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Abstract

Background: Changes in autonomic nervous system function, characterized by heart rate variability (HRV), have been associated
with infection and observed prior to its clinical identification.

Objective: We performed an evaluation of HRV collected by a wearable device to identify and predict COVID-19 and its related
symptoms.

Methods: Health care workers in the Mount Sinai Health System were prospectively followed in an ongoing observational
study using the custom Warrior Watch Study app, which was downloaded to their smartphones. Participants wore an Apple Watch
for the duration of the study, measuring HRV throughout the follow-up period. Surveys assessing infection and symptom-related
questions were obtained daily.

Results: Using a mixed-effect cosinor model, the mean amplitude of the circadian pattern of the standard deviation of the
interbeat interval of normal sinus beats (SDNN), an HRV metric, differed between subjects with and without COVID-19 (P=.006).
The mean amplitude of this circadian pattern differed between individuals during the 7 days before and the 7 days after a COVID-19
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diagnosis compared to this metric during uninfected time periods (P=.01). Significant changes in the mean and amplitude of the
circadian pattern of the SDNN was observed between the first day of reporting a COVID-19–related symptom compared to all
other symptom-free days (P=.01).

Conclusions: Longitudinally collected HRV metrics from a commonly worn commercial wearable device (Apple Watch) can
predict the diagnosis of COVID-19 and identify COVID-19–related symptoms. Prior to the diagnosis of COVID-19 by nasal
swab polymerase chain reaction testing, significant changes in HRV were observed, demonstrating the predictive ability of this
metric to identify COVID-19 infection.

(J Med Internet Res 2021;23(2):e26107) doi: 10.2196/26107
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Introduction

COVID-19 has resulted in over 41 million infections and more
than 1.1 million deaths [1]. The prolonged incubation period
and variable symptomatology of SARS-CoV-2 have facilitated
disease spread. Approximately 30%-45% of individuals infected
with SARS-CoV-2 are asymptomatic and testing is generally
being limited to symptomatic individuals [2-4]. Health care
workers, characterized as any type of worker in a health care
system, represent a vulnerable population, with a threefold
increased risk of infection compared to the general population
[5]. This increased risk of transmission is important in health
care settings, where asymptomatic or presymptomatic health
care workers can shed the virus, contributing to transmission
within health care facilities and their own households [6].

Digital health technology offers an opportunity to address the
limitations of traditional public health strategies aimed at
curbing the spread of COVID-19 [7]. Smartphone apps are
effective in using symptoms to identify people who may be
infected with SARS-CoV-2; however, these apps rely on
ongoing participant compliance and self-reported symptoms
[8]. Wearable devices are commonly used for remote sensing,
and they provide a means to objectively quantify physiological
parameters, including heart rate, sleep, activity, and measures
of autonomic nervous system (ANS) function (eg, heart rate
variability [HRV]) [9]. The addition of physiological data from
wearable devices to symptom-tracking apps has been shown to
increase the ability to identify people infected with
SARS-CoV-2 [10].

HRV is a physiological metric that provides insight into the
interplay between the parasympathetic and sympathetic nervous
systems that modulate cardiac contractility and cause variability
in the beat-to-beat intervals [11]. HRV exhibits a 24-hour
circadian pattern, with relative sympathetic tone during the day
and parasympathetic activity at night [12-14]. Changes in this
circadian pattern can be leveraged to identify different
physiological states. Several studies have demonstrated that
lower HRV, indicating increased sympathetic balance, is a
reliable predictor of infection onset [15,16]. However, HRV
and its dynamic changes over time have not been evaluated as
a marker or predictor of COVID-19. In response to the
COVID-19 pandemic, we launched the Warrior Watch Study,
employing a novel smartphone app to remotely enroll and
monitor health care workers throughout the Mount Sinai Health

System in New York City, a site of initial case surge. This digital
platform enables the delivery of remote surveys to Apple
iPhones and passive collection of Apple Watch data, including
HRV. The aim of this study is to determine if SARS-CoV-2
infections can be identified and predicted prior to a positive test
result using the longitudinal changes in HRV metrics derived
from individuals’ Apple Watch data.

Methods

Study Design
The primary aim of the study was to determine whether changes
in HRV can differentiate participants who are infected and not
infected with SARS-CoV-2. The secondary aim was to observe
if changes in HRV can predict the development of SARS-CoV-2
infection prior to diagnosis by a SARS-CoV-2 nasal swab
polymerase chain reaction (PCR) test. The exploratory aims
were to (1) determine whether changes in HRV can identify the
presence of COVID-19–related symptoms; (2) determine
whether changes in HRV can predict the development of
COVID-19–related symptoms; and (3) evaluate how HRV
changed throughout the infection and symptom period.

Health care workers in the Mount Sinai Health System were
enrolled in an ongoing prospective observational cohort study.
Eligible participants were aged ≥18 years, were current
employees in the Mount Sinai Health System, had an iPhone
Series 6 or higher, and had or were willing to wear an Apple
Watch Series 4 or higher. Participants were excluded if they
had an underlying autoimmune disease or were taking
medications known to interfere with ANS function. A positive
COVID-19 diagnosis was defined as a positive SARS-CoV-2
nasal swab PCR test reported by the participant. Daily symptoms
were collected, including fever and chills, feeling tired or weak,
body aches, dry cough, sneezing, runny nose, diarrhea, sore
throat, headache, shortness of breath, loss of smell or taste, itchy
eyes, none, or other. This study was approved by the Institutional
Review Board at The Icahn School of Medicine at Mount Sinai.

Study Procedures
Participants downloaded the custom Warrior Watch app to
complete eligibility questionnaires and sign an electronic consent
form. Participants completed an app-based baseline assessment
collecting demographic information, prior COVID-19 diagnosis
history, occupation, and medical history and were then followed
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prospectively through the app. Daily survey questionnaires
captured COVID-19–related symptoms, symptom severity,
SARS-CoV-2 nasal swab PCR test results, serum SARS-CoV-2
antibody test results, and daily patient care–related exposure
(Table S1 in Multimedia Appendix 1). Participants performed
their normal activities throughout the study and were instructed
to wear the Apple Watch for a minimum duration of 8 hours
per day.

Wearable Monitoring Device and Autonomic Nervous
System Assessment
HRV was measured via the Apple Watch Series 4 or 5, which
are commercially available wearable devices. Participants wore
the device on the wrist and connected it via Bluetooth to their
iPhone. The Apple Watch is equipped with an enhanced
photoplethysmogram optical heart sensor that combines a green
light-emitting diode paired with a light-sensitive photodiode
generating time series peaks that correlate with the magnitude
of change in the green light generated from each heartbeat [17].
Data are filtered for ectopic beats and artifacts. The time
difference between heartbeats is classified as the interbeat
interval (IBI), from which HRV is calculated. The Apple Watch
and the Apple Health app automatically calculate HRV using
the standard deviation of the IBI of normal sinus beats (SDNN),
measured in milliseconds. This time domain index reflects both
sympathetic and parasympathetic nervous system activity and
is calculated by the Apple Watch during ultra–short-term
recording periods of approximately 60 seconds [11]. The Apple
Watch generates several HRV measurements throughout a
24-hour period. HRV metrics are stored in a locally encrypted
database accessible through the iPhone Health app, which is
retrieved through our custom Warrior Watch app. Data are
transferred from the iPhone and Apple Watch upon completion
of the e-consent form and any survey in the app. Wearable data
are stored locally, enabling retrieval on days when the surveys
are not completed by the participants.

Statistical Analysis

HRV Modeling
The HRV data collected through the Apple Watch were
characterized by a circadian pattern, a sparse sampling over a
24-hour period, and nonuniform timing across days and
participants. These characteristics bias easily derived features,
including mean, maximum, and minimum, creating the need to
derive methods that model the circadian rhythm of HRV. A
cosinor model was used to model the daily circadian rhythm
over a 24-hour period with the following nonlinear function:

Y(t) = M + Acos(2πt/τ + ϕ) + ei(t) (1)

where τ is the period (τ=24 h); M is the midline statistic of
rhythm (MESOR), a rhythm-adjusted mean; A is the amplitude,
a measure of half of the extent of variation within a day; and Φ
is the acrophase, a measure of the time at which overall high
values recur on each day (Figure S1 in Multimedia Appendix
1). This nonlinear model with three parameters has the
advantage of being easily transformed into a linear model by
recoding the time (t) in two new variables x and z as x =
sin(2πt/τ), z = sin(2πt/τ). HRV can then be written as follows:

Y(t) = M + βxt + γzt + ei(t) (2)

where the linear coefficients β, γ of the linear model in Equation
2 are related to the nonlinear parameters of the nonlinear model
in Equation 1 by β = Asin(ϕ) and γ = –Asin(ϕ). One can estimate
the linear parameters β, γ and then obtain A and ϕ as

We took advantage of the longitudinal structure of the data to
identify a participant-specific daily pattern, and we then
measured departures from this pattern as a function of
COVID-19 diagnosis or other relevant covariates. To do this,
we used a mixed-effect cosinor model, where the HRV measure
of participant i at time t can be written as follows:

HRVit = (M + β.xit+γ.zit)+Wit.θi+ei(t), ei(t)~N(0,s) (5)

where M, β, and γ are the population parameters (fixed effects)
and θi is a vector of random effects that is assumed to follow a
multivariate normal distribution θi~N(0,Σ). In this context, the
introduction of random effects intrinsically models the
correlation due to the longitudinal sampling. To measure the
impact of any covariate C on the participants’ daily curve, we
can introduce these covariates as fixed effects, as their
interactions with x and z:

HRVit = M + aOCi + (β + a2Ci).xit + (γ + a3Ci).zit +
Wit.θi + ei(t) (6)

The model parameters and the standard errors of Equation 6
can be estimated via maximum likelihood or reweighted least
squares (REWL), and hypothesis testing can be conducted for
any comparison that can be written as a linear function of the
a, β, and γ parameters.

However, to test if the cosinor curve, defined by the nonlinear
parameters M, A, and Φ in Equation 1, differs between the
populations defined by the covariate C, we proposed a
bootstrapping procedure in which for each resampling iteration,
we (1) fit a linear mixed-effect model using REWL; (2)
estimated the marginal means by obtaining the linear parameters
for each group defined by covariate C; (3) used the inverse
relationship to estimate marginal means M, A, and Φ for each
group defined by C; and (4) defined the bootstrapping statistics
as the pairwise differences of M, A, and Φ between groups
defined by C. For these iterations, the confidence intervals for
the nonlinear parameter were defined using standard bootstrap
techniques, and the P values derived for the differences in each
nonlinear parameter between groups were defined by Ci. Age
and sex were included as covariates in the HRV analyses and
admitted as invariant and time-variant covariates.

Association and Prediction of COVID-19 Diagnosis and
Symptoms
The relationship between a COVID-19 diagnosis and the change
in the HRV curves was evaluated. To test this association, we
defined the time variant covariate Cit for participant i at time t
as follows:
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HRV metrics for the 14 days following the time of the first
positive SARS-CoV-2 nasal swab PCR test were used to define
the positive SARS-CoV-2 infection window. To evaluate the
predictive ability of changes in HRV prior to a COVID-19
diagnosis and to explore its changes during the infection period,
the time variant covariate was used to characterize the following
4 groups: healthy uninfected individuals (t<t0 – 7), 7 days before
COVID-19 diagnosis (t≥t0 – 7, t<t0), the first 7 days
post–COVID-19 diagnosis (t0≤t<t0 + 7), and 7-14 days
postdiagnosis (t0 + 7≤t<t0 + 14).

To determine the association between COVID-19 symptoms
and changes in HRV metrics, we defined being symptomatic
as the first day of a reported symptom and compared this to all
other days. To evaluate the predictive ability of HRV to identify
upcoming symptom days and to explore its changes over time,
the time variant covariate was used to characterize the following

4 groups: healthy asymptomatic individuals for t<t0 – 1, 1 day
before COVID-19 symptoms (t≥t0 – 1, t<t0), the first day of
COVID-19 symptoms (t0≤t<t0 + 1) and 1 day post–COVID-19
symptom development (t0 + 1≤t<t0 + 2).

Results

Participant Demographics
We enrolled 297 participants between April 29 and September
29, 2020, when the data were censored for analysis (Table 1).
The median age at enrollment was 36 years (SD 9.8), and 69.4%
of participants (204/297) were women. Of the 297 participants,
20 (6.7%) reported having a positive SARS-CoV-2 nasal swab
PCR test prior to enrollment, while 28 participants (9.4%)
reported having a positive blood antibody test prior to joining
the study. The median duration of follow-up was 42 days (range
0-152 days). A median of 28 HRV samples (range 1-129) were
obtained per participant. Study compliance over the follow-up
period, defined as participants answering over 50% of daily
surveys, was 70.4%.

Table 1. Baseline demographics of the study participants at enrollment (N=297).

ValueCharacteristic

36.3 (9.8)Age (years), mean (SD)

25.6 (5.7)BMI (kg/m2), mean (SD)

204 (69.4)Female gender, n (%)

Race, n (%)

73 (24.6)Asian

29 (9.8)Black

108 (36.4)White

43 (14.5)Other

44 (14.8)Hispanic ethnicity, n (%)

20 (6.7)Baseline positive SARS-CoV-2 nasal swab PCRa test, n (%)

28 (9.4)Baseline positive SARS-CoV-2 serum antibody test, n (%)

Occupationb, n (%)

198 (68.0)Clinical nontrainee

36 (12.4)Clinical trainee

57 (19.6)Nonclinical staff

Baseline smoking status, n (%)

35 (11.9)Current or past smoker

259 (88.1)Nonsmoker or rare smoker

4 (1.4)Baseline immune suppressing medication, n (%)

aPCR: polymerase chain reaction.
bClinical trainee is defined as a resident or fellow; clinical nontrainee is defined as a health care worker reporting at least one patient-facing day during
follow-up, exclusive of residents and fellows; nonclinical staff is defined as a health care worker who did not report a patient-facing day during follow-up.

Identification and Prediction of COVID-19 Diagnosis
Participants classified as not having a COVID-19 diagnosis
during follow-up included those with and without a diagnosis

of COVID-19 prior to study enrollment. There was no
significant difference in the mean MESOR, acrophase, or
amplitude of the circadian SDNN pattern of participants with
a positive nasal swab PCR test prior to enrollment compared to
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those who were never diagnosed with COVID-19. This supports
the inclusion of participants with a prior COVID-19 diagnosis
in our analysis (Table S2 in Multimedia Appendix 1). During
the follow-up period, 13/297 participants (4.4%) reported a
positive SARS-CoV-2 nasal swab PCR test, with the date of
diagnosis corresponding with the reported date of the positive
test. The mean MESOR, acrophase, and amplitude of the
circadian SDNN pattern in participants who were and were not
diagnosed with COVID-19 during follow-up are described in
Table 2. A significant difference in the circadian pattern of
SDNN was observed in participants diagnosed with COVID-19
compared to those without a COVID-19 diagnosis. There was
a significant difference (P=.006) between the mean amplitude
of the circadian pattern of SDNN in participants with COVID-19
(1.23 milliseconds, 95% CI –1.94 to 3.11) and without
COVID-19 (5.30 milliseconds, 95% CI 4.97 to 5.65). No
difference was observed between the MESOR (P=.46) or
acrophase (P=.80) in these two infection states (Figure 1A-C).
Similar findings were observed when this analysis was repeated
to include only participants who had either a positive (13/297,
4.4%) or negative (108/297, 36.4%) SARS-CoV-2 nasal swab
PCR test during the follow-up period, excluding participants
who reported never being tested (Table S3 in Multimedia
Appendix 1).

The mean MESOR, acrophase, and amplitude of the circadian
SDNN pattern for those without COVID-19, those during the
7 days prior to a COVID-19 diagnosis, participants during the
7 days after a COVID-19 diagnosis, and those during the 7-14
days after a COVID-19 diagnosis are described in Table 3.

Significant changes in the circadian SDNN pattern were
observed in participants during the 7 days prior to and the 7
days after a diagnosis of COVID-19 when compared to
uninfected participants. There was a significant difference
between the amplitude of the SDNN circadian rhythm between
uninfected participants (5.31 milliseconds, 95% CI 4.95 to 5.67)
compared to individuals during the 7-day period prior to a
COVID-19 diagnosis (0.29 milliseconds, 95% CI –4.68 to 1.73;
P=.01) and participants during the 7 days after a COVID-19
diagnosis (1.22 milliseconds, 95% CI –2.60 to 3.25; P=.01).
There were no other significant differences between the
MESOR, amplitude, and acrophase of the circadian rhythm of
the SDNN observed between healthy individuals, individuals
7 days before a COVID-19 diagnosis, individuals 7 days after
a COVID-19 diagnosis, and individuals 7-14 days after infection
(Figure 1D-E).

Of the 13 subjects diagnosed with COVID-19 during follow
up, 6 reported symptoms at some point during the study period.
Only 4 subjects had symptomatic COVID-19 infections,
reporting symptoms between 7 days prior and 14 days after a
positive SARS-CoV-2 nasal swab PCR test. Comparing
participants with and without symptomatic COVID-19, no
significant differences between the MESOR (28.58 milliseconds,
95% CI 18.61 to 38.56; 37.71 milliseconds, 95% CI 30.65 to
44.98, P=.11), amplitude (1.15 milliseconds, 95% CI –2.63 to
3.21; 1.68 milliseconds, 95% CI –1.13 to 3.95, P=.76) and
acrophase (–1.92 milliseconds, 95% CI –3.68 to –0.02; –2.49
milliseconds, 95% CI –4.37 to –0.33, P=.62) of the circadian
rhythm of SDNN were observed, respectively.

Table 2. HRV parameters in participants with and without COVID-19 diagnoses based on SARS-CoV-2 nasal swab PCR tests.

P valueDifference (95% CI)Parameter (milliseconds), mean (95% CI)Parameter

Participants diagnosed with COVID-19Participants not diagnosed with COVID-19

.46–1.12 (–4.22 to 1.73)42.46 (38.90 to 45.79)43.57 (41.40 to 45.40)MESORa

.006 b–4.07 (–7.29 to –2.07)1.23 (–1.94 to 3.11)5.30 (4.97 to 5.65)Amplitude

.800.22 (–1.74 to 2.43)–2.23 (–2.22 to –4.24)–2.44 (–2.49 to –2.39)Acrophase

aMESOR: midline statistic of rhythm.
bItalic text indicates statistical significance.
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Figure 1. Relationship between HRV circadian rhythm and COVID-19 status. Timeline (A) illustrates HRV measures from the time of COVID-19
diagnosis via nasal swab PCR test and during the following 2 weeks after subjects were deemed to be COVID-19–positive and were compared with
measurements outside this window, where subjects were deemed to be COVID-19–negative. Daily HRV rhythm (B) on days with positive and negative
COVID-19 diagnoses. Plots (C) showing the means and 95% confidence intervals for the parameters defining the circadian rhythm, acrophase, amplitude
and MESOR, on days with positive and negative COVID-19 diagnoses. Daily HRV patterns (D, E) for days on which subjects were healthy, 7 days
before a positive COVID-19 test, 7 days after a positive COVID-19 test, and 7-14 days after a positive COVID-19 test. Means and 95% confidence
intervals for the acrophase, amplitude, and MESOR of the HRV measured on days when participants were healthy, 7 days before a positive COVID-19
test, 7 days after a positive COVID-19 test, and 7-14 days after a positive COVID-19 test. *P<.10, **P<.05, ***P<.01, ****P<.001, ns: not significant.
HRV: heart rate variability; MESOR: midline statistic of rhythm; SDNN: standard deviation of the interbeat interval of normal sinus beats.
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Table 3. Comparison of heart rate variability parameters based on the time periods before and after diagnosis.

P valueDifference (95% CI)Value (milliseconds),
mean (95% CI)

Second period relative
to COVID-19 diagnosis

Value (milliseconds),
mean (95% CI)

Parameter and first period rela-
tive to COVID-19 diagnosis

MESORa

.13–3.03 (–6.98 to 1.02)43.58 (41.88 to 45.37)Uninfected40.56 (35.98 to 45.46)7 days before

.17–2.81 (–6.73 to 1.10)43.58 (41.88 to 45.37)Uninfected40.77 (36.44 to 45.42)7 days after

.890.22 (–3.39 to 3.73)43.58 (41.88 to 45.37)Uninfected43.80 (40.01 to 47.65)7-14 days after

.32–3.24 (–9.63 to 3.33)43.80 (40.01 to 47.65)7-14 days after40.56 (35.98 to 45.46)7 days before

.13–3.03 (–6.98 to 1.02)43.80 (40.01 to 47.65)7-14 days after40.77 (36.44 to 45.42)7 days after

.890.217 to (–3.39 to 3.73)40.56 (35.98 to 45.46)7 days before40.77 (36.44 to 45.42)7 days after

Amplitude

.01 b–5.02 (–10.14 to –3.58)5.31 (4.95 to 5.67)Uninfected0.29 (–4.68 to 1.73)7 days before

.01–4.09 (–7.87 to –1.93)5.31 (4.95 to 5.67)Uninfected1.22 (–2.60 to 3.25)7 days after

.48–1.51 (–5.79 to 2.35)5.31 (4.95 to 5.67)Uninfected3.80 (–0.64 to 7.88)7-14 days after

.20–3.51 (–10.50 to 0.22)3.80 (–0.64 to 7.88)7-14 days after0.29 (–4.68 to 1.73)7 days before

.34–2.58 (–8.44 to 2.08)3.80 (–0.64 to 7.88)7-14 days after1.22 (–2.60 to 3.25)7 days after

.580.93 (–1.92 to 5.83)0.29 (–4.68 to 1.73)7 days before1.22 (–2.60 to 3.25)7 days after

Acrophase

.450.78 (–1.4 to 3.62)–2.44 (–2.49 to –2.39)Uninfected–1.67 (–3.78 to 1.19)7 days before

.481.92 (0.03 to 8.13)–2.44 (–2.49 to –2.39)Uninfected–0.53 (-2.39-5.89)7 days after

.70–0.19 (–1.39 to 1.16)–2.44 (–2.49 to –2.39)Uninfected–2.63 (–3.95 to 1.19)7-14 days after

.550.96 (–1.85 to 4.32)–2.63 (–3.95 to 1.19)7-14 days after–1.67 (–3.78 to 1.19)7 days before

.352.10 (0.10 to 8.29)–2.63 (–3.95 to 1.19)7-14 days after–0.53 (–2.39 to 5.89)7 days after

.581.14 (–1.34 to 7.27)–1.67 (–3.78 to 1.19)7 days before–0.53 (–2.39 to 5.89)7 days after

aMESOR: midline statistic of rhythm.
bItalic text indicates statistical significance.

Identification and Prediction of COVID-19 Symptoms
Of the 297 participants, 165 (55.6%) reported developing a
symptom during the follow-up period, with the greatest number
of participants reporting feeling tired or weak (n=87, 29.3%),
followed by headaches (n=82, 27.6%) and sore throat (n=60,
20.2%) (Table 4). Evaluating the days on which participants
experienced symptoms, we found that loss of smell or taste was
reported the most frequently, with a mean of 138 days. This
was followed by feeling tired or weak, reported for a mean of
25 days, and runny nose, reported for a mean of 19.5 days
(Figure 2).

The mean MESOR, acrophase, and amplitude observed in the
circadian SDNN patterns of participants on the first day they
experienced a symptom and on all other days of follow-up are
reported in Table 5. There was a significant difference in the
circadian SDNN pattern between participants on the first day a
symptom was reported compared to all other days of follow-up.
Specifically, there was a significant difference (P=.01) between
the mean MESOR of the circadian SDNN pattern on the first
day of symptoms (46.01 milliseconds, 95% CI 43.37 to 48.77)
compared to all other days (43.48 milliseconds, 95% CI 41.77
to 45.27). Similarly, there was a significant difference (P=.01)

between the mean amplitude of the circadian SDNN pattern on
the first day of symptoms (2.58 milliseconds, 95% CI 0.26-5.00)
compared to all other days (5.30 milliseconds, 95% CI
4.95-5.66) (Figure 3A-C). Out of the 165 participants reporting
symptoms during the follow-up period, 36 participants (21.2%)
reported experiencing a symptom graded as 6 or higher on a
10-point scale. The impact of the severity of a symptom on the
HRV was evaluated by comparing HRV metrics in participants
with symptoms graded as a 6 or higher versus those with
symptoms graded 5 or less. There was a significant difference
between the mean amplitude (P=.02) and MESOR (P=.01) of
the circadian SDNN pattern in subjects with low symptom
severity (amplitude 9.39 milliseconds, 95% CI 7.41 to 11.02;
MESOR 42.82 milliseconds, 95% CI 38.65 to 47.19) and high
symptom severity (amplitude 4.74 milliseconds, 95% CI 0.75
to 8.40; MESOR 36.15 milliseconds, 95% CI 29.11 to 43.34).
There was no significant difference (P=.84) in the acrophase
between those with low symptom severity (–2.43 ms, 95% CI
–2.59 to –2.26) and high symptom severity (–2.49 milliseconds,
95% CI –3.19 to –1.77).

The mean MESOR, acrophase, and amplitude observed in the
circadian SDNN patterns of participants on the day before
symptoms developed, on the first day of the symptom, on the
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day following the first day of the symptom, and on all other
days are reported in Table 6. Significant changes in the circadian
SDNN pattern were observed, specifically in the mean amplitude
(P=.04), when comparing participants on the first day of the
symptom (3.07 milliseconds, 95% CI 0.88 to 5.22) to all other
days (5.32 milliseconds, 95% CI 4.99 to 5.66). Excluded from
this analysis were the day prior to and the day after the first
symptomatic day. Changes in SDNN characteristics trended
toward significance prior to the development of symptoms.
Specifically, the differences in the mean amplitude of the
circadian SDNN pattern trended toward significance when
comparing the day prior to symptom development (2.92
milliseconds, 95% CI 0.50 to 5.33) with all other days (5.32
milliseconds, 95% CI 4.99 to 5.66; P=.06). Again, the first day

of the symptom and the day after the first symptomatic day were
excluded from the analysis. Additionally, there was a trend
toward significance when comparing the amplitude of the SDNN
circadian pattern between participants during the first day of
the symptom (3.07 milliseconds, 95% CI 0.88 to 5.22) with that
one day after the first symptom was reported (5.47 milliseconds,
95% CI 3.16 to 7.76; P=.56). Excluded from the analysis were
the day prior to symptom development and all other days. There
were no other significant differences between the MESOR,
amplitude, or acrophase of the circadian rhythm of the SDNNs
when comparing participants on the day before symptoms
developed, on the first day of the symptom, on the day following
the first day of the symptom, or on all other days (Figure 3D-E).

Table 4. Number of participants reporting each symptom (N=297).

Participants, n (%)aSymptom

11 (3.7)Fever or chills

87 (29.3)Fatigue or weakness

47 (15.8)Body aches

32 (10.8)Dry cough

52 (17.5)Sneezing

43 (14.4)Runny nose

33 (11.1)Diarrhea

60 (20.2)Sore throat

82 (27.6)Headache

11 (3.7)Shortness of breath

5 (1.7)Loss of smell or taste

53 (17.8)Itchy eyes

26 (8.8)Other

aPercentages add to >100% because participants could report one or more symptoms.

Figure 2. Number of symptom days per participant when evaluating days on which participants reported symptoms.
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Table 5. Heart rate variability parameters on the first day of reported symptoms compared to all other symptom-free days.

P valueDifference (95% CI)Value on all other days (millisec-
onds), mean (95% CI)

Value on the first day of symptoms
(milliseconds), mean (95% CI)

Parameter

.01 b2.53 (0.82 to 4.36)43.48 (41.77 to 45.27)46.01 (43.37 to 48.77)MESORa

.01–2.73 (–5.16 to 0.31)5.30 (4.95 to 5.66)2.58 (0.26 to 5.00)Amplitude

.440.24 (–0.38 to 0.88)–2.44 (–2.49 to –2.39)–2.21 (–2.83 to –1.58)Acrophase

aMESOR: midline statistic of rhythm.
bItalic text indicates statistical significance.

Figure 3. Relationship between HRV circadian rhythm and symptom onset. Timeline (A) illustrates the timing of symptom onset; the HRV profiles
of the day of the first symptom are compared to all other days. Daily HRV rhythm (B) on the day of the first symptom and nonsymptomatic or late-symptom
days. Plots (C) showing means and 95% confidence intervals for the parameters defining the circadian rhythm, acrophase, amplitude, and MESOR, on
first symptom and nonsymptomatic or late-symptomatic days. Daily HRV pattern (D) for nonsymptomatic or late-symptomatic days, the day before
the first symptom, the day of the first symptom, and the day after the first symptom. Means and 95% confidence intervals for the acrophase, amplitude,
and MESOR of the HRV measured on nonsymptomatic or late-symptomatic days, the day before the first symptom, the day of the first symptom, and
the day after the first symptom. *P<.10, **P<.05, ***P<.01, ****P<.001, ns, not significant. HRV: heart rate variability; MESOR: midline statistic of
rhythm; SDNN: standard deviation of the interbeat interval of normal sinus beats.
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Table 6. Comparison of heart rate variability parameters based on symptom state and the time periods before and after the first day of reported symptoms.

P valueDifference (95% CI)Value (milliseconds),
mean (95% CI)

Second symptom stateValue (milliseconds),
mean (95% CI)

Parameter and first symptom state

MESORa

.211.03 (–0.64 to 2.67)43.49 (41.74 to 45.21)Asymptomatic44.52 (42.05 to 46.94)1 day after first symptom day

.730.34 (–1.46 to 2.23)43.49 (41.74 to 45.21)Asymptomatic43.84 (41.41 to 46.15)1 day before first symptom day

.111.37 (–0.24 to 3.04)45.49 (41.74 to 45.21)Asymptomatic44.87 (42.42 to 47.18)First day of symptom

.66–0.69 (–3.72 to 2.47)44.52 (42.05 to 46.94)1 day after first symptom
day

43.84 (41.41 to 46.15)1 day before first symptom day

.730.34 (–1.46 to 2.23)44.52 (42.05 to 46.94)1 day after first symptom
day

44.87 (42.42 to 47.18)First day of symptom

.211.03 (–0.64 to 2.67)43.84 (41.41 to 46.15)1 day before first symptom
day

44.87 (42.42 to 47.18)First day of symptom

Amplitude

.910.15 (–2.21 to 2.37)5.32 (4.99 to 5.66)Asymptomatic5.47 (3.16 to 7.76)1 day after first symptom day

.06–2.40 (–4.75 to –0.07)5.32 (4.99 to 5.66)Asymptomatic2.92 (0.50 to 5.33)1 day before first symptom day

.04 b–2.25 (–4.38 to –0.27)5.32 (4.99 to 5.66)Asymptomatic3.07 (0.88 to 5.22)First day of symptom

.25–2.55 (–6.64 to 1.65)5.47 (3.16 to 7.76)1 day after first symptom
day

2.92 (0.50 to 5.33)1 day before first symptom day

.06–2.40 (–4.75 to –0.06)5.47 (3.16 to 7.76)1 day after first symptom
day

3.07 (0.88 to 5.22)First day of symptom

.910.15 (–2.20 to 2.37)2.92 (0.50 to 5.33)1 day before first symptom
day

3.07 (0.88 to 5.22)First day of symptom

Acrophase

.330.14 (–0.15 to 0.44)–2.45 (–2.50 to –2.39)Asymptomatic–2.30 (–2.60 to –2.00)1 day after first symptom day

.86–0.08 (–0.79 to 0.66)–2.45 (–2.50 to –2.39)Asymptomatic–2.52 (–3.31 to –1.71)1 day before first symptom day

.360.19 (–0.24 to 0.63)–2.45 (–2.50 to –2.39)Asymptomatic–2.26 (–2.73 to –1.79)First day of symptom

.63–0.22 (–1.11 to 0.70)–2.30 (–2.60 to –2.00)1 day after first symptom
day

–2.52 (–3.31 to –1.71)1 day before first symptom day

.860.04 (–0.36 to 0.46)–2.30 (–2.60 to –2.00)1 day after first symptom
day

–2.26 (–2.73 to –1.79)First day of symptom

.410.26 (–0.40 to 0.92)–2.52 (–3.31 to –1.71)1 day before first symptom
day

–2.26 (–2.73 to –1.79)First day of symptom

aMESOR: midline statistic of rhythm.
bItalic text indicates statistical significance.

Discussion

Principal Results and Comparison with Prior Work
In this prospective study, longitudinally evaluated HRV metrics
were found to be associated with a positive SARS-CoV-2
diagnosis and COVID-19 symptoms. Significant changes in
these metrics were observed 7 days prior to the diagnosis of
COVID-19. To the best of our knowledge, this is the first study
to demonstrate that physiological metrics derived from a
commonly worn wearable device (Apple Watch) can identify
and predict SARS-CoV-2 infection prior to diagnosis with a
SARS-CoV-2 nasal swab PCR test. These preliminary results
identify a novel, easily measured physiological metric that may
aid in the tracking and identification of SARS-CoV-2 infections.

Current means to control COVID-19 spread rely on case
isolation and contact tracing, which have played major roles in
the successful containment of prior infectious disease outbreaks
[18-20]. However, due to the variable incubation period, high
percentage of asymptomatic carriers, and infectivity during the
presymptomatic period of COVID-19, containment of the
disease has been challenging [21]. This has further limited the
utility of systematic screening technologies reliant on vital sign
assessment or self-reporting of symptoms [7]. Advances in
digital health provide a unique opportunity to enhance disease
containment. Wearable devices are commonly used and well
accepted for health monitoring [9,22]. Commercially available
devices are able to continually collect several physiological
parameters. Unlike app-based platforms, wearable devices have
the advantage of not requiring users to actively participate aside
from regular use of the device. Prior to the COVID-19
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pandemic, population-level data from the Fitbit wearable device
demonstrated effectiveness of real-time geographic surveillance
of influenza-like illnesses through the assessment of
physiological parameters [23]. This concept was recently
expanded during the COVID-19 pandemic by Quer and
colleagues [10], who demonstrated that the combination of
symptom-based data with resting heart rate and sleep data from
wearable devices was superior to relying on symptom-based
data alone to identify COVID-19 infections.

HRV has been shown to be altered during illnesses, with several
small studies demonstrating changes in HRV associated with
and predictive of the development of infection [24]. Ahmad and
colleagues [16] followed 21 subjects undergoing bone marrow
transplant, and they found a significant reduction in root mean
square successive difference metrics prior to the clinical
diagnosis of infection. Furthermore, wavelet HRV was noted
to decrease by 25% on average 35 hours prior to a diagnosis of
sepsis in 14 patients. In another study in 100 infants [15],
significant HRV changes were noted 3-4 days preceding sepsis
or systemic inflammatory response syndrome, with the largest
increase being seen 24 hours prior to development. Building on
these observations demonstrating that ANS changes accompany
or precede infection, our team launched the Warrior Watch
Study.

We demonstrated that significant changes in the circadian
pattern of HRV, specifically the amplitude of SDNN, were
associated with a positive COVID-19 diagnosis. Interestingly,
when we compared these changes over the 7 days preceding
the diagnosis of COVID-19, we continued to see significant
alterations in amplitude when compared to individuals without
COVID-19. This demonstrates the predictive ability of this
metric to identify infection. Additionally, most participants
diagnosed with COVID-19 in our cohort were asymptomatic.
We demonstrated that there was no difference in changes in
HRV metrics between participants with and without
symptomatic COVID-19 infections. These findings support the
utility of using wearable technology to identify COVID-19
infections, even in asymptomatic individuals. When we followed
individuals 7-14 days after diagnosis with COVID-19, we found
that the circadian HRV pattern began to normalize and was no
longer statistically different from an uninfected pattern. As an
exploratory analysis, we evaluated how HRV was impacted by
symptoms associated with a COVID-19 diagnosis, as individuals

may not be tested despite experiencing symptoms. We found
significant changes in the amplitude of the circadian HRV
pattern on the first day of symptoms, with a trend toward
statistical significance on the days before and after symptoms
were reported. Similarly, we found significant changes in HRV
when we stratified subjects based on severe or nonsevere
symptom severity. Taken together, these findings highlight the
possible use of HRV collected via wearable devices to identify
and predict COVID-19 infection.

Limitations
There are several limitations to our study. First, the number of
participants who were diagnosed with COVID-19 in our cohort
was small, limiting our ability to determine how predictive HRV
can be of infection. However, these preliminary findings support
the further evaluation of HRV as a metric to identify and predict
COVID-19 and warrant further study. An additional limitation
is the sporadic collection of HRV by the Apple Watch. Although
our statistical modeling was able to account for this, a denser
dataset would enable expanded evaluation of the relationship
between this metric and infections/symptoms. The Apple Watch
also only provides HRV in one time domain (SDNN), limiting
assessment of the relationship between other HRV parameters
with COVID-19 outcomes. Additionally, we did not capture
the times of day during which participants were awake or
sleeping. Therefore, fluctuations in sleep patterns may have
impacted some HRV readings and could not be controlled in
the analysis. Finally, an additional limitation is that we relied
on self-reported data in this study, precluding independent
verification of COVID-19 diagnosis.

Conclusions
In summary, we demonstrated a relationship between
longitudinally collected HRV acquired from a commonly used
wearable device and SARS-CoV-2 infection. These preliminary
results support the further evaluation of HRV as a biomarker
of SARS-CoV-2 infection by remote sensing. Although further
study is needed, our findings may enable the identification of
SARS-CoV-2 infection during the presymptomatic period, in
asymptomatic carriers, and prior to diagnosis by a SARS-CoV-2
nasal swab PCR test. These findings warrant further evaluation
of this approach to track and identify COVID-19 infections and
possibly other types of infection.
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