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Use of Multiple Imputation Models in Medical Device
Trials[1]

Donald B. Rubin and Samantha R. Cook

1. Abstract
Missing data are a common problem with data sets in most clinical trials,

including those dealing with devices. Imputation, or filling in the missing val-
ues, is an intuitive and flexible way to handle the incomplete data sets that arise
because of such missing data. Here we present several imputation strategies
and their theoretical background, as well as some current examples and advice
on computation. Our focus is on multiple imputation, which is a statistically
valid strategy for handling missing data. The analysis of a multiply imputed
data set is now relatively standard, for example in SAS and in Strata. The cre-
ation of multiply imputed data sets is more challenging but still straightfor-
ward relative to other valid methods of handling missing data. Singly imputed
data sets almost always lead to invalid inferences and should be eschewed.

2. Introduction
Missing data are a common problem with large databases in general and

with clinical and health care databases in particular. Subjects in clinical trials
may fail to provide data at one or more time points or may drop out of a trial
altogether, for reasons including lack of interest, untoward side effects, change
of geographical location, and success of the procedure with no interest in fol-
low-up assessments. Data may also be missing owing to death, although the
methods described here are generally not appropriate for such situations be-
cause such values are not really missing.1,2

[1] A similar version of this chapter appears in cursory form as an entry in The Encyclopedia
of Clinical Trials.
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An intuitive way to handle missing data is to fill in (i.e., impute) plausible
values for the missing values, thereby creating completed data sets that can be
analyzed using standard complete-data methods. The past 25 years have seen
tremendous improvements in the statistical methodology for handling incom-
plete data sets using imputation. After briefly discussing missing data mecha-
nisms, we present some common imputation methods, focusing on multiple
imputation.3 We then discuss computational issues and present some examples.

3. Missing Data Mechanisms
A missing data mechanism is a probabilistic rule that governs which data

will be observed and which will be missing. Little and Rubin1 and Rubin4 dis-
tinguish three types of missing data mechanisms. Missing data are missing
completely at random (MCAR) if missingness is independent of both observed
and missing values of all variables, almost random dart throwing at the data
matrix. MCAR is the only missing data mechanism for which complete-case
analysis (i.e., restricting the analysis to only those subjects with no missing
data) is generally acceptable. Missing data are missing at random (MAR) if
missingness depends only on observed values of variables and not on any miss-
ing values. For example, if the value of blood pressure at the end of a trial is
more likely to be missing when some previously observed values of blood pres-
sure are high and thus is independent of the value of blood pressure at the end
of the trial, the missingness mechanism is MAR.

If missingness depends on the values that are missing, even after condition-
ing on all observed quantities, the missing data mechanism is not missing at
random (NMAR). Missingness must then be modeled jointly with the data—
the missingness mechanism is “nonignorable.” Nonignorable missing data
present challenging problems because there is no direct evidence in the observed
data about how to model the missing values.

The specific imputation procedures described here are most appropriate
when the missing data are MAR and ignorable (see Little and Rubin1 and
Rubin4 for details). Multiple imputation can still be validly used with
nonignorable missing data; although it is more challenging to use it well. Mul-
tiple imputation is still more straightforward to use than other valid methods of
handling the nonignorable situation.

4. Single Imputation
Single imputation refers to imputing one value for each missing datum. Sin-

gly imputed data sets are straightforward to analyze using complete-data meth-
ods, which makes single imputation an attractive option with incomplete data.
Little and Rubin1 offer the following guidelines for creating imputations. They
should be: (1) conditional on observed variables; (2) multivariate, to reflect
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associations among missing variables; and (3) randomly drawn from predic-
tive distributions rather than set equal to means to ensure that correct variabil-
ity is reflected.

Unconditional mean imputation, which replaces each missing value with the
mean of the observed values of that variable, meets none of the three guidelines
listed above. Regression imputation can satisfy the first two guidelines by
replacing the missing values for each variable with the values predicted from
a regression (e.g., least squares) of that variable on other variables. Replacing
missing values of each variable with the mean of that variable calculated within
cells defined by categorical variables is a special case of regression imputation.
Stochastic regression imputation adds random noise to the value predicted by
the regression model, and when done properly, can meet all three guidelines.

Hot deck imputation replaces each missing value with a random draw from
a donor pool of observed values of that variable; donor pools are selected, for
example, by choosing individuals with complete data who have “similar”
observed values to the subject with missing data, e.g., by exact matching or
using a distance measure on observed variables to define “similar.” Hot deck
imputation, when done properly, can also satisfy all three of the guidelines
listed above.

Even though analyzing a singly imputed data set with standard techniques
can be straightforward, such an analysis will nearly always result in estimated
standard errors that are too small, confidence intervals that are too narrow, and
p values that are too significant, regardless of how the imputations were cre-
ated. The reason is that imputed data are treated as if they were known with no
uncertainty. Thus, single imputation is almost always statistically invalid,
although the multiple version of a single imputation method will be valid if
the imputation method is “proper.” Proper imputations satisfy the three criteria
of Little and Rubin.

4.1. Properly Drawn Single Imputations

Let Y represent the complete data, i.e., all the data we would observe in the
absence of missing data, and let Y � {Yobs, Ymis}, where Yobs is the observed
data and Ymis is the missing data. For notational simplicity, assume ignorability
of the missing data mechanism. Also, let θ represent the (generally multicom-
ponent) parameter associated with an appropriate imputation model, which
consists of both a sampling distribution on Y governed by θ, p(Y|θ), and a prior
distribution on θ, p(θ). A proper imputation is often most easily obtained as a
random draw from the “posterior predictive distribution” of the missing data
given the observed data, which formally can be written as:

p(Ymis|Yobs) � � p(Ymis, θ|Yobs)dθ � � p(Ymis|Yobs, θ)p(θ|Yobs)dθ (1)
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This expression effectively gives the distribution of the missing values, Ymis,
given the observed values, Yobs, under a model governed by θ, p(Y|θ)p(θ). This
distribution is called “posterior” because it is conditional on the observed Yobs,
and it is called “predictive” because it predicts the missing Ymis.

If the missing data follow a monotone pattern (see Section 4.1.1.), drawing
random samples from this distribution is straightforward. When missing data
are not monotone, iterative computational methods are generally necessary, as
described shortly.

4.1.1. Theory With Monotone Missingness

A missing data pattern is monotone if the rows and columns of the data
matrix can be sorted in such a way that an irregular staircase separates Yobs and
Ymis. Figures 1 and 2 illustrate monotone missing data patterns. Missing data in
clinical trials are often monotone or nearly monotone when data are missing
due to patient dropout, and once a patient drops out, the patient never returns.

Let Y0 represent fully observed variables, Y1 the incompletely observed vari-
able with the fewest missing values, Y2 the variable with the second fewest
missing values, and so on. Proper imputation with a monotone missing data
pattern begins by fitting an appropriate model to predict Y1 from Y0 and then
using this model to impute the missing values in Y1. For example, fit a regres-
sion of Y1 on Y0 using the units with Y1 observed, draw the regression param-
eters from their posterior distribution, and then draw the missing values of Y1
given these parameters and Y0. Next, impute the missing values for Y2 using Y0
and the observed and imputed values of Y1. Continue until all missing values
have been imputed. The collection of imputed values is a proper imputation of
the missing data, Ymis, under this model, and the collection of univariate pre-
diction models is the implied full imputation model. When missing data are not
monotone, this method of imputation as described cannot be used directly.

4.1.2. Theory With Nonmonotone Missingness

Creating imputations when the missing data pattern is nonmonotone gener-
ally involves iteration because the distribution p(Ymis|Yobs) is often difficult to
draw from directly. On the other hand, the data augmentation algorithm (DA),5

a stochastic version of the EM algorithm,6 is often straightforward to implement.
Briefly, DA involves iterating between randomly sampling missing data

given a current draw of the model parameters and randomly sampling model
parameters given a current draw of the missing data. The draws of Ymis form a
Markov Chain whose stationary distribution is p(Ymis|Yobs). Thus, once the
Markov Chain has reached approximate convergence, a draw of Ymis obtained
by DA is effectively a proper single imputation of the missing data from the
correct target distribution p(Ymis|Yobs), the posterior predictive distribution of
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Ymis. Many of the programs discussed in Section 5.2. use DA to impute missing
values. Other algorithms that use Markov Chain Monte Carlo methods for
imputing missing values include variations such as Gibbs sampling7 and
Metropolis-Hastings8–10.

As discussed previously, analyzing a singly imputed data set using com-
plete-data methods usually leads to anticonservative results because imputed
values are treated as if they were known, thereby underestimating uncertainty.
Multiple imputation corrects this problem, while simultaneously retaining the
advantages of single imputation.

5. Multiple Imputation

Described in detail in Rubin,11 multiple imputation is a Monte Carlo tech-
nique that replaces the missing values Ymis with m > 1 plausible values, {Ymis,1,
. . . , Ymis,m} and therefore reveals and quantifies uncertainty in the imputed
values. Each set of imputations creates a completed data set, thereby creating
m “completed” data sets: Y (1), . . . , Y (l), . . . , Y (m), where Y (l) � {Yobs, Ymis,l}.
Typically, m is fairly small; m � 5 is a standard number of imputations to use.

Fig. 1. Pattern of missing data for Intergel® trial.

Fig. 2. Pattern of missing data for Genzyme trial.
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Each of the m completed data sets is then analyzed as if there were no missing
data and the results combined using simple rules described shortly.

Obtaining proper multiple imputations is no more difficult than obtaining a
single proper imputation—the process for obtaining a proper single imputation
is simply repeated independently m times. When the missing data pattern is not
monotone, this involves generating m sequences of {Y (t)mis} each with differ-
ent starting values. Approximately independent multiple imputations can also
be obtained from a single sequence by using only every pth draw of Ymis, pro-
vided p and the length of the sequence are sufficiently large.

5.1. Combining Rules for Proper Multiple Imputations

As in Rubin11 and Schafer12, let Q represent the estimand of interest (e.g.,
the mean of a variable, a relative risk, the intention-to-treat effect, etc.), let Qest

represent the complete data estimator of Q (i.e., the quantity calculated treating
all imputed values of Ymis as known observed data), and let U represent the
estimated variance of Qest – Q. Let Qest,l be the estimate of Q based on the lth
imputation of Ymis, with associated variance Ul—that is, the estimate of Q and
associated variance are based on the complete-data analysis of the lth com-
pleted data set, Yl = {Yobs, Ymis,l}, l = 1, . . . , m.

The multiple imputation estimate of Q is simply the average of the m esti-
mates: QMIest = �m

l=1 Qest,l/m. The estimated variance of QMIest�Q is found
by combining between and within imputation variance, as with the analysis of
variance: T = Uave + (1 + m–1)B, where Uave = �m 

l=1 Ul/m is the within imputa-
tion variance, and B = �m

l=1(Qest,l – QMIest)2/(m – 1) is the between imputation
variance. The quantity T–1/2(Q–QMIest) follows an approximate tv distribution with
degrees of freedom v = (m – 1)(1 + Uave/((1 + m – 1)B))2. Rubin and Schenker13

provide additional methods for combining vector-valued estimates, signifi-
cance levels, and likelihood ratio statistics, and Barnard and Rubin14 provide an
improved expression for v with small complete data sets (see also ref. 1).

5.2. Computation for Multiple Imputation

Many standard statistical software packages now have built-in or add-on
functions for multiple imputation. The S-plus libraries, NORM, CAT, MIX,
and PAN, for analyzing continuous, categorical, mixed, and panel data, respec-
tively, are freely available12 (http://www.stat.psu.edu/_jls/), as is MICE15 (http:/
/web.inter.nl.net/users/S.van.Buuren/mi/hmtl/mice.htm), which uses regression
models to impute all types of data. SAS now has procedures PROC MI and
PROC MIANALYZE; in addition IVEwear citeRagu01 is freely available and
can be called using SAS (http://support.sas.com/rnd/app/da/new/dami.html).
WinBUGS,16 a stand-alone software package for fitting Bayesian models, imputes
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missing values when data are incomplete, assuming missing values are MAR.
New software packages have also been developed specifically for multiple
imputation. Examples are the commercially available SOLAS
(www.statsol.ie/solas/solas.htm), which has been available for years and is
most appropriate for data sets with a monotone or nearly monotone pattern of
missing data, and the freely available NORM, a stand-alone Windows version
of the S-plus function NORM (www.stat.psu.edu/_jls/). Recently, Stata an-
nounced that it supports analyses of multiply imputed data sets. (For more infor-
mation, see www.multiple-imputation.com or Horton and Lipsitz.17)

6. Examples
6.1. Lifecore

Intergel® solution is a medical device developed by Lifecore Biomedical to
prevent surgical gynecological adhesions. A double-blind, multicenter random-
ized trial was designed for the US Food and Drug Administration (FDA) to
determine whether Intergel significantly reduces the formation of adhesions
after gynecological surgery. The data collection procedure for this study was
fairly intrusive: patients had to undergo a minor abdominal surgery (a
laparoscopy) weeks after the first surgery in order for doctors to determine the
primary endpoint, the number of gynecological adhesions. The trial suffered
from missing data because not all women were willing to have another sur-
gery, despite having initially agreed to do so. Medical device trials (and clini-
cal trials in general) often suffer from missing data when data collection
methods are invasive.

The original proposal from the FDA for imputing the missing values (the
counts of adhesions) was to fill in the worst possible value (defined to be 32
adhesions) for each missing datum, which should lead to conservative results
because there were more missing data in the treatment arm than in the placebo
arm. This method ignores observed information when creating imputations.
For example, most patients with observed data had 10 or fewer adhesions.
Furthermore, because the imputed values were so much larger than the observed
values, the standard errors based on these worst-possible value imputations were
inflated, making it unlikely that significant results would be found, even when the
two treatments were substantially different. Figure 1 displays the general pat-
tern of monotone missing data in this case, with X representing covariates, Y
(0) outcomes under placebo, and Y (1) outcomes under Intergel. The question
marks represent missing values.

Colton, Piantadosi, and Rubin18 instead used a multiple imputation hot deck
procedure to impute missing values. Donor pools for each patient with missing
data were defined by treatment group and covariates: treatment center and three
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measures of baseline seriousness of adhesions, which were observed for all pa-
tients. For each patient whose outcome was missing, the donor pool consisted of
the two patients in the same treatment group and treatment center who had the
closest baseline adhesion scores. “Closeness” was defined by the Mahalanobis
metric, a corrected Euclidean squared distance, calculated for the baseline ad-
hesion measures. For each patient with missing data, the first imputation con-
sisted of a random draw from that patient’s donor pool. The remaining value in
the donor pool was used for the second imputation. The small number of impu-
tations was deemed acceptable because less than 6% of the outcomes were
missing.

Formally, this method is improper, but the limited donor pools should still
make the method conservative because the matches are not as close as they
would be with bigger sample sizes, or as they could be if a smooth model were
used to create the imputations. The donor pool approach also has the advantage
that imputations can be created without using any outcome data while remain-
ing blind to treatment group labels, meaning that there is no opportunity to create
imputations that influence results in a particular intended way.

6.2. Genzyme

Fabrazyme® is a drug developed by Genzyme Corporation to treat Fabry’s
disease, a rare and serious X-linked recessive genetic disease that occurs due to
an inability to metabolize creatinine. Preliminary results from a phase III FDA
trial of Fabrazyme vs placebo showed that the drug appeared to work well in
patients in their 30s who were not yet severely ill, in the sense that it lowered
their serum creatinine substantially. A similar phase IV trial involved older
patients who were more seriously ill. Because there was no other fully com-
petitive drug, it was desired to make Fabrazyme commercially available earlier
than initially planned, a decision that would allow patients randomized to pla-
cebo to begin taking Fabrazyme but would create missing outcome data among
placebo patients after they began taking the drug. The study had staggered
enrollment, so that the number of monthly observations of serum creatinine for
each placebo patient depended on the time of entry into the study. Figure 2
illustrates the general pattern of monotone missing data with the same length
follow-up for each patient. Again, X represents baseline covariates, Y (0) rep-
resents repeated measures of serum creatinine for placebo patients, and Y (1)
represents repeated measures of serum creatinine for Fabrazyme patients.

In order to impute the missing outcomes under placebo, a complex hierar-
chical Bayesian model was developed for the progression of serum creatinine
in untreated Fabry patients. In this model, inverse serum creatinine varies
linearly and quadratically in time, and the prior distribution for the quadratic
trend in placebo patients is obtained from the posterior distribution of the qua-
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dratic trend in an analogous model fit to a historical database of untreated
Fabry patients. Thus, the historical patients’ data only influence the imputa-
tions of the placebo patients’ data rather subtly—via the prior distribution on
the quadratic trend parameters.

Although the model fitting algorithm is complex, it is straightforward to use
the algorithm to obtain draws from p(θ|Yobs) for the placebo patients and then
draw Ymis conditional on the drawn value of θ, where, as earlier, θ represents all
model parameters. Drawing the missing values in this way creates a sample
from p(Ymis|Yobs) and thus an imputation for the missing values in the placebo
group.

The primary analysis will consider the time to an event, defined as either a
clinical event (e.g., kidney dialysis, stroke, death) or a substantial increase in
serum creatinine relative to baseline. The analysis will be conducted on each
imputed data set and the results combined (as outlined earlier in Section 5.1.)
to form a single inference. Although Fabrazyme is not a medical device, the
missing data mechanism in this example may be similar to those in medical
device trials. Also, the availability of potentially relevant historical data is com-
mon in medical device trials.

6.3. National Medical Expenditure Survey

The National Medical Expenditure Survey (NMES) collects data, including
hundreds of measurements of medical expenditures, background information,
and demographic information on a random sample of approximately 30,000
members of the US population. Again, although NMES does not explicitly
deal with medical devices, the general pattern of missing data and correspond-
ing issues arising in this medical database may also arise in medical device
databases.

Multiple imputation for NMES was more complicated than in the previous
two examples because the missing data pattern was not monotone. Figure 3

Fig. 3. Illustrative display for type of pattern of missing data in National Medical
Expenditure Survey.
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shows a tremendous simplification of the missing data pattern for NMES,
where, if Y1 were fully observed, the missing data pattern would be monotone.

Rubin19 imputed the missing data in NMES by capitalizing on the simplicity
of imputation for monotone missing data by first imputing the missing values
that destroyed the monotone pattern (the “nonmonotone missing values”), pro-
ceeding as if the missing data pattern were in fact monotone, and then iterating
this process. More specifically, after choosing starting values for the missing
data, iterate between the following two steps: (1) regress each variable with
any nonmonotone missing values (i.e., Y1), on all the other variables (i.e., Y0,
Y2, Y3), treating the current imputations as true values, but use this regression
to impute only the nonmonotone missing values; and (2) impute the remaining
missing values in the monotone pattern; first impute the variable with the few-
est missing values (Y2 in Fig. 3), then the variable with the second fewest miss-
ing values (Y3 in Fig. 3), and so on, treating the nonmonotone missing values
filled in during step 1 as known. This process was repeated five times to create
five sets of imputations in the NMES example.

7. Summary
MI is a flexible tool for handling incomplete data sets. MIs are often straight-

forward to create using computational procedures such as data augmentation
or using special MI software now widely available. Moreover, the results from
imputed data sets are easy to combine into a single MI inference. Although MI
is Bayesianly motivated, many MI procedures have been shown to have excel-
lent frequentist properties.20 In small samples, the impact of the prior distribu-
tion on conclusions can be assessed by creating MIs using several different
prior specifications, and more generally, the impact of different models on con-
clusions can be analogously assessed. Furthermore, although only MAR pro-
cedures have been considered here, missing data arising from an NMAR
mechanism may be multiply imputed by jointly modeling the data and the
missingness mechanism; in some cases, results are insensitive to reasonable
missingness models and the missing data can then be effectively treated as
being MAR.11 Rubin, Schafer, and Little1,11,12 provide more detail on the ideas
presented here, with some information being less technical and more acces-
sible than others.
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