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A body temperature >38.3◦C that lasts ≥3 weeks and lacks a clear diagnosis after 1
week of standard hospital examination and treatment is called “fever of unknown origin”
(FUO). The main causes of FUO are infections, hematological diseases, autoimmune
diseases, and other non-infectious inflammatory diseases. In recent years, quantitative
metagenomics next-generation sequencing (Q-mNGS) has been used widely to detect
pathogenic microorganisms, especially in the contribution of rare or new (e.g., severe
acute respiratory syndrome-coronavirus-2) pathogens. This review addresses the
undetermined cause of fever and its evaluation by Q-mNGS.

Keywords: quantitative metagenomics next-generation sequencing, fever of unknown origin, infections,
pathogen, rare disease

INTRODUCTION

Fever of unknown origin (FUO) can be caused by various diseases. More than 200 causes of FUO
have been reported (Horowitz, 2013). In 1961, Petersdorf and Beeson were the first to define
FUO as a state of febrile illness for more than 3 weeks, with a body temperature greater than
38.3◦C (101◦F) on several occasions and an uncertain diagnosis after 1 week of standard hospital
examination and treatment (Petersdorf and Beeson, 1961). In 1991, Durak and Street re-defined
FUO into four groups: “classic,” “nosocomial,” “neutropenic,” and “human immunodeficiency
virus (HIV)-associated.” They proposed three outpatient visits and related investigations as an
alternative to “1 week of hospitalization” (Durack and Street, 1991). In 1997, Arnow and Flaherty
updated the FUO definition and considered the “minimum diagnostic evaluation to qualify
as FUO” to be: comprehensive history-taking; repeated physical examination; complete blood
count (including differential and platelet counts); routine blood chemistry (including lactate
dehydrogenase, bilirubin, and liver enzymes); urinalysis (including microscopic examination);
chest radiograph; erythrocyte sedimentation rate (ESR); antinuclear antibodies; rheumatoid factor;
angiotensin-converting enzyme; routine blood cultures (×3) while not receiving antibiotics;
cytomegalovirus immunoglobulin-M antibodies or virus detection in blood; heterophile antibody
test in children and young adults; tuberculin skin test; computed tomography (CT) of the abdomen
or radionuclide scan; HIV antibodies or virus-detection assay; further evaluation of abnormalities
detected by the tests stated above (Arnow and Flaherty, 1997). Because of the complicated clinical
characteristics and lack of laboratory indicators of a disease, the diagnosis is difficult and contributes
to a high cost of hospitalization.
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Infections, neoplasms, non-infectious inflammatory diseases,
and other conditions are the four primary etiological groups
for FUO (Mourad et al., 2003). Obtaining a detailed medical
history and undertaking examinations to evaluate the cause
of fever are crucial. The standard diagnosis and treatment
process of FUO have not yet been proposed, but they should be
performed in a specific order when carrying out the examination
and diagnosis (Figure 1). Identification of pathogenic bacteria
is crucial for targeted anti-infective medication (Haidar and
Singh, 2022; Messacar et al., 2017). In patients with prolonged
fever, empiric therapy is not recommended because it can
mask symptoms, delay the diagnosis, and obstruct decision-
making regarding optimal treatment (Unger et al., 2016). Only
a few exceptions exist if treatment must be initiated based
solely on diagnostic suspicion: antibiotics for culture-negative
endocarditis, tuberculostatic agents for active tuberculosis, and
glucocorticoids for temporal arteritis with a risk of vision loss
(Bryan and Ahuja, 2007). Culture and testing of body fluids
are common for a microbial diagnosis, but such cultures and
tests are positive in only ∼40% of cases. Also, implementation
and interpretation of blood cultures require time, which delays
the information obtained by clinicians (Tromp et al., 2012).
The sensitivity and specificity of PCR-based detection is based
on the genomic sequence of known pathogenic bacteria,
provides limited information, and is suboptimal for detection of
mixed infections (Reuwer et al., 2019). Medication mistakes or
treatment delays may arise due to the limits of clinical testing.

According to two systematic reviews conducted from 1995 to
2004 (Gaeta et al., 2006) and 2005 to 2015 (Fusco et al., 2019),
infections are the leading cause of FUO. Screening and diagnostic
processes must be developed to detect the pathogens that
cause infection-related FUO. Quantitative metagenomics next-
generation sequencing (Q-mNGS) is a current method to detect
infection-related FUO pathogens. Quantitative metagenomics
next-generation sequencing, also known as “high-throughput
sequencing” or “massive parallel sequencing,” is a type of
technology that allows for the simultaneous and independent
sequencing of hundreds to billions of DNA fragments (Morganti
et al., 2019). Q-mNGS has many uses in clinical microbiological
testing, and provides an unbiased method for pathogen detection.
Recent studies have shown that Q-mNGS could be used
to diagnose various infectious diseases, including coronavirus
disease 2019 (COVID-19) (Ren et al., 2020), pneumonia due
to Chlamydia psittaci infection (Chen et al., 2020), Ebola
virus (EBOV) infection (Li et al., 2019), and talaromycosis
(Shi et al., 2021).

Revolution in DNA-Sequencing: From
Sanger Sequencing to Quantitative
Metagenomics Next-Generation
Sequencing
The “first generation” of gene-sequencing technology was born
with the advent of the chain-termination method described by
Sanger and Coulson (1975) and the chain-degradation method
described by Maxam and Gilbert (1977). Gilbert and Sanger built
the first sequencer in 1977 and used it to sequence the first

FIGURE 1 | FUO diagnosis and treatment flow chart.
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full-length genome, phage X174, with 5,375 bases (Maxam and
Gilbert, 1977; Aoyama et al., 1981). First-generation sequencing
can produce a sequence of 700–1,000 bases at a time, so it cannot
keep up with the pressing need for biological gene sequences.

Following a revolution in traditional sequencing technology,
second-generation sequencing technology, known as “next-
generation sequencing” (NGS), can be employed to obtain the
sequences of hundreds of thousands to millions of nucleic-
acid molecules in a single run. With NGS introduction, the
transcriptome and genome of a species can be investigated in
great detail. Jonathan Rothberg developed the biotechnology
company 454 Life Sciences (Branford, CT, United States) in
2005 (Margulies et al., 2005). Other technologies, such as
sequencing by oligonucleotide ligation and detection (SOLiD)
(Applied Biosystems, Foster City, CA, United States) and Solexa
(Illumina, San Diego, CA, United States), emerged subsequently.
A total of 454 Life Sciences was acquired by Roche (Basel,
Switzerland) in 2007.

The basic principles of this technology are that the DNA
fragment does not need to be fluorescently labeled, there is
no need for electrophoresis, and the sequence is changed by
synthesis. A pyrophosphate group is removed when a base is
added to the sequence, so pyrosequencing is also known as the
detection of pyrophosphate bases (Nyrén et al., 1993; Ronaghi
et al., 1998). Sequencing by SOLiD technology is based on ligase
sequencing (Pérez-Enciso and Ferretti, 2010). Solexa technology
(which is also used for sequencing-by-synthesis) was developed
first by Illumina and is now used by the second-generation
sequencer developed by Illumina (Pérez-Enciso and Ferretti,
2010; Strub et al., 2011).

Metagenomics (also known as “microbial environmental
genomics”) creates a metagenomic “library” by extracting the
DNA or RNA of all microorganisms from environmental
samples directly and studying them using genomics research
strategies. Metagenomics based on NGS has become the
focus of clinical research since the development of gene-
sequencing technology.

Q-mNGS is a method for analyzing the genetic material of
microbes and hosts from patient samples to diagnose infectious
diseases. Q-mNGS has become the focus of clinical research due
to the rapid advancement of gene-sequencing technology.

Third-generation sequencing technology includes the
Pacific Bioscience (Levene et al., 2003) and Oxford Nanopore
(Eisenstein, 2012) platforms, which are single-molecule
technologies. Single-molecule sequencing (which does not
require PCR amplification and which can, theoretically,
determine nucleic-acid sequences of any length) is most notable
when compared with first-generation and second-generation
sequencing technologies (Figure 2).

Quantitative Metagenomics
Next-Generation Sequencing in Fever of
Unknown Origin or Infectious Diseases
The diagnostic value of NGS has been investigated in
retrospective studies for patients suffering from fever (Table 1).
The effectiveness of detection of NGS is higher than that of
traditional methods. Fu et al. (2021) undertook a retrospective
study on 175 patients with FUO to compare Q-mNGS with
culture and traditional methods, including smears, serological
tests, and amplification of nucleic acids (traditional PCR, Xpert
MTB/RIF, and Xpert MTB/RIF Ultra). In comparison with
culture and conventional methods, the authors concluded that
Q-mNGS of blood might increase the overall rate of detection of
novel organisms by 22.9 and 19.79%, and enhance the diagnostic
rate by 38.0 and 32.0%, respectively. Zou et al. (2022) evaluated
12 patients with tuberculosis following renal transplantation, and
Q-mNGS was helpful in 67% of cases.

Benamu et al. (2021) evaluated 55 patients with febrile
neutropenia to compare the results of blood culture and standard
microbiological testing within 24 h of fever onset and every
2–3 days. The Karius microbial cell-free DNA sequencing test
(KT) sensitivity and specificity were 85% (41/48) and 100%
(14/14), respectively. The calculated time-to-the-diagnosis was,

FIGURE 2 | The history of gene sequencingtechnology.
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TABLE 1 | List of sequencing associated with fever or infectious disease’ study.

References Research type Disease type Method Conclusion

Li et al. (2019) Retrospective 70 patients of suspected
Ebola hemorrhagic fever

mNGS vs. qRT-PCRUS These results demonstrate the utility of
mNGS in broad-based pathogen detection
and outbreak surveillance.

Fu et al. (2021) Retrospective 175 patients of FUO mNGS vs. culture or traditional
methods [smears, serological tests,
nucleic acid amplification testing
(NAAT)]

mNGS had significantly higher diagnostic
efficacy in the FUO than culture or other
traditional methods.

Zou et al.
(2022)

Retrospective 12 patients of
mycobacterium
tuberculosis infection

Interferon-gamma release assay
and NGS vs. the traditional PPD
test and M. tuberculosis detection

The interferon-gamma release assay and
NGS are relatively new detection methods
with high sensitivity and specificity and can
help with early TB diagnosis.

Benamu et al.
(2021)

Prospective 55 patients with febrile
neutropenia (FN)

The Karius microbial cell-free DNA
(mcfDNA) sequencing Test (KT) vs.
blood culture (BC) and standard
microbiological testing (SMT)

The use of KT in the diagnosis and
treatment of FN shows promise.

Liu et al. (2020) Retrospective 17 patients of underwent
lung transplantation

NGS vs. the bacteria culture
method

NGS showed more sensitivity than bacterial
culture for the detection of bacteria.

Reyes et al.
(2021)

Retrospective 38 patients of febrile illness mNGS vs. conventional viral
pathogen detection methods (such
as PCR)

In international travelers with febrile
syndrome, viral metagenomics has the
potential to help identify viral pathogens
and co-infections in a single step.

Xiao et al.
(2020)

Retrospective 8 patients of COVID-19 Meta sequencing vs. multiplex PCR
amplification (amplicon) and hybrid
capture (capture)

Meta-sequencing can be prioritized if other
genetic materials are to be studied, such as
target viruses that have become highly
diversified through recombinational events,
or if the viral load within the RNA sample is
high.

Jerome et al.
(2019)

Retrospective 40 patients of fever after
traveling

mNGS analysis vs. standard of care
diagnostics

MNGS has the potential to improve
infectious disease diagnostic yield and
detect multiple pathogens in a single
sample.

Williams et al.
(2018)

Retrospective 12 plasma specimens from
patients with unexplained
febrile illness

Unbiased sequencing vs.
VirCapSeq-VERT (a positive
selection system).

The utility of high-throughput sequencing
strategies in outbreak investigations

Horiba et al.
(2021)

Retrospective 112 patients of pediatric
febrile neutropenia

NGS vs. blood cultures NGS technique has great potential for
detecting causative pathogens in patients
with FN and may be effective for detecting
pathogens in minute quantities of
microbiota.

in general, shorter with KT (87%). Adjudicators determined real-
time KT results have allowed early optimization of antimicrobial
agents in 47% of patients. Liu et al. (2020) retrospectively
evaluated 17 patients who received a lung transplant. The
proportion of bacteria detected in the lungs of donors was 52.9
and 35.3% by NGS and bacterial culture, respectively. NGS was
more sensitive for bacterial detection than the classic bacterial
culture. Reyes and colleagues Xiao undertook a retrospective
study on 38 patients. In eight of the 38 patients (21%), all viral
pathogens detected by 42 conventional assays were also detected
by Q-mNGS, and Q-mNGS resulted in additional pathogenic
findings in two patients (5%).

NGS provides more information than conventional diagnostic
tests. Xiao et al. (2020) were the first to systematically
investigate inter- and intra-individual variations in severe
acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) using
amplicon- and capture-based whole-genome sequencing; it was
also the first comparative study using multiple approaches. The

study illustrated that ultra-high-throughput metatranscriptomic
(meta) sequencing uncovered rich genetic information in clinical
samples besides SARS-CoV-2, and provided references for
clinical diagnostics and therapeutics. In June 2020, the US Food
and Drug Administration granted Emergency Use Authorization
for a Q-mNGS test for COVID-19 manufactured by Illumina,
the first such authorization for a NGS diagnostic News in
Brief (2020). Li et al. (2019) demonstrated that Q-mNGS of
field-collected samples could be used to recover nine genomes
from the EBOV outbreak in Boende (Democratic Republic of
Congo) in 2014 (>50% coverage), detect the EBOV with a
high sequencing depth of 17.3 ± 4.7 SD million reads with
comparable sensitivity to PCR, and identify co-infections from
well-recognized (Plasmodium falciparum) and novel/uncommon
(e.g., Orungo virus) pathogens. Jerome et al. (2019) prospectively
included 40 returning travelers presenting with fever (≥38◦C)
whose plasma samples were sequenced: 11 of 40 patients were
diagnosed with a viral infection. Five viral infections were
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detected by Q-mNGS that were also revealed in standard-of-
care diagnostics, but two patients infected with the Chikungunya
virus and one patient with the mumps virus were also
diagnosed by Q-mNGS only. Williams et al. (2018) investigated
the plasma virome from cases of unexplained febrile illness
in Tanzania from 2013 to 2014 by sequencing methods.
The latter could aid detection of viral coinfections, such as
the nearly complete genomes of dengue virus-2 and human
pestivirus. Horiba et al. (2021) evaluated 87 patients with febrile
neutropenia. Putative pathogens were detected by Q-mNGS
in 17.2% of patients, but all had negative blood cultures.
Pathogenic detection methods (e.g., PCR) require clinicians to
first suspect a specific bacterial infection before carrying out
the corresponding detection. However, NGS technology can be
employed to detect pathogenic bacteria in patient samples with
high sensitivity, thereby providing recommendations for clinical
treatment.

Often, NGS has been undertaken without using a structured
diagnostic protocol, and at different stages of FUO. Zhu et al.
(2021) found that use of Q-mNGS for blood as the first-
line investigation could increase the diagnosis rate of FUO
by 10.9% compared with that using culture, and that using
Q-mNGS as the second-line investigation could improve the
diagnosis rate of concurrent infection by 66.7 and 12.5% for
non-bloodstream infection.

Ultimately, the cost of FUO assessment can be reduced by
Q-mNGS application because the diagnosis will be achieved
early because unnecessary and costly diagnostic tests will not
be carried out. Chai et al. (2018) investigated the cost–benefit
relationship of Q-mNGS in FUO in which a cause could not
be found despite appropriate investigations. A decision tree was
created to describe systematically the costs and benefits associated
with NGS introduction. Each diagnostic pathway was made
until a first- or second-line investigation was positive. NGS was
introduced into the pathway as a supplement to first- or second-
line investigations. Chai and colleagues reported NGS use as
the first-line investigation assuming a probability of detecting
the cause of cost-effectiveness in all cases of ≥60% using unit
costs of diagnostic tests and procedures in Singapore dollars

in 2016. In that analysis, using a rational set of rates for a
second-line investigation, the total expected cost of using NGS
as a second-line investigation was greater than that using it
as a first-line investigation. Although that analysis excluded
the costs associated with hospitalization duration, the faster
and more definitive answers provided by NGS may enable
additional cost savings.

CONCLUSION

Q-mNGS is a sensitive diagnostic method for FUO evaluation.
It could become a routine procedure in the diagnostic workup
of FUO. Q-mNGS appears to be cost-effective in FUO because
it avoids unnecessary investigations and reduces the duration of
hospitalization.
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