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Use of Multiblade Coordinates for Helicopter Flap-Lag Stability
with Dynamic Inflow
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Rotor flap-lag stability in forward flight is studied with and without dynamic inflow feedback via a multiblade
coordinate transformation (MCT). The algebra of MCT is found to be so involved that it requires checking the
final equations by independent means. Accordingly, an assessment of three derivation methods is given.
Numerical results are presented for three- and four-bladed rotors up to an advance ratio of 0.5. While the
constant-coefficient approximation under trimmed conditions is satisfactory for low-frequency modes, it is not
satisfactory for high-frequency modes or for untrimmed conditions. The advantages of multiblade coordinates
are pronounced when the blades are coupled by dynamic inflow.
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Nomenclature
= slope of lift curve, rad ~ J = 2-K
- blade profile drag coefficient
= harmonic perturbation of roll moment
= harmonic perturbation of pitch moment
coefficient

= harmonic perturbation of thrust coefficient (in
figures also refers to steady value of thrust
coefficient)

= helicopter flat plate drag area/Tr/?2

= dimensionless force per unit length, per-
pendicular to blade and also to direction of
rotation

= dimensionless apparent mass and inertia of an
impermeable disk

= number of degrees of freedom per blade
= unsteady moment component from the Ath
blade at the rotor hub

= number of degrees of freedom of system
= number of blades
= inflow coupling matrix, Eq. (6)
= dimensionless rotating flapping frequency =

~
= flapping stiffness of &th blade
= radial distance
= rotor radius
= unsteady thrust component from the Ath blade
at the rotor hub

= dynamic inflow parameter, Eq. (3)
= vector of state variables, Eq. (5)
= vector of inflow parameters, Eq. (5)
= stiffness parameter (equal to zero for zero
elastic coupling or Bk = 0)

= perturbation flapping (lead-lag) angle of the
fan blade
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= equilibrium flapping angle
= flapping (lead-lag) coordinate
= precone angle
= blade lock number
= real portion of lead-lag eigenvalue or lead-lag
damping

= pitch angle of the kth blade, 6k + 0p(@k -

= equilibrium pitch angle of tfie Ath blade, 60 +
Oj cost, + efl suitf* + 6ft (ftk - 0 ) + B£k

= pitch-flap and pitch-lag coupling ratios
= steady inflow ratio ( = ¥4 0)
= rotor advance ratio
= inflow perturbation
= uniform, longitudinal, and lateral components
of induced flow

= induced inflow due to steady rotor thrust
= air density
= rotor solidity
= azimuth position, dimensionless time
= azimuth position of the Ath blade
= dimensionless rotating flapping frequency
= rotor angular speed
vector
matrix

Introduction

IN multiblade coordinate transformation (MCT) individual
blade deflections are represented by a finite Fourier series

in the azimuth angle. The coefficients of this series are
nonrotating blade coordinates which describe overall rotor
motions. MCT provides a natural reference frame for rotor
equations because perturbations due to the dynamic wake,
fuselage, or active controls couple with the rotor motion in
the form of nonrotating feedback effects. An TV-bladed rotor,
each blade having m degrees of freedom, is described exactly
by Nm multiblade coordinates; each deflection is expressed
via N multiblade coordinates: collective, differential (only for
N even), and first-, second-, and higher-order longitudinal
and lateral cyclic components. For rotors with an even
number of blades, the differential component remains in the
rotating system, but is reactionless for N>2 and does not


