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Use of quadrupolar nuclei for quantum-information processing by nuclear magnetic resonance:
Implementation of a quantum algorithm
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Physical implementation of quantum-information processing by liquid-state nuclear magnetic resonance,
using weakly coupled spin-1

2 nuclei of a molecule, is well established. Nuclei with spin.1/2 oriented in
liquid-crystalline matrices is another possibility. Such systems have multiple qubits per nuclei and large
quadrupolar couplings resulting in well separated lines in the spectrum. So far, creation of pseudopure states
and logic gates has been demonstrated in such systems using transition selective radio-frequency pulses. In this
paper we report two developments. First, we implement a quantum algorithm that needs coherent superposition
of states. Second, we use evolution under quadrupolar coupling to implement multiqubit gates. We implement
the Deutsch-Jozsa algorithm on a spin-3

2 ~2 qubit! system. The controlled-NOT operation needed to implement
this algorithm has been implemented here by evolution under the quadrupolar Hamiltonian. To the best of our
knowledge, this method has been implemented for the first time in quadrupolar systems. Since the quadrupolar
coupling is several orders of magnitude greater than the coupling in weakly coupled spin-1

2 nuclei, the gate
time decreases, increasing the clock speed of the quantum computer.

DOI: 10.1103/PhysRevA.68.032304 PACS number~s!: 03.67.Lx
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I. INTRODUCTION

In 1985 Deutsch suggested an algorithm that dem
strated the use of ‘‘massive quantum parallelism’’ inheren
quantum systems@1#. Better known as the Deutsch-Joz
~DJ! algorithm, it can distinguish between a ‘‘constant’’ an
a ‘‘balanced’’ function in anN-qubit system in one function
call, whereas its classical counterpart requires on ave
(2N2111) function calls@1,2#. Over the years, quantum
information processing has been demonstrated in var
physical systems@3,4#. Nuclear magnetic resonance~NMR!
has also successfully demonstrated several avenue
quantum-information processing@5–25#. Quantum algo-
rithms such as the Deutsch-Jozsa algorithm, Grover’s se
algorithm, and Shor’s prime factorization algorithm ha
been successfully implemented by liquid state NMR us
molecules having weakly coupled spin-1

2 nuclei @10–18#. In
such systems each nucleus is identified as a qubit and
coupling between the qubits~nuclei! is mediated through co
valent bonds~indirect spin-spinJ coupling!.

A growing appreciation among researcher’s is the use
quadrupolar nuclei with spin. 1

2 as a suitable candidate fo
quantum-information processing@20–25#. The energy levels
of a quadrupolar nucleus are equispaced in a liquid, yield
degenerate single quantum NMR transitions. This deg
eracy is lifted in a liquid-crystalline matrix yielding 2I well
resolved transitions, allowing the 2I 11 eigenstates of a half
integer spinI nucleus to be treated as states of anN-qubit
system, provided (2I 11)52N. In such cases a single qua
drupolar nucleus acts as several qubits@21#. In such systems
while the quadrupolar splittings are of the order of seve
kHz, the linewidths are only of few Hertz. Short an
precise transition selective pulses can be applied to s
systems@21,24#.
1050-2947/2003/68~3!/032304~8!/$20.00 68 0323
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The Hamiltonian of a quadrupolar nucleus partially o
ented in a liquid-crystalline matrix, in the presence of a la
magnetic fieldB0 and having a first-order quadrupolar co
pling, is given by@26#

H5HZ1HQ

52v0I z1
e2qQ

4I ~2I 21!
~3I z

22I 2!S

52v0I z1L~3I z
22I 2!, ~1!

wherev05gB0 is the resonance frequency,g being the gy-
romagnetic ratio,S is the order parameter at the site of th
nucleus, e2qQ is the quadrupolar coupling, andL
5e2qQS/@4I (2I 21)# is the effective quadrupolar coupling
Thoughe2qQ is of the order of several MHz, a small valu
for the order parameterS converts the effective quadrupola
coupling L into several kHz. Preparation of pseudopu
states, implementation of logic gates, and half-add
subtracter operations and quantum simulations have alre
been demonstrated in such systems@21–25#. However, so far
only logical operations that do not require coherent super
sition have been implemented in such systems. In this w
we demonstrate that such systems can also be utilized
quantum-information processing by implementing alg
rithms that need coherent superpositions of states such a
Deutsch-Jozsa~DJ! algorithm. Moreover, we propose the us
of evolution under quadrupolar interaction for implemen
tion of such algorithms. The Hamiltonian of Eq.~1! has two
parts:~i! The Zeeman part (v0I z) and~ii ! scaled quadrupola
part @L(3I z

22I 2)#. The pulse sequencet/22(p)2t/2 fo-
cuses the Zeeman interaction but allows the system to ev
under the quadrupolar interaction. Similar toJ coupling, qua-
drupolar coupling provides interaction among multiple q
©2003 The American Physical Society04-1
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bits, and can be used by such sequences to implement
tiqubit gates. Since the gate time is inversely proportiona
the strength of the interaction, and the scaled quadrup
coupling is three orders of magnitude greater thanJ cou-
pling, the gate time decreases, thereby increasing, the c
speed of the quantum computer. However, in such syst
the relaxation times are also smaller by two orders. T
decoherence takes away some of the advantage of faster
speeds. We have experimentally implemented DJ algori
using quadrupolar coupling in23Na ~spin-32 ) nuclei.

II. DEUTSCH-JOZSA ALGORITHM

The DJ algorithm determines the type of an unkno
function when it is either constant or balanced. In the s
plest case,f (x) maps a single bit to a single bit. The functio
is called constant iff (x) is independent ofx and it is bal-
anced if f (x) is zero for one value ofx and unity for the
other value. For anN-qubit system,f (x1 ,x2 , . . . ,xN) is con-
stant if it is independent ofxi and balanced if it is zero fo
half the values ofxi and unity for the other half. Classicall
it requires (2N2111) function calls to check whethe
f (x1 ,x2 , . . . ,xN) is constant or balanced. However the D
algorithm would require only a single function call@1,2#. The
Cleve version of the DJ algorithm implemented by using
unitary transformation by the propagatorU f while adding an
extra qubit, is given by@27#

ux1 ,x2 , . . . ,xN&uxN11&→
U f

ux1 ,x2 , . . . ,xN&uxN11

% f ~x1 ,x2 , . . . ,xN!&. ~2!

The four possible functions for the single-bit DJ algorith
are given in Table I.

The unitary transformations corresponding to the fo
possible propagatorsU f are

U15S 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

D , U25S 0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

D ,

U35S 1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

D , U45S 0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

D . ~3!

TABLE I. Constant and balanced one-qubit functions.

Constant Balanced

x f1 f 2 f 3 f 4

0 0 1 0 1
1 0 1 1 0
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In the case of two qubits, there are two constant and
balanced functions. For higher qubits the functions are e
to evaluate using Eq.~2!.

III. DJ ALGORITHM IN A SPIN-3 Õ2 SYSTEM

The Cleve version of the algorithm implemented here
quires two qubits: an input qubit and a work qubit@27#.
Previous workers have demonstrated the algorithm using
weakly coupled spin-12 nuclei@10,11,13#. Here we implement
it on a spin-32 nucleus. The energy level diagram of a spin3

2

nucleus corresponding to the Hamiltonian of Eq.~4! is
shown in Fig. 1~a!. The four energy levels are labeled a
levels of a two-qubit system@Fig. 1~a!#. There are three
single quantum transitions among the four levels, labeled
v00201, v01211 andv11210, Fig. 1~b! ~the subscript denote
the energy levels between which the transition takes pla!.
While the above three transitions are single quantum tra

FIG. 1. ~a! Energy level diagram of a spin-3
2 nucleus oriented in

a liquid-crystal matrix. The different spin states can be labeled
states of a two-qubit system. The equilibrium deviation populatio
of different states under high-field high-temperature approxima
are schematically shown by the dots on the right-hand side.~b! The
equilibrium spectrum of23Na obtained after a hard (p/2)y pulse.
Along x axis are the frequencies in kHz and alongy axis are the
intensities. The three single quantum transitions are well separ
by an effective quadrupolar couplingL of about 16 kHz. The outer
lines are broader than the inner line~linewidths are different due to
differences in relaxation matrix elements as well as due to fluc
tions in S values!. These fluctuations inS values affect only the
outer transitions in the first order, reducing their transverse re
ation timeT2. The integrated intensities are in the correct ratio
3:4:3. The spectrum is plotted with a Lorentzian line-broaden
factor of 200 Hz.
4-2
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tions (Dm561) they are also single-qubit flip transition
However, according to the present labeling scheme
single-qubit flip corresponding tou00&↔u10& is a forbidden
Dm563 transition. The above labeling scheme was cho
to optimize the experimental implementation of the alg
rithm. As demonstrated inI 57/2 systems elsewhere, opt
mum labeling schemes can be chosen for given logical
erations@25#.

The quantum circuit for implementation of the DJ alg
rithm followed in this work~Fig. 2! is similar to those used
by previous workers@10,11#. The first qubit is the input qubi
whereas the second qubit is the work qubit. The algorit
starts from a pure stateuc&5u00& followed by a Hadamard
transform@11#. A pseudo-Hadamard operation can be imp
mented by using a high-power, low-duration ‘‘hard’’ (p/2)
pulse along the (2y) axis which creates superposition of a
the qubits@10,11#. In the spin-32 system the operator of har
(p/2)2y pulse is of the form

exp~ i I yp/2!5
1

2A2 S 1 A3 A3 1

2A3 21 1 A3

A3 21 21 A3

21 A3 2A3 1

D , ~4!

FIG. 2. Quantum circuit for implementing Deutsch-Jozsa al
rithm. The first (p/2)2y hard pulse creates superposition of
states.U f is the unitary transform corresponding to the functionf.
The last step is the measurement. In NMR this step can be sim
fied to acquisition of signal immediately afterU f is implemented.
The sign of the input qubit’s resonances with respect to those o
work qubits resonances@Eq. ~6!# distinguishes between the consta
and balanced functions.
03230
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where they component of spin angular momentum in th
spin-32 system is

I y5 i S 0 2A3/2 0 0

A3/2 0 21 0

0 1 0 2A3/2

0 0 A3/2 0

D . ~5!

The state of the system after (p/2)2y pulse is uc8&
5 exp(iI yp/2) uc & 5 1/2A2 @ u00&2A3u01& 1 A3u11& 2 u10&]
51/2A2@(u0&2u1&)(u0&2A3u1&)].

It is to be noted that unlike weakly coupled spin-1
2 nuclei,

the operator of (p/2)2y pulse used here does not create u
form superposition. However, it does create a coherent
perposition of all the states which can be utilized for ‘‘qua
tum parallelism’’ as desired by the algorithm. This al
works for higher-spin systems such as spin-7

2 nuclei which
can act as a three-qubit system@28#. After creation ofuc8&
we apply the unitary operatorU f which yields uc f9&
5U f uc8&. The operatorU1 is unity operator, yieldinguc19&

5U1uc8&51/2A2@(u0&2u1&)(u0&2A3u1&)]. The operator
U2 flips the state of the second qubit, yieldinguc29&
5U2uc8&51/2A2@(u0&2u1&)(2A3u0&1u1&)]. U3 flips the
state of the second qubit only when the state of the first q
is u1& and U4 flips the state of the second qubit only whe
the state of the first qubit isu0& ~Table II!. The operatorsU3

and U4 are thus controlled-NOT gates. It may be noted tha
similar to spin-12 case, the information about the function
encoded in the relative phase of the two states of the in
qubit; (21) for constant and~11! for balanced functions
~Table II!.

Density matrices of the system confirm the different fun
tions. The density matrices corresponding to the statesuc f9&
ares f9 , given by

-

li-

e

TABLE II. The function f, operatorU f , and wave functionuc f9& for one-qubit DJ.

Functionf OperatorU f Wave functionuc f9&

f 1 U1
1

2A2
@~ u0&2u1&)~ u0&2A3u1&)]

f 2 U2
1

2A2
@~ u0&2u1&)~2A3u0&1u1&)]

f 3 U3
1

2A2
@~ u0&1A3u1&)u0&2~A3u0&1u1&)u1&]

f 4 U4
1

2A2
@2~A3u0&1u1&)u0&1~ u0&1A3u1&)u1&]
4-3



s195S u00& u01& u11& u10&

1 2A3 A3 21

2A3 3 23 A3

A 23 3 A D u00&

u01&

u11&
, s295S 3 2A3 A3 23

2A3 1 21 A3

A3 21 1 2A3D ,

R. DAS AND A. KUMAR PHYSICAL REVIEW A 68, 032304 ~2003!
3 2 3

21 A3 2A3 1
u10& 23 A3 2A3 3

s395S 3 2A3 23 A3

2A3 1 A3 21

23 A3 3 2A3

A3 21 2A3 1

D , s495S 1 2A3 21 A3

2A3 3 A3 23

21 A3 1 2A3

A3 23 2A3 3

D . ~6!
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The signs of input qubit coherencesu11&↔u01& and
u10&↔u00& are negative fors19 and s29 but positive fors39
and s49 , indicating, respectively, constant and balanc
functions.

After U f , one needs to make a measurement~Fig. 2!.
Theoretically this step needs a Hadamard gate followed b
readout of input qubit. In NMR, the Hadamard is replaced
a pseudo-Hadamard, which can be implemented by a (p/2)
pulse. Similarly, the readout is also another (p/2) pulse.
These two pulses cancel each other and hence in NMR
result of DJ algorithm is directly available after implemen
tion of U f @11#. As seen from Eq.~6!, in the signal acquired
immediately followingU f , the resonance of the input qub
at v01211 ~the central transition of Fig. 1! will be of the same
sign as the resonances of the work qubit atv00201 and
v11210 ~the outer transitions of Fig. 1! for constant functions,
and of opposite sign for the balanced functions. It may
mentioned that only one of the transitions of the input qu
namely, u01&↔u11& is observed here, the other transitio
u00&↔u10& beingDm563.

IV. EXPERIMENT

The DJ algorithm is experimentally implemented here
23Na ~spin-32 ) nuclei of a lyotropic liquid crystal compose
of 37.9% sodium dodecyl sulfate, 6.7% decanol, and 55.
water. The liquid crystal had a nematic phase at 299
@21,31#. All experiments were performed on a DRX 50
MHz spectrometer. Figure 1~b! shows the equilibrium spec
trum consisting of three lines, with an effective quadrupo
coupling L of about 16 kHz and integrated intensity rat
3:4:3.

The u00& pseudopure state is created by applying a se
tive population inversion (p) pulse on theu10&↔u11& tran-
sition followed by a population equilibration (p/2) pulse on
u01&↔u11& transition and a gradient pulse to kill created c
herences @9,24#. Transition selective pulses are lon
duration, low-power rf pulses applied at the resonant f
quency between two energy levels, which excite a selec
transition of the spectrum and leave the others unpertur
Let us consider a two-level subsystemu i & and u j &, whose
equilibrium deviation populations arepi andpj ,
03230
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s5S pi 0

0 pj
D . ~7!

The operator of a transition selective (u) pulse about they
axis between these two levels would be

exp~2 i I y
u i &↔u j &u!5S cos~u/2! sin~u/2!

2sin~u/2! cos~u/2!
D , ~8!

where the angular-momentum operator

I y
u i &↔u j &5S 0 2 i

i 0 D .

A population inversion (p) pulse will interchange the popu
lations between the two levels,

exp~2 i I y
u i &↔u j &p!sexp~ i I y

u i &↔u j &p!

5S 0 1

21 0D S pi 0

0 pj
D S 0 21

1 0 D 5S pj 0

0 pi
D . ~9!

A population equilibration (p/2) pulse will equilibrate the
populations and create coherences of the form

exp~2 i I y
u i &↔u j &p/2!sexp~ i I y

u i &↔u j &p/2!

5
1

A2
S 1 1

21 1D S pi 0

0 pj
D 1

A2
S 1 21

1 1 D
5S ~pi1pj !/2 ~pj2pi !/2

~pj2pi !/2 ~pi1pj !/2
D , ~10!

which followed by gradient will retain the populations b
destroy the coherences.

After the creation of a pseudopure state the coherent
perposition of both the qubits are created by a nonselec
(p/2)2y pulse. At this stage one can apply the variousU f .
The functionU1 needs no pulse and the result given in F
4-4
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3 indicates that all the three transitions are of same s
and hence it is a constant function. The operatorU2 in
Eq. ~3! requires two transition selective pulse
(p/A3)x

u00&↔u01&(p/A3)x
u10&↔u11& , where,

~p/A3!x
u00&↔u01&~p/A3!x

u10&↔u11&5S 0 i 0 0

i 0 0 0

0 0 0 i

0 0 i 0

D
5 i S 0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

D .

~11!

Here we have used the fact that

~u!x
u00&↔u01&5exp~ i I x

00↔01u!

5S cos~A3u/2! i sin~A3u/2! 0 0

i sin~A3u/2! cos~A3u/2! 0 0

0 0 1 0

0 0 0 1

D ,

FIG. 3. Implementation of DJ algorithm on23Na ~spin-32 ) nu-
clei. The algorithm starts fromu00& pseudopure state. After runnin
through the quantum circuit of Fig. 1, the acquired signal is Fou
transformed. The spectra corresponding to the operationsU1 , U2 ,
U3, andU4 are given. Alongx axis are the frequencies in kHz an
alongy axis are the intensities. Constant functions are distinguis
from balanced functions by the sign of resonance of the input qu
As seen by the single quantum coherences of Eq.~6!, for U1 andU2

the resonance of input qubit~central transition! has same sign as th
resonances of the work qubit~outer transitions!, implying that the
corresponding functionsf 1 and f 2 are constant; whereas forU3 and
U4, the sign of the central transition are opposite, indicating thaf 3

and f 4 are balanced.
03230
n

~u!x
u10&↔u11&5exp~ i I x

10↔11u!

5S 1 0 0 0

0 1 0 0

0 0 cos~A3u/2! i sin~A3u/2!

0 0 i sin~A3u/2! cos~A3u/2!

D .

~12!

The result given in Fig. 3 confirms thatf 2 is also a constan
function. While implementingU3 of Eq. ~3! we note that the
Pound-Overhauser controlled-NOT gate@8# is similar toU3,
but differs from its exact form by a controlled phase opera

U35S 1 0 0 0

0 1 0 0

0 0 0 1

0 0 21 0

D S 1 0 0 0

0 1 0 0

0 0 eip 0

0 0 0 1

D . ~13!

The Pound-Overhauser controlled-NOT gate is implemented
by a transition selective (p/A3)2y

u10&↔u11& pulse. The con-
trolled phase shift operator of Eq.~13! can be realized by
using ~i! only transition selective pulses or~ii ! transition se-
lective pulses along with a evolution under quadrupolar c
pling.

(i) Transition selective pulse method.Transition selective
z pulses can be used to introduce specific phases to
different states@30#. For example, the (f)z

01↔11 intro-
duces a phase shift of 2f between the statesu01& and u11&.
(f)z

01↔11 is implemented using three selective puls
(p/4)y(f)x(p/4)2y on the transitionu01&↔u11&:

~f!z
01↔115exp~2 i I y

01↔11p/4!

3exp~2 i I x
01↔11f!exp~ i I y

01↔11p/4!

5S 1 0 0 0

0 e2 if 0 0

0 0 eif 0

0 0 0 1

D , ~14!

where thex and y components of the operator of transitio
between the statesu01&↔u11& are

I x
01↔115S 0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

D , I y
01↔115S 0 0 0 0

0 0 2 i 0

0 i 0 0

0 0 0 0

D .

~15!

Hence the controlled phase shift operator of Eq.~13! can be
achieved by using a cascade of three transition selectivz
pulses

r

d
it.
4-5



~p/4!z
u00&↔u01&~p/4!z

u10&↔u11&~p/2!z
u01&↔u11&5

e2 ip/4 0 0 0

0 eip/4 0 0

1 0 0 0

0 1 0 0
ip/4

1 0 0 0

0 e2 ip/2 0 0
ip/2

the

pling
e experi-

does not
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S 0 0 1 0

0 0 0 1

D S 0 0 e 0

0 0 0 e2 ip/4

D S 0 0 e 0

0 0 0 1

D
5e2 ip/4S 1 0 0 0

0 1 0 0

0 0 eip 0

0 0 0 1

D . ~16!

(ii) Evolution under quadrupolar coupling method.Similar toJ coupling, evolution under the quadrupolar coupling rotates
system about thez axis, introducing specific phases to the states. The quadrupolar Hamiltonian in the spin-3

2 system is of the
form

HQ5L~3Iz22I 2!53LS 1 0 0 0

0 21 0 0

0 0 21 0

0 0 0 1

D . ~17!

The operator corresponding to evolution under the quadrupolar Hamiltonian for a timet is

eiHQt5exp@2 iL~3Iz22I 2!t#

5S e2 i3Lt 0 0 0

0 ei3Lt 0 0

0 0 ei3Lt 0

0 0 0 e2 i3Lt

D . ~18!

Hence the controlled phase shift operator of Eq.~13! can be achieved by a combination (eiHQt)(p/2)z
01↔11, where t

5p/12L is the time period of evolution under the quadrupolar Hamiltonian.
We have implemented approach~ii ! in our experiments. This is because, the use of evolution under quadrupolar cou

reduces the number of transition selective pulses, enabling fast computation and less errors due to relaxation. All th
ments were carried out with the carrier frequency of the rf pulses matching with the central transition~on-resonance!. In this
situation, the evolution in the rotating frame takes place only under quadrupolar Hamiltonian and the Zeeman term
evolve.U3 was implemented by a pulse sequence

~p/A3!2y
u10&↔u11&~eiHQt!~p/2!z

u01&↔u11&5S 1 0 0 0

0 1 0 0

0 0 0 1

0 0 21 0

D S e2 ip/4 0 0 0

0 eip/4 0 0

0 0 eip/4 0

0 0 0 e2 ip/4

D S 1 0 0 0

0 e2 ip/2 0 0

0 0 eip/2 0

0 0 0 1

D
5S 1 0 0 0

0 1 0 0

0 0 0 1

0 0 21 0

D e2 ip/4S 1 0 0 0

0 1 0 0

0 0 eip 0

0 0 0 1

D 5e2 ip/4S 1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

D , ~19!

032304-6
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where t5p/12L. The operator U4 was
implemented by a similar pulse sequen
(p/A3)2y

u00&↔u01&(eiHQt)(p/2)2z
u00&↔u01& , with the same value

of t. The result after applyingU3 andU4 is given in Fig. 3,
in which it is seen that the sign of central transition is opp
site to that of the outer transitions, indicating thatf 3 and f 4
are balanced functions@Eq. ~6!#.

The selective excitation in this paper is achieved us
Gaussian soft pulses@32# of length 123ms. During the se-
lective pulses the unexcited transitions continue to exp
ence quadrupolar interaction, resulting in a rotation arou
the z axis, which leads to phase errors. To minimize su
errors, the lengths of the selective pulses were so chosen
the phase rotation is in multiples of 2p @11#. However, errors
due to relaxation could not be avoided. For example,
peak intensities are slightly different from the expected. I
because the relaxation times areT1516 ms for all the three
transitions,T2514 ms for the central transition, and 4 ms f
the outer transitions. Since, the relaxation time of the ou
transitions is less than the central, the coherences of the o
transitions decay faster, decreasing their peak intensities

In quantum-information processing by NMR, the ga
time is of the order of the inverse of coupling and the coh
ence time is proportional to the inverse of the linewidth.
liquids the coupling values are;100 Hz and the linewidth
;1 Hz yielding a gate time;3 ms, a coherence tim
;300 ms and hence a dynamic range of two orders of m
nitude. In the quadrupolar system described in this paper
quadrupolar coupling value is;16 kHz yielding an evolu-
tion time;20 ms. Since the coherence times are 14 ms a
4 ms for inner and outer transitions, respectively, the sys
yields a dynamic range of three orders of magnitude. Th
-

ys

d

n.
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g

i-
d
h
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s

r
ter

r-
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he

d
m
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both the dynamic range and the clock speed~inverse of gate
time! are better in the quadrupolar system described her

V. CONCLUSIONS

The implementation of quantum algorithms on quadrup
lar nuclei validate their use as an alternate candidate
quantum-information processing. The DJ algorithm has b
implemented here in a spin-3

2 system by manipulation o
coherent superposition using evolution under quadrupolar
teraction and rf pulses. The errors in our experiments w
mainly caused by relaxation and imperfection of rf puls
Use of tailored multifrequency pulses@22# can further de-
crease gate time and relaxation errors. Some quantum a
rithms such as Grover’s search algorithm require unifo
superposition of states, which can be realized by applica
of multiple quantum pulses@29#. Efforts are ongoing in our
lab to develop such pulses and implement various quan
algorithms in3

2 and 7
2 spin systems. Since completion of th

work, an implementation of continuous version of Grove
search algorithm@33#, and creation of pseudopure states a
entangled states in the solid state@34#, have been reported in
spin-32 systems.
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