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Use of quadrupolar nuclei for quantum-information processing by nuclear magnetic resonance:
Implementation of a quantum algorithm
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Physical implementation of quantum-information processing by liquid-state nuclear magnetic resonance,
using weakly coupled spié- nuclei of a molecule, is well established. Nuclei with spity2 oriented in
liquid-crystalline matrices is another possibility. Such systems have multiple qubits per nuclei and large
quadrupolar couplings resulting in well separated lines in the spectrum. So far, creation of pseudopure states
and logic gates has been demonstrated in such systems using transition selective radio-frequency pulses. In this
paper we report two developments. First, we implement a quantum algorithm that needs coherent superposition
of states. Second, we use evolution under quadrupolar coupling to implement multiqubit gates. We implement
the Deutsch-Jozsa algorithm on a s§i|ﬁ2 qubit system. The controlledoT operation needed to implement
this algorithm has been implemented here by evolution under the quadrupolar Hamiltonian. To the best of our
knowledge, this method has been implemented for the first time in quadrupolar systems. Since the quadrupolar
coupling is several orders of magnitude greater than the coupling in weakly coupleé gpiriei, the gate
time decreases, increasing the clock speed of the quantum computer.

DOI: 10.1103/PhysRevA.68.032304 PACS nuntber03.67.Lx

[. INTRODUCTION The Hamiltonian of a quadrupolar nucleus partially ori-
ented in a liquid-crystalline matrix, in the presence of a large
In 1985 Deutsch suggested an algorithm that demonmagnetic fieldB, and having a first-order quadrupolar cou-
strated the use of “massive quantum parallelism” inherent inpling, is given by[26]
guantum system$l]. Better known as the Deutsch-Jozsa

(DJ) algorithm, it can distinguish between a “constant” and H=Hz+Hq

a “balanced” function in arN-qubit system in one function €2qQ

call, whereas its classical counterpart requires on average :_w0|z+—(3|§_|2)3
(2N"1+1) function calls[1,2]. Over the years, quantum- 41(21-1)

information processing has been demonstrated in various =—w0|z+A(3|§—|2), 1)

physical system§3,4]. Nuclear magnetic resonanésdMR)

has also. succes_sfully demqnstrated several avenues WnerewozyBo is the resonance frequency,being the gy-
quantum-information processing5—-25. Quantum algo-  romagnetic ratioS is the order parameter at the site of the
rithms such as the Deutsch-Jozsa algorithm, Grover's seargi)cleus, e2qQ is the quadrupolar coupling, and\
algorithm, and Shor’s prime factorization algorithm have —e2qQg[41(21 —1)] is the effective quadrupolar coupling.
been successfully implemented by liquid state NMR usingrhoughe?qQ is of the order of several MHz, a small value
molecules having weakly coupled spinauclei[10-18. In  for the order paramete$ converts the effective quadrupolar
such systems each nucleus is identified as a qubit and thgupling A into several kHz. Preparation of pseudopure
coupling between the qubitaucle) is mediated through co- states, implementation of logic gates, and half-adder/
valent bondgindirect spin-spinJ coupling. subtracter operations and quantum simulations have already
A growing appreciation among researcher’s is the use obeen demonstrated in such systd@k—25. However, so far
quadrupolar nuclei with spins as a suitable candidate for only logical operations that do not require coherent superpo-
guantum-information processiig§0—25. The energy levels sition have been implemented in such systems. In this work,
of a quadrupolar nucleus are equispaced in a liquid, yieldingve demonstrate that such systems can also be utilized for
degenerate single quantum NMR transitions. This degenguantum-information processing by implementing algo-
eracy is lifted in a liquid-crystalline matrix yieldingl2vell  rithms that need coherent superpositions of states such as the
resolved transitions, allowing thd 2 1 eigenstates of a half- Deutsch-JozséDJ) algorithm. Moreover, we propose the use
integer spinl nucleus to be treated as states ofNwgubit  of evolution under quadrupolar interaction for implementa-
system, provided (2+1)=2N. In such cases a single qua- tion of such algorithms. The Hamiltonian of E@) has two
drupolar nucleus acts as several qupits. In such systems, parts:(i) The Zeeman partdyl,) and(ii) scaled quadrupolar
while the quadrupolar splittings are of the order of severapart [A(3I§—I2)]. The pulse sequence2— () — 7/2 fo-
kHz, the linewidths are only of few Hertz. Short and cuses the Zeeman interaction but allows the system to evolve
precise transition selective pulses can be applied to suchnder the quadrupolar interaction. Similardtooupling, qua-
systemg21,24. drupolar coupling provides interaction among multiple qu-
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TABLE |. Constant and balanced one-qubit functions. (a) Spin

Qubit
states states
Constant Balanced
|3/2,-3/2) 10> @
X f, f, fa f,
0 0 1 0 1 ®311-10
1 0 1 1 0 13/2,-1/2> 11> ee
® 01-11
|3/72, 1/2> 01> eee
bits, and can be used by such sequences to implement mul- ®
00-01

tiqubit gates. Since the gate time is inversely proportional to |3/2, 3/2> 00> eeee
the strength of the interaction, and the scaled quadrupolar
coupling is three orders of magnitude greater tldacou-

pling, the gate time decreases, thereby increasing, the clock
speed of the quantum computer. However, in such systems
the relaxation times are also smaller by two orders. Thus
decoherence takes away some of the advantage of faster gate
speeds. We have experimentally implemented DJ algorithm

using quadrupolar coupling iFNa (spin-) nuclei. n J JL
20 10 0 -10 '

(b)

LV [V
11-10 01-11 00-01

II. DEUTSCH-JOZSA ALGORITHM (kHz)

Th.e o alg(.)”.thm. determines the type of an unknoyvn FIG. 1. (a) Energy level diagram ofaspi%-nucleus oriented in
function when it is either constant or balanced. In the sim-

; . . ; >" " "a liquid-crystal matrix. The different spin states can be labeled as
plest casef(x) maps a single bit to a single bit. The function states of a two-qubit system. The equilibrium deviation populations

is called constant iff(x) is independent ok and it is bal- o gifterent states under high-field high-temperature approximation
anced iff(x) is zero for one value ok and unity for the  are schematically shown by the dots on the right-hand ¢ierhe
other value. For ahl-qubit systemf(X;,Xz, . .. Xy) IS CON-  equilibrium spectrum of*Na obtained after a hardn(2), pulse.
stant if it is independent of; and balanced if it is zero for Along x axis are the frequencies in kHz and alopgxis are the
half the values ok; and unity for the other half. Classically intensities. The three single quantum transitions are well separated
it requires (2"1+1) function calls to check whether by an effective quadrupolar coupling of about 16 kHz. The outer
f(X1,Xs5, ... Xy) iS constant or balanced. However the DJlines are broader than the inner lifimewidths are different due to
algorithm would require only a single function cfll,2]. The differences in relaxation matrix elements as well as due to fluctua-
Cleve version of the DJ algorithm implemented by using ations in S valueg. These fluctuations itS values affect only the
unitary transformation by the propagatdf while adding an ~ outer transitions in the first order, reducing their transverse relax-

extra qubit, is given by27] ation timeT,. The integrated intensities are in the correct ratio of
3:4:3. The spectrum is plotted with a Lorentzian line-broadening
U factor of 200 Hz.
|X11X21 e 1XN>|XN+1>_>|X11X27 CRCE 1XN>|XN+1

; 5 In the case of two qubits, there are two constant and six
Sf(X1, X2, - X)) (2 balanced functions. For higher qubits the functions are easy

to evaluate using Eq2).
The four possible functions for the single-bit DJ algorithm

are given in Table I.
The unitary transformations corresponding to the four

possible propagators; are IIl. DJ ALGORITHM IN A SPIN-3 /2 SYSTEM
f

The Cleve version of the algorithm implemented here re-
quires two qubits: an input qubit and a work qub&7].
Previous workers have demonstrated the algorithm using two
' weakly coupled spin-nuclei[10,11,13. Here we implement
it on a spin3 nucleus. The energy level diagram of a spin-
nucleus corresponding to the Hamiltonian of Ed) is
shown in Fig. 1a). The four energy levels are labeled as
levels of a two-qubit systeniFig. 1(a)]. There are three
single quantum transitions among the four levels, labeled as
(3)  wgo-o01, Wo1-11 @ndwq1_1g, Fig. Ub) (the subscript denotes
the energy levels between which the transition takes place
While the above three transitions are single quantum trans-
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Input where they component of spin angular momentum in the
10> — spin3 system is
/2 f7<
@2, | Y
0> —
Work 0 —V32 0 0
V32 o -1 o0
FIG. 2. Quantum circuit for implementing Deutsch-Jozsa algo- ly=i 0 1 0 . \/5/2 - 5
rithm. The first @r/2)_, hard pulse creates superposition of all
states.U; is the unitary transform corresponding to the functfon 0 0 \/§/2 0

The last step is the measurement. In NMR this step can be simpli-
fied to acquisition of signal immediately aftel; is implemented.

The sign of the input qubit’s resonances with respect to those of the
work qubits resonancg&q. (6)] distinguishes between the constant

and balanced functions. The state of the system afterm{2)_, pulse is [¢')

= exp(l,m/2)|¢) = 1/2y2[|00)— y3]01) + y3|11) - |10)]
tions (Am==1) they are also single-qubit flip transitions. :1/?\/5[(|0>_|1>)(|0>— \/§| NI ' _
However, according to the present labeling scheme the Itis to be noted that unlike weakly coupled sgimuclei,
single-qubit flip corresponding t®0)«|10) is a forbidden the operator of £/2)__, pulse used here does not create uni-
Am= + 3 transition. The above labeling scheme was chosefPrm superposition. However, it does create a coherent su-
to optimize the experimental implementation of the algo-perposition of all the states which can be utilized for “quan-
rithm. As demonstrated ih=7/2 systems elsewhere, opti- tum parallelism” as desired by the algorithm. This also
mum labeling schemes can be chosen for given logical opworks for higher-spin systems such as spimuclei which
erations[25]. can act as a three-qubit syst¢@8]. After creation of| )
_ The quantum cir_cuit for implement_ati_on of the DJ algo-we apply the unitary operatot); which vyields |}
rithm followed in this work(Fig. 2) is similar to those used =Uy|¢'). The operatol; is unity operator, yielding !

by previous worker$10,11]. The first qubit is the input qubit N
whereas the second qubit is the work qubit. The algorithm 19")=1/2y2[(10) - |1))(|0) = V3[1))]. The operator

starts from a pure states)=|00) followed by a Hadamard Yz flips the state of the second qubit, yielding’;
transform[11]. A pseudo-Hadamard operation can be imple-=Uzl#')=1/2y2[(|0)—[1))(—v3]|0)+[1))]. Us flips the
mented by using a high-power, low-duration “hard#(2) state of the second qubit only when the state of the first qubit
pulse along the {y) axis which creates superposition of all is |[1) andU, flips the state of the second qubit only when
the qubits[10,11]. In the spini system the operator of hard the state of the first qubit i©) (Table Il). The operator)
(m/2)_y pulse is of the form and U, are thus controlledtoT gates. It may be noted that
similar to spins case, the information about the function is
encoded in the relative phase of the two states of the input

1 V3 3 1 qubit; (—1) for constant and+1) for balanced functions
-J3 -1 1 \/§ (Table 1I).
explil ym/2) N Density matrices of the system confirm the different func-
V2 3 o-1 -1 B tions. The density matrices corresponding to the stats
-1 3 -3 1 areoy, given by
TABLE II. The functionf, operatorU;, and wave function{) for one-qubit DJ.
Functionf OperatorUs Wave function| ¢{
f U 110}~ [1))(10)~\BI1)]
1 1 2\/5
1
f U —[(|0)— 1)) (—V3|0)+]|1
2 2 >z H10 -1 V3|0)+]1))]
1
f U —[(|0)+3]1))|0)—(V3|0)+|1))|1
3 3 2ﬁ[(|>f|>)l>(f|>|>)l>]
1
f U —[—(/3]0)+|1))|0)+ (]O)+ V3| 1)) |1
4 4 2ﬁ[(f|>|>)l>(l>f|>)l>]

032304-3



R. DAS AND A. KUMAR PHYSICAL REVIEW A 68, 032304 (2003

00 |01 |11 |10

3 -3 3 -3
L -G @ |00) NEINE]
01) -3 1 -1 3
o= -3 3 -3 3 . oy= ,
1D) V3 -1 1 -8
V3 -3 3 -3
10) -3 3 -3 3
-1 3 -3 1
3 -3 -3 3 1 —-Jy3 -1 3
Sl -v3 o1 3 -1 |-V 3 J3 -3 3
7l -3 3 3 -3 Y| -1 B3 o1 -3 ©
V3 -1 -3 1 J3 -3 -3 3
|
The signs of input qubit coherenced1)«|01) and p; O
|10)+|00) are negative folr] and o’ but positive foro’ 0=( 0 p-)' (7)
j

and o, indicating, respectively, constant and balanced

functions. . .
. The operator of a transition selectivé)(pulse about the
After U;, one needs to make a measurem@g. 2). axis between these two levels would be

Theoretically this step needs a Hadamard gate followed by a

readout of input qubit. In NMR, the Hadamard is replaced by

a pseudo-Hadamard, which can be implemented by/@)( expl( —il |i)<—>|j)0):<
pulse. Similarly, the readout is also another/Z) pulse. y

These two pulses cancel each other and hence in NMR the

result of DJ algorithm is directly available after implementa-where the angular-momentum operator

tion of U; [11]. As seen from Eq(6), in the signal acquired

immediately followingU;, the resonance of the input qubit o 0 —i

at wg;_ 11 (the central transition of Fig.)Will be of the same I|y'>‘“>=( _ ) .

sign as the resonances of the work qubit«gf, o; and 0

w1119 (the outer transitions of Fig.) for constant functions, o ) o

and of opposite sign for the balanced functions. It may be® Population inversion 4) pulse will interchange the popu-
mentioned that only one of the transitions of the input qubit,ations between the two levels,

namely, |01)«|11) is observed here, the other transition

cog6/2) sin(6/2)

—sin(#/2) cog 9/2)) ' ®

00)|10) beingAm= +3. exp( il ") gexp(il )W)
IV. EXPERIMENT - = ()

The DJ algorithm is experimentally implemented here on
23 g , oY

Na (Sf'”‘i) nuclei of a lyotropic “q“o'd crystal composedoA population equilibration £/2) pulse will equilibrate the
of 37.9% sodium dodecy! sulfate, 6.7% decanol, and 55-4|<jbopulations and create coherences of the form
water. The liquid crystal had a nematic phase at 299
[21,31). All experiments were performed on a DRX 500

—ile=li il
MHz spectrometer. Figure(i) shows the equilibrium spec- exp(—ily m/2) oexplily /2)

trum consisting of three lines, with an effective quadrupolar 1(1 1\/p; 0\1/1 -1
coupling A of about 16 kHz and integrated intensity ratio = —( )( )—( )
3:4:3. V2i-1 110 p/y211 1

The |00) pseudopure state is created by applying a selec-
tive population inversion4) pulse on thg10)«|11) tran- =
sition followed by a population equilibrations(2) pulse on
|01)+|11) transition and a gradient pulse to kill created co-
herences[9,24]. Transition selective pulses are long- which followed by gradient will retain the populations but
duration, low-power rf pulses applied at the resonant fre-destroy the coherences.
qguency between two energy levels, which excite a selected After the creation of a pseudopure state the coherent su-
transition of the spectrum and leave the others unperturbegberposition of both the qubits are created by a nonselective
Let us consider a two-level subsystgim and|j), whose (m/2)_, pulse. At this stage one can apply the varidis
equilibrium deviation populations ag andp;, The functionU, needs no pulse and the result given in Fig.

(pi+p)/2 (pj—pi)/2

, 10
(pj—pPi/2  (pi+pj)/2 (10
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(0)\)(1o><_>\11>: exp(il )1(0‘_’116)

U, 10 0 0
0 1 0 0
Y — "l 0 0 cog\36r2) isin(\36/2)
U, W 0 0 isin(y30/2) cog30/2)
(12)
k The result given in Fig. 3 confirms th&} is also a constant
U3 function. While implementindJ ; of Eq. (3) we note that the
Y Y Pound-Overhauser controlleeT gate[8] is similar toU,
but differs from its exact form by a controlled phase operator
U, J 10 0 /1 0 0
M M 01 0 0//[0 1 0 O
20 0 I(kHz) Us= 0 0 0 1 0 0 &7 ol (13
FIG. 3. Implementation of DJ algorithm ofiNa (spin-%) nu- 0 0 -1 O 0 0 0 1

clei. The algorithm starts frof00) pseudopure state. After running
through the quantum circuit of Fig. 1, the acquired signal is Fourie

r -
. . The Pound-Overhauser controlledT gate is implemented
transformed. The spectra corresponding to the operatigndJ,, 9 P

- : 10) |11

Uj, andU, are given. Alongx axis are the frequencies in kHz and by a transition §electlve ! \/§)|‘y> . pulse. Th.e con-
alongy axis are the intensities. Constant functions are distinguishe(tjro_lIed_pha‘e’e shlft_pperator (_)f EdL3 Car_‘_ be rea}I!ZEd by
from balanced functions by the sign of resonance of the input qubituSing (i) only transition selective pulses @r) transition se-
As seen by the single quantum coherences of&gfor U; andU, Ieptlve pulses along with a evolution under quadrupolar cou-
the resonance of input quliitentral transitionhas same sign as the pling.
resonances of the work quiibuter transitions implying that the (i) Transition selective pulse methotransition selective
corresponding function; andf, are constant; whereas for; and ~ Z pulses can be used to introduce specific phases to the
U,, the sign of the central transition are opposite, indicatingtpat  different states[30]. For example, the ¢)2*~*! intro-
andf, are balanced. duces a phase shift of@2 between the statg91) and|11).

()9 is implemented using three selective pulses
3 indicates that all the three transitions are of same Sigl(lﬂ-/4)y(¢)x(77-/4)7y on the transitior]01) < |11):
and hence it is a constant function. The operdtbyr in
Eq. (3) requires two transition selective ulses 01-11_ 10111
(7(3/ \/5()‘><30>H|019(7T/ V3) 201 where, P (¢)z " =exp(—ily ™ arld)

xexp(—il 2 Hep)explil 0 Har/4)

0O i 0O
1 0 0 O
(71_/\/§)‘00><—>|01>(7T/\E)‘IO><—>‘11>: 000 0 e—id) 0 0
X X 0 0 0 i = . , (14)
, 0 0 €% 0
0 0i O o 0 o 1
0 1 00
B 1000 where thex andy components of the operator of transition
Mo o o 1| between the statd91)«|11) are
0 010
(11) 0 0 0O 0 0 0 O
0 010 0 0 —-i O
I 01-11__ I 01-11__ .
Here we have used the fact that X o010 ol W 0 i 0
(6)199-100 = ey j] 90 01p) 0 000 0 0 0
o 1
cog\36/2) isin(\30/2) 0 0O (19
i sin(\36/2) cog\36/2) 0 O
= ) Hence the controlled phase shift operator of E) can be
0 0 10 achieved by using a cascade of three transition selective
0 0 0 1 pulses
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e 0 0 0 /1 0 0 0 1 0 0 O
e | B | DR
0 0 1 0/|0 0 €&~ 0 0 0 €7 0
0 0 0 1/\0 0 0o e'™/\0o o0 0 1
10 0 O
:efiﬂ'/ll 0 1 0 0 (16)
0 0 €7 0]
00 0 1

(ii) Evolution under quadrupolar coupling metha8limilar toJ coupling, evolution under the quadrupolar coupling rotates the
system about the axis, introducing specific phases to the states. The quadrupolar Hamiltonian in the sgitem is of the
form

1 0 0 O
-1 0 O
Ho=A(3I1z%=1%)=3A . (17
-1 0
0 O 0 1
The operator corresponding to evolution under the quadrupolar Hamiltonian for ar tisne
eMer=ex —iA(3122—1?)7]
e—iBAT 0 0 0
0 ei3AT 0 0 .
= . . 1
0 0 €37 0 (18
0 0 0 e*i3AT
Hence the controlled phase shift operator of Et3) can be achieved by a combinatiog’{e)(7/2)2*"*, where r

=/12A is the time period of evolution under the quadrupolar Hamiltonian.

We have implemented approa@h) in our experiments. This is because, the use of evolution under quadrupolar coupling
reduces the number of transition selective pulses, enabling fast computation and less errors due to relaxation. All the experi-
ments were carried out with the carrier frequency of the rf pulses matching with the central traiti@sonande In this
situation, the evolution in the rotating frame takes place only under quadrupolar Hamiltonian and the Zeeman term does not
evolve.U3; was implemented by a pulse sequence

10 0 0 /e'™ 0 0 0 1 0 0 O
01 0 O 0o €& 0 0 0 e 0 0
1100 [1D giHo™) ( 7/2)0D =12 — _ .
(r By e (ri2); oo o 1f| o o €™ o [[o 0o €™ o
0 0 -1 0 0 0 o e/ 1o o 0 1
10 0 O 10 0 O 10 0 0
01 o0 of |01 o0 o o 1 0 0
— e—|77/4 ) — il , (19)
00 0 1 0 0 €™ 0 0 00 1
0 0 -1 0 00 0 1 0 010
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where  7=m/12A. The operator U, was  both the dynamic range and the clock spéederse of gate
implemented by a  similar pulse sequencetime) are better in the quadrupolar system described here.
(3)/°9 =19 (e!™a7) (7/2)/°9 1% | with the same value

pf T. '.I'he. rgsult after applyin'gJ3 andU, is given. i'n Fi.g. 3, V. CONCLUSIONS

in which it is seen that the sign of central transition is oppo-

site to that of the outer transitions, indicating tligtand f, The implementation of quantum algorithms on quadrupo-
are balanced functior€q. (6)]. lar nuclei validate their use as an alternate candidate for

The selective excitation in this paper is achieved usingjuantum-information processing. The DJ algorithm has been
Gaussian soft pulsg82] of length 123us. During the se- implemented here in a sp-system by manipulation of
lective pulses the unexcited transitions continue to expericoherent superposition using evolution under quadrupolar in-
ence quadrupolar interaction, resulting in a rotation arounderaction and rf pulses. The errors in our experiments were
the z axis, which leads to phase errors. To minimize suchmainly caused by relaxation and imperfection of rf pulses.
errors, the lengths of the selective pulses were so chosen thidse of tailored multifrequency puls¢22] can further de-
the phase rotation is in multiples ofi2[11]. However, errors  crease gate time and relaxation errors. Some quantum algo-
due to relaxation could not be avoided. For example, theithms such as Grover’s search algorithm require uniform
peak intensities are slightly different from the expected. It issuperposition of states, which can be realized by application
because the relaxation times darg=16 ms for all the three of multiple quantum pulsef29]. Efforts are ongoing in our
transitions,T,= 14 ms for the central transition, and 4 ms for lab to develop such pulses and implement various quantum
the outer transitions. Since, the relaxation time of the outeglgorithms in and; spin systems. Since completion of this
transitions is less than the central, the coherences of the outsiork, an implementation of continuous version of Grover’s
transitions decay faster, decreasing their peak intensities. search algorithni33], and creation of pseudopure states and

In quantum-information processing by NMR, the gateentangled states in the solid st@84], have been reported in
time is of the order of the inverse of coupling and the coherspin5 systems.
ence time is proportional to the inverse of the linewidth. In
liquids the coupling values are 100 Hz and the linewidth
~1 Hz yielding a gate time~3 ms, a coherence time
~300 ms and hence a dynamic range of two orders of mag- The authors thank T.S. Mahesh, Neeraj Sinha, N.
nitude. In the quadrupolar system described in this paper, thBuryaprakash, and K.V. Ramanathan for useful discussions.
qguadrupolar coupling value is- 16 kHz yielding an evolu- The use of DRX-500 NMR spectrometer funded by the De-
tion time ~20 ws. Since the coherence times are 14 ms anghartment of Science and Technology, New Delhi, at the So-
4 ms for inner and outer transitions, respectively, the systerphisticated Instruments. Facility, Indian Institute of Science,
yields a dynamic range of three orders of magnitude. ThusBangalore, is also gratefully acknowledged.
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