14E−03 (3.19E−04) −5.57E−07 (1.75E−06) 2.37E−08 (1.65E−08)

0.9 1.47E−03 (2.57E−04) 1.21E−03 (4.10E−04) 1.95E−06 (1.21E−06) 1.09E−08 (7.13E−09)
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resistance (inverse of VL) and growth under infection 

were found to be moderately strong and positive, in line 

with previous studies [10, 20]. This indicates that heav-

ier individuals prior to infection counteract an increase 

in pathogen load, and thus tend to have lower VL, and 

therefore lower infection-induced reductions in growth 

rate. Genetic correlations between VL and growth were 

strongly negative, implying that animals that were geneti-

cally more resistant also tended to grow faster under 

infection. However, correlations were significantly differ-

ent from 1, indicating that genetic variation in growth of 

PRRSV infected pigs is not fully explained by heteroge-

neity in growth prior to infection and resistance. There-

fore, genetic variation in tolerance may also play a part in 

host response to PRRSV infection. However, the multi-

trait model provided little evidence of genetic variation 

in tolerance. This was further supported by the random 

regression models. These showed that, although growth 

rate declined, on average, linearly with increasing VL, 

there was no statistically significant difference in toler-

ance between the sires of the infected piglets.

However, closer inspection of the underlying data 

structure raised suspicion that genetic variance in the 

reaction norm level absorbed genetic variance in toler-

ance due to confounding between level and slope in these 

data (see Statistical considerations below). To disentan-

gle the genetic variance in reaction-norm intercepts (i.e. 

growth rate in the absence of infection) and slopes (i.e. 

tolerance), the experimental data were augmented with 

simulated growth rates of non-infected relatives. Thus, 

the resulting data structure mimicked that of ‘sib chal-

lenge tests’ that are common practice in aquaculture 

and other livestock species [35–37]. The simulations 

demonstrated that inclusion of these additional data in 

the random regression models resolved the confound-

ing between level and slope and resulted in more reliable 

genetic parameter estimates for tolerance. Most impor-

tantly, the simulations revealed that it would be wrong to 

conclude that pigs in this study lacked substantial genetic 

variation in tolerance to PRRS, as was suggested by the 

models based on the collected data alone. As demon-

strated by the simulations, genetic variance estimates 

for tolerance strongly depend on the genetic correlations 

between growth in the absence of and growth under 

infection. Low to moderately strong genetic correlations 

between these two traits implied significant genetic vari-

ance in tolerance of the pigs in this study. Interestingly, 

estimated genetic correlations between body weight of 

pigs prior to infection and growth under infection were 

moderately strong. Thus, if body weight prior to infection 

was a reliable predictor for growth rate in the absence 

of infection, evidence for genetic variance in tolerance 

would emerge directly from the data.

Statistical considerations

Here, the conventional reaction-norm approach was 

adopted to model genetic variation in tolerance to infec-

tions [2, 38]. Using both simulated and real data, we 

demonstrated that random regression models embed-

ded in the mixed model machinery are a powerful tool 

to estimate genetic variance in tolerance for outbred pop-

ulations if the data structure is appropriate [15, 16, 18]. 

Random regression models are also known to be highly 

sensitive to the underlying data structure and prone to 

generate inaccurate variance estimates for slope, in par-

ticular, if sample size is limited or information on related-

ness is poor, as was the case for the data in this study [15, 

17, 30]. To prevent bias in the slope variance estimates 

[15, 30], only sires that had more than 10 offspring were 

included in this study. However, the associated reduction 

of the data to records from only 54 mostly unrelated sires 

may have caused a trade-off between reducing bias and 

reducing statistical power, as indicated by lower herit-

abilities for ADG and VL than found in previous analy-

ses on the same data [10, 20]. Furthermore, to alleviate 

the potential impact of limited information of relatedness 

(as only sires and dams were known for the majority of 

pigs), the analyses were repeated including the genomic 

relationship matrix rather than the pedigree relation-

ship matrix, which is not able to capture the difference 

between siblings due to Mendelian sampling. However, 

this had a negligible impact on the variance estimates 

and on the log-likelihoods of the reaction-norm models 

(results not shown).

As is common practice for quantitative genetics mod-

els using REML, the likelihood ratio test (LRT) was used 

to test the significance of random effects such as the 

sire tolerance slope estimates, and whether genetic cor-

relations differed significantly from 1 [39]. For variance 

and co-variance components constrained to the positive 

parameter space, the conventional LRT that assumes the 

test-statistics to follow a Chi square distribution with 

degrees of freedom equal to the number of additional 

parameters to be estimated in the more complex model 

has been described to be overly conservative [23]. For 

this reason the widely used adjustment of Stram and Lee 

[32] based on mixture distributions was applied. How-

ever, in this proposed adjustment, individual subjects (in 

this case sires) were assumed independent. Due to lack 

of detailed pedigree information in the present study, the 

majority of sires were indeed assumed unrelated, with 

the exception of sires from trials 1  to  3. Repeating the 

analysis with the assumption that all sires were unrelated 

provided almost identical model results to those reported 

here. Thus, we believe that the LRT is a valid method 

for testing the null hypotheses of zero genetic variance 

in tolerance and genetic correlations equal to 0 or 1 in 
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this study. Nevertheless, sires and sire by VL interactions 

were also fitted as fixed effects in the statistical models of 

Step 3. In accordance with the results of modelling sires 

as random effect, there were no significant differences 

between the tolerance slopes associated with different 

sires according to the Wald test (p = 0.981 and 0.081 for 

the 0 to 21 and 0 to 42 dpi time periods, respectively).

Perhaps most importantly, reaction-norms require con-

siderable variation in the independent variable to gener-

ate unbiased tolerance slope estimates [1]. However, this 

study, in line with other infection challenge experiments, 

used an identical infection route, pathogen strain and 

dose for all individuals. Consequently, it provided a rela-

tively narrow value range for pathogen load  (VL42 values 

ranged between 88 and 236 AUC in our study), with no 

values close to 0. To better accommodate the distribu-

tion of the data in the models, the VL was centered at 

the mean VL value, in line with common practice in the 

animal breeding literature [17, 27, 30]. However, the rela-

tively narrow range of the VL of offspring, combined with 

the relatively small numbers of offspring for some sires, 

may have hampered the ability of these models to disen-

tangle sire effects on level and slope. This confounding 

is likely further aggravated by genetic variation in resist-

ance to PRRS, which implies that VL is not homogene-

ously distributed among sires, with more resistant sires 

predominantly having progeny with low VL, and less 

resistant sires predominantly progeny with high VL.

Considering all these effects combined, the weak evi-

dence for significant genetic variation in tolerance to 

PRRS from the random regression models in this study 

may simply reflect a lack of statistical power to disentan-

gle sire effects on regression slope and level. The com-

plementary simulation studies presented here, which 

assumed that additional performance measures of related 

uninfected individuals were available, demonstrated one 

way of increasing statistical power. Similarly, it might be 

possible to increase statistical power by harnessing infor-

mation from repeated measures of growth and pathogen 

load for each individual over the course of infection in 

the statistical models. By increasing the range of distribu-

tion of VL for each individual, a more robust slope may 

be fitted through the centre of the data, alluding to an 

“overall” picture of tolerance across multiple time-points 

in infection.

Implications for genetic improvement of tolerance of pigs 

to PRRS and other diseases

Genetic improvement of tolerance may have several 

advantages over improving resistance. Firstly, host resist-

ance limits pathogen replication within the host and, 

as a consequence, selection for host resistance may 

impose selection advantages on pathogen strains that 

can overcome host resistance mechanisms and even-

tually result in a loss of selection advantage of the host 

[40, 41]. Given the high mutation rate of RNA viruses 

such as PRRSV [42], this is a potential pitfall for a long-

term breeding strategy focused on resistance. It has been 

proposed that, theoretically, tolerance might not impose 

such selection pressure on the pathogen [40].

Secondly, it has been suggested that improving host 

tolerance may offer cross-protection against other strains 

of the virus, or other prevalent infectious agents, as toler-

ance mechanisms primarily target host-intrinsic damage 

prevention or repair mechanisms, compared to resist-

ance mechanisms, which interfere directly with the path-

ogen life-cycle [2, 5, 43]. This is particularly relevant for 

PRRS, which is often associated with co-infection with 

other respiratory viruses, such as PCV2 or the influenza 

virus, which can mimic the respiratory clinical signs 

associated with PRRS [44]. Furthermore, in a globalized 

animal breeding market, where PRRS is endemic and 

highly prevalent in farms, (estimated at 60 to 80% in the 

U.S, and up to 79% in mainland Europe), and where envi-

ronmental conditions are difficult to improve, eradication 

of the virus has proven to be challenging [45–47]. Selec-

tive breeding for tolerance is considered desirable when 

pathogen prevalence is high, when pathogen elimina-

tion has proven difficult and when pathogens can evolve 

rapidly to evade control measures that aim at interfering 

with the pathogen life-cycle [48]. All these cases apply 

to PRRS. Therefore, improvement of tolerance of pigs 

to this ubiquitous virus may constitute a viable alterna-

tive to eradication programs, since it would allow pigs to 

maintain homeostasis despite infection [44]. However, 

tolerance would result in continued presence of the virus 

which could rebound and result in further pathogen-

esis in the host and threats to the herd. Thus, distinction 

between resistance and tolerance in genetic improvement 

programs is imperative if they have different effects on 

pathogen prevalence and evolution, as implied by theory 

[40, 49].

Obtaining reliable tolerance estimates from natural 

disease outbreaks is extremely difficult due to the myriad 

of confounding factors (e.g. difference in exposure and 

onset of infection, differences in the individual immune 

status, co-infections), which can severely bias toler-

ance estimates and mask the underlying genetic signal 

[16, 18]. For this reason, empirical evidence for genetic 

variation in host tolerance to infections stems primar-

ily from challenge experiments in inbred lines of model 

species [2, 50, 51]. The PHGC challenge data constitute 

a unique data source for investigating the genetic basis 

and relative importance of host resistance and tolerance 

in outbred pigs’ responses to virus infections, since it 

provides the required measures of both pathogen load 
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and performance for large sample sizes, without the 

confounding factors inherent to field data. However, the 

analyses of these data demonstrated that the limited data 

range produced in challenge experiments, together with 

other factors that affect the distribution of the data, such 

as genetic variance in host resistance, can easily blur the 

tolerance signal in multi-trait and reaction-norm models, 

and highlight the importance of performance records of 

non-infected relatives for obtaining accurate tolerance 

estimates.

Collecting equivalent performance records of non-

infected relatives of the challenged individuals would be 

extremely valuable to establish the relationship between 

tolerance and performance in the absence of infection, 

and identify shared or distinct genomic regions asso-

ciated with these traits. A strong genetic correlation 

between these traits would imply that one could select 

for high performance at the nucleus to improve toler-

ance and performance in the more infectious commercial 

farms. In the current pig breeding structure, a direct data 

pipeline of performance measures between pigs in com-

mercial farms experiencing disease outbreaks and those 

of related selection candidates in the almost pathogen 

free nucleus may be useful. Obtaining unbiased and com-

parable measures of within-host pathogen load from nat-

ural disease outbreaks constitutes the main challenge for 

producing reliable tolerance estimates from natural dis-

ease outbreaks [16]. A practically more feasible approach 

is to estimate genetic correlations between performance 

in clean and infectious environments and to include per-

formance during disease outbreaks in the selection cri-

terion [52, 53], although this approach does not allow 

distinction between resistance and tolerance.

Based on resource-allocation theory and earlier find-

ings, resistance and tolerance are conventionally con-

sidered as alternative host defense mechanisms to 

infections, leading to the notion of a trade-off between 

improving resistance and tolerance. Indeed, a compan-

ion genome-wide association study on the same PHGC 

data found different regions that were associated with 

tolerance and with resistance [54]. Emerging evidence 

from different studies suggests that both resistance and 

tolerance mechanisms may be required for effective 

host protection to infection and that the optimal host 

response to infection likely depends on a carefully timed 

interaction between pathogen elimination (i.e. resist-

ance) mechanisms and host mechanisms that promote 

tissue damage control and increase disease tolerance 

[51, 55]. The aforementioned companion study identi-

fied several overlapping genomic regions associated with 

resistance and tolerance of pigs to PRRS and found that 

the WUR10000125 SNP, previously associated to con-

fer greater resistance to PRRS (lower  VL21), also confers 

greater tolerance. Valuable insights about these interac-

tions could be harnessed from the available longitudinal 

measures of pathogen burden and growth, e.g. by fol-

lowing the infection trajectories of individuals and target 

entire trajectories rather than resistance or tolerance for 

genetic improvement [51, 56].

In order to target both resistance and tolerance in a 

sustainable breeding program, the epidemiological and 

evolutionary consequences of genetic selection in either 

or both traits combined must be studied in more detail. 

In particular, it needs to be determined whether evolu-

tionary theory predicts a lower risk of pathogen evolu-

tion from selection for improved host tolerance rather 

than resistance hold in the case of PRRS; and to what 

extent genetically more resistant or tolerant pigs are also 

less infectious [3, 57, 58]. It is probable that control of 

PRRS and other infectious diseases by genetic selection is 

a “balancing act” [9], which involves mechanisms associ-

ated with resistance and tolerance to provide the fittest 

pigs.

Conclusions
Using evidence from the available data alone suggests 

that growing piglets differ genetically in resistance but 

does not explicitly show evidence for genetic differences 

in tolerance to PRRSV infection. However, statistical con-

straints may have masked genetic variation in tolerance. 

Currently, unknown genetic correlations between perfor-

mance under and in absence of PRRSV infection could 

reveal significant genetic variance in tolerance. Future 

studies are warranted to validate the results in this study 

for infections with the same and different strains of the 

PRRS virus, including vaccine strains. This study shows 

that genetics of tolerance is more difficult to analyze than 

genetics of resistance, and is therefore more difficult to 

target in genetic improvement.
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