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A B S T R A C T 

A paradigm for automatic speech recognition using 
networks of actions performing variable depth analysis 
is presented. The paradigm produces descriptions of 
speech properties that are related to speech units 
through Markov models representing system 
performance. 

Preliminary results in the recognition of isolated 
letters and digits are presented. 

1. I N T R O D U C T I O N 

Recent results on Automatic Speech Recognition 
(ASR) and Speech Analysis suggest that progress in 
designing recognition devices and in advancing speech 
science knowledge may arise from an integration of the 
SO cal led cogn i t i ve and in formation-theoretic 
approaches [1]. 

The cognitive approach attempts to infer analytic 
knowledge about possible speech invariants and their 
relations. Work by Zue [2], K la t t [3], Stevens [4] and 
De Mori et al. are along this line. 

The information theoretic approach is based on a 
performance model containing states and transitions 
between any pair of states [7]. Probabilities can be 
learned that the system is in any of the model states or 
is changing state through any of the allowed 
transitions. Furthermore, the model generates in each 
state or in each transit ion, observable system 
parameters or descriptors according to some statistical 
distr ibution. 

This paper proposes an attempt to integrate the 
two above mentioned approaches. 

The idea is that of extracting speech properties 
using knowledge about acoustic correlates of linguistic 
units. For an abstract linguistic unit, the corresponding 
acoustic correlates have attributes which may differ 
from an instantiation to another due to the fact that 
different speakers produce different signals even if they 
intend to pronounce the same sound. At t r ibute 
statistics of sound properties collected on a large 
variety of pronounciations of the same sound from 
different speakers are probably the best knowledge we 

can gather today for characterizing different speaking 
styles. Furthermore, some expected acoustic properties 
can be missed in some cases and some unexpected 
properties can be detected in some other cases. These 
aspects can also be characterized by stochastic 
performance models. 

An important problem arising when large 
vocabularies have to be recognized is that of identifying 
a possibly small set of Speech Units (SU) wi th which all 
the possible words and word concatenations can be 
obtained by com pi lotion. The learning problem is then 
reconducted to the conception of a performance model 
for each SU. 

2 . A M O D E L F O R C O M P U T E R 
P E R C E P T I O N O F S P E E C H 

is applied which produces A . The relation R 1 may 
depend on the speaker, his/her mood, state of health 
and history. As may produce several As for the 
same S, probabil ity distributions for all the possible 
As can be derived using a generative model. 

R2 depends on the anatomy of the speaker. 
Again, the same actions may produce different signals, 
because the speech production system is soft and its 
behavior is affected to some extent by the environment. 

If the speaker does not read but generates a 
sentence from a set C of concepts, then a th i rd relation 
is applied: 

(4). 
R3 may depend on the speaker and his/her culture. 
Statistical models can also be used for characterizing 
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3 . P R O C E D U R A L N E T W O R K S 

A Procedural Network (PN) can be described wi th 
a formalism similar to that used for an Augmented 
Transition Network Grammar (ATNG). This 
formalism has been successfully used for Natural 
Language and Pattern Recognition [8]. A PN is a 5-
tuple 

( i i ) 
where is the network identifier, is a finite set of 
states, A is a finite set of directed arcs, is the 
init ial state and is the final state. Without any loss 
of generality we consider only PNs with a single init ial 
state and a single final state. 
Each arc a, is a 5 - tuple: 

(12) 
is the starting state of is the 

terminal state of is a measure associated to the 
arc (it can be a weight or a probability according to the 
scoring method used by the PN supervisor described 
later on), condition, is a condition and action, is an 
action; both of them are associated to the arc. The 
conditions can be categorized in two classes: 
COND n 

refers to a user defined condition n. 

DEFAULT r 
refers to a default condition (it is satisfied only if 
no other condition of any arc whose starting state 
is returns a measure greater than r). 

The actions are executed by the PN supervisor and can 
be categorized in five classes 

E X E n 
executes a user defined action; such an action is 
usually a "matcher" which performs some 
computations on the input data and returns a 
result. 

PUSH i 
is defined as follows. Let's assume that has 
an arc that contains PUSH i. Let be the 
process that executes . When the arc is 
reached whose associated action is PUSH i, the 
execution of is suspended. The state of is 
pushed on the top of the stack of the PN 
supervisor. A new process that executes PN, is 
created and executed. When the final state of PN, 
is reached, the last arc of PN, is considered. It has 
associated either a POPABS f or a POPCOND f 
action. This action is executed. It returns scores 
computed by These scores are passed to 
whose execution is resumed while terminates. 

POPABS f 
is associated to the final state of a PN . It stops the 
execution of the current network process and the 
result of the execution of the user defined function 
f is returned. 

POPCOND f 

This action is also associated to the final state of a 
PN . It has a synchronization capability that stops 
the execution of the current network if all the 
paths in the network leading to the final state 
have propagated their contribution to the 
computation of the scores the PN has to provide. 
If the condition is reached, then the result of the 
execution of the user defined function f is 
returned. 

JMP 
makes the score associated to propagate to qt± 
without any change. 
Each PN is associated a Working Memory (WM). 

Actions associated wi th the arcs of a subnetwork 
produce descriptions stored into the subnetwork W M . 
When a push to a subnetwork is made, the network 
supervisor may link the subnetwork WM wi th other 
W M , thus establishing the viewpoint wi thin which 
conditions are tested. Most of the actions associated 
wi th arcs include plans, Hidden-Markov-Models 
(HMM), local parsers, rule-based inference units. A l l 
these tools are used for extracting an unambiguous 
description D of a speech pattern and for computing an 
a-priori probability for an hvpothesis H: 

(13) 

The PN supervisor keeps up to date a search 
space where each node is represented by the following 
four-tuple: 

(14) 
where: 

is a state of a wi th a buffer containing the 
information propagated by the actions executed before 
reaching i t , 
-"context" is the context (viewpoint) in which the 
conditions and actions of the arcs starting at q have to 
be executed, 
~T is the starting time of the speech signal for the 
execution of sensory procedures invoked by the actions 
associated wi th the arcs starting at q, 
-"score" is the score of the hypothesis contained in or 
implied by "context" up to T. Composite scores can be 
evaluated as likelihoods: 

(15) 
where is obtained by a language model. 

The size of the search space can be kept small in 
spite of a large number of states in the PN if 
conditions and actions are properly chosen and placed 
in the network. 

4 . AN E X A M P L E OF A P P L I C A T I O N 

Multi-speaker recognition of isolated letters and 
digits was performed on four (two male and two 
female) speakers. 

The vocabulary used for this experiment is defined 
in Table I. The speech utterance is segmented into 
Acoustic Segments (AS) wi th an algorithm described in 
[5]. 
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model just outl ined, D should be of variable duration 
because the articulatory actions (gestures) are of 
variable duration. 

Descriptions must refer to parameters, 
morphologies and properties that are characteristic for 
a sound and exhibit low variances when many speakers, 
different microphones and environments are considered. 

In practice, fixed duration models have been 
developed and tested wi th a considerable degree of 
success mostly in speaker-dependent systems. In one of 
the most successful systems developed so far [7], D is a 
sequence of symbols obtained every 10 msecs. by 
vftptnr-qnunt.iration wi th a process that is speaker-
dependent and context-independent. 

Relation has to capture two different 
types of knowledge. The first type of knowledge is a 
relation: 

(0) 
between a sequence U of Speech Units (SU) and 
corresponding descriptions D . There are speech units 
like the plosive sound /b/ for which a large variety of 
different descriptions D are perceived as the same 
sound. Relation is many-to-one and it could be 
interesting to collect statistics of the elements of the 
universe of acoustic descriptions that produce the 
perception of the same linguistic sound. These 
statistics may represent distributions of acoustic 
patterns produced by a single or many speakers having 
the intention of producing the same sound. Statistics 
may also take into account characteristics of 
background noise. 

A second type of knowledge is a relation: 
(10) 

where S is a linguistic entity like a sentence and U is 
a sequence of Speech Units. can also contain 
statistics. 
L l2 may represent how different speakers may have 
different pronounciations of the same word. A 
stochastic model representing a word W in terms of 
SUs can be bui l t . 

An interesting possibility, we would like to explore 
in this paper, is that of designing and 
procedurally , through actions to be performed on x (t) 
in order to obtain D ,U and S . 

I t seems t h a t Var iab le dep th descr ip t ions can be 
very useful in complex tasks where a preliminary 
selection of hypotheses has to be done based on robust 
but simple descriptions and then a more detailed 
analysis has to be performed involving levels of depth 
depending on the competing hypotheses, or just on 
acoustic preconditions. 

The entire perception model can be represented by 
procedural networks which invoke subnetworks at 
several levels. At each level, different types of units 
can be defined and statistics of their components can 
be collected. 
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Speech Units contained in i t . For this purpose, actions 
are introduced for describing the AS head, its vocalic 
part, and its tai l according to the PN shown in Figure 
2. 

Speech Units correspond in this example to 
phonemes and are characterized by "place and manner 
of art iculat ion". 

The AS head is analyzed by attached procedures 
(actions) performing an Elaboration-Decision (ED) 
paradigm. There are two possible ED-actions for the 
head of an AS, namely: 

-plosive head 
-fricative (including afficate) head 

The choice of the ED action is made by disjoint 
conditions associated to arcs. These conditions are 
regular expressions of Primary Acoustic Cues 
introduced in [5], State Ml in Fig. 2. wi l l be reached 
by only one arc. Using techniques partially described 
elsewhere [6], hypotheses about the place and manner 
of articulation for the speech unit in the head 
subsegment are generated and scored by the following 
a-priori probabil i ty: 

After state M l , the ED-action "vocalic" is executed. It 
segments the vocalic part of AS into stationary and 
transient units. 

Let 

be such subsegments. For each segment vx spectral 
lines are considered as data (see [0] for details) and a-
priori probabilities about place and manner of 
articulation are obtained by HMMs of spectral lines in 
the segment vt. For each subsegment and for each 
consistent "place-manner" pair, the following 
probability is computed. 

(17). 

From state M2 to state M3, ED-actions for the tail 
of AS are executed similar to those used for the head. 
A probability 

(18) 

scores the hypotheses of the tai l subsegment. The data 
extracted in the head, the subsegments of the vocalic 
part and the tai l -can be assumed to be independent. 
The "select" action associated to the POPABS arc 
computes for each candidate hypothesis the probability 
Pr (data /hyp) by mult iplying the probabilities of the 
phonemes which appear in " h y p " : 

Preliminary results have been obtained on a test 
set of 400 utterances of words belonging to the 
alphabet defined in Table I and pronounced by four 
speakers. The voices of these speakers were used for 
learning only head and tai l statistics. An overall 
recognition rate superior to 90% was achieved. 
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