Use of Multiblade Coordinates for Helicopter Flap-Lag Stability with Dynamic Inflow

Copal H. Gaonkar*
India Institute of Science, Bangalore, India
and
David A. Peters \dagger
Washington University, St. Louis, Mo.

Abstract

Rotor flap-lag stability in forward flight is studied with and without dynamic inflow feedback via a multiblade coordinate transformation (MCT). The algebra of MCT is found to be so involved that it requires checking the final equations by independent means. Accordingly, an assessment of three derivation methods is given. Numerical results are presented for three- and four-bladed rotors up to an advance ratio of 0.5 . While the constant-coefficient approximation under trimmed conditions is satisfactory for low-frequency modes, it is not satisfactory for high-frequency modes or for untrimmed conditions. The advantages of multiblade coordinates are pronounced when the blades are coupled by dynamic inflow.

Received Jan. 29, 1979; revision received June 1, 1979. Copyright (c) American Institute of Aeronautics and Astronautics, Inc., 1979. All rights reserved. Reprints of this article may be ordered from AIAA Special Publications, 1290 Avenue of the Americas, New York, N.Y. 10019. Order by Article No. at top of page. Member price $\$ 2.00$ each, nonmember, $\$ 3.00$ each. Remittance must accompany order.

Index categories: Helicopters; Aerodynamics; Nonsteady Aerodynamics.
*Professor. Associate Fellow AIAA.
\dagger Associate Professor. Associate Fellow AIAA.

Introduction

IN multiblade coordinate transformation (MCT) individual blade deflections are represented by a finite Fourier series in the azimuth angle. The coefficients of this series are nonrotating blade coordinates which describe overall rotor motions. MCT provides a natural reference frame for rotor equations because perturbations due to the dynamic wake, fuselage, or active controls couple with the rotor motion in the form of nonrotating feedback effects. An N-bladed rotor, each blade having m degrees of freedom, is described exactly by Nm multiblade coordinates; each deflection is expressed via N multiblade coordinates: collective, differential (only for N even), and first-, second-, and higher-order longitudinal and lateral cyclic components. For rotors with an even number of blades, the differential component remains in the rotating system, but is reactionless for $N>2$ and does not

