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The R language, a freely available environment for statistical

computing and graphics is widely used in many fields. This

“expert-friendly” system has a powerful command language

and programming environment, combined with an active user

community. We discuss how R is ideal as a platform to sup-

port experimentation in mathematical statistics, both at the un-

dergraduate and graduate levels. Using a series of case studies

and activities, we describe how R can be used in a mathemati-

cal statistics course as a toolbox for experimentation. Examples

include the calculation of a running average, maximization of

a nonlinear function, resampling of a statistic, simple Bayesian

modeling, sampling from multivariate normal, and estimation of

power. These activities, often requiring only a few dozen lines

of code, offer students the opportunity to explore statistical con-

cepts and experiment. In addition, they provide an introduction

to the framework and idioms available in this rich environment.

KEY WORDS: Mathematical statistics education; Statistical

computing.

1. INTRODUCTION

The R language (Ihaka and Gentleman 1996; Hornik 2004)

is a freely available environment for statistical computing and

graphics. It allows the handling and storage of data, supports

many operators for calculations, provides a number of tools for

data analysis, and features excellent graphical capabilities and

a straightforward programming language. R is widely used for

statistical analysis in a variety of fields, and boasts a large number

of add-on packages that extend the system.

This article considers the use of R not for analysis, but as a

toolbox for exploration of mathematical statistics. Following the

approach of Baglivo (1995), we introduce examples to illustrate

how R can be used to experiment with concepts in mathematical

statistics. In addition to providing insight into the underlying

mathematical statistics, these example topics provide an intro-

duction to R syntax, capabilities and idioms, and the power of

this environment.

We begin by providing some motivation for the importance

of statistical computing environments as a component of math-

ematical statistics education. Section 2 reviews the history of R

(and its connection to S/S-Plus), details resources and documen-
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tation available for the system, and describes an introductory R

session. Each of the activities in Section 3 include a listing of the

R commands and output, and a description to help introduce new

syntax, structures, and idioms. Finally, we conclude with some

overall comments about R as an environment for mathematical

statistics education.

Over the past decade, there has been increasing consensus re-

garding the importance of computing skills as a component of

statistics education. Numerous authors have described the im-

portance of computing support for statistics, in the context of

numerous curricular initiatives. As an example, Moore (2000)

featured papers on technology that fall within the mantra of

“more data, less lecturing” (Cobb 1991). Curriculum guidelines

for undergraduate programs in statistical science from the Amer-

ican Statistical Association require familiarity with a standard

software package and should encourage study of data manage-

ment and algorithmic problem-solving (American Statistical As-

sociation 2004). While we are fully in agreement with the need

for software packages to teach introductory statistics courses, in

this article, we focus on aspects relating to algorithmic problem-

solving, at the level of a more advanced course.

We also make a distinction between statistical computing and

numerical analysis from the toolbox (or sandbox or testbed) for

statistical education that we describe. Although there is a cru-

cial role for statisticians with appropriate training in numerical

analysis, computer science, graphical interfaces, and database

design, in our experience relatively few students emerge from

undergraduate or graduate statistics programs with this train-

ing. While somewhat dated, Eddy, Jones, Kass, and Schervish

(1987) considered the role of computational statistics in grad-

uate statistical education in the late 1980s. A series of articles

in the February 2004 issue of The American Statistician (Gen-

tle 2004; Monahan 2004; Lange 2004) readdress these issues.

Lange (2004) described computational statistics and optimiza-

tion courses that “would have been unrecognizable 20 years ago”

[though considerable overlap is noted with topics given by Eddy

et al. (1987)]. Gentle (2004) listed six areas of expertise valuable

for statisticians:

1. data manipulation and analysis

2. symbolic computations

3. computer arithmetic

4. programming

5. algorithms and methods

6. data structures

Most of these topics, while quite valuable, often require addi-

tional training beyond the standard prerequisites for a mathemat-

ical statistics class (Monahan 2004; Gentle 2004; Lange 2004).

The use of “rapid prototyping” and “quick-and-dirty” Monte

Carlo studies (Gentle 2004) to better understand a given setting

is particularly relevant for mathematics statistics classes (not

just statistical computing). For many areas of modern statistics

(e.g., resampling based tests, Bayesian inference, smoothing,
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etc.) or for topics that often confuse students (e.g., convergence

of sample means, power) it is straightforward for students to im-

plement methods and explore them using only a modest amount

of programming. Instructors can help remove hurdles by pro-

viding students with sample code and specific instructions its

use. Although these implementations are often limited and may

be less efficient than programs written in environments such as

C++, they are typically simpler and more straightforward. (We

note in passing that R can be set up to call C, C++, or For-

tran compiled code, if efficiency is needed.) It is this use of R

as a prototyping environment for statistics exploration that we

consider.

We also acknowledge that other approaches to activity-based

learning are extremely valuable (e.g., simulations using Fathom

or Java-applets; see the Appendix for more examples), but be-

lieve that these environments tap into complementary types of

learning, and we do not further consider them.

Finally, we distinguish our work from the excellent efforts of

Nolan and Speed (1999), who proposed a model of extended

case studies to encourage and develop statistical thinking. Their

text (Nolan and Speed 2000) and Web site (see Appendix) also

use R as an environment for an advanced statistics course, but

primarily for analysis, not as a testbed to explore methods in

mathematical statistics.

2. BACKGROUND ON R

R was initially written by Robert Gentleman and Ross Ihaka of

the Statistics Department of the University of Auckland (Ihaka

and Gentleman 1996), and is freely redistributable under the

terms of the GNU general public license. The environment is

quite similar to the S language developed originally by Bell

Laboratories and now licensed as S-Plus by Insightful Corp.

Since the late 1990s R has been developed by a core group of

approximately 18 individuals, plus dozens of other contributers.

The R project describes the functionality of the environment as

an integrated suite of software facilities for data manipulation, calculation and

graphical display. It includes:

• an effective data handling and storage facility;
• a suite of operators for calculations on arrays, in particular matrices;
• a large, coherent, integrated collection of intermediate tools for data

analysis;
• graphical facilities for data analysis and display either on-screen or on

hardcopy; and
• a well-developed, simple and effective programming language which

includes conditionals, loops, user-defined recursive functions and in-

put and output facilities (R Project 2004).

2.1 Documentation, Resources, and Installation

A huge amount of background information, documentation

and other resources are available for R. The CRAN (compre-

hensive R archive network), found at http://www.r-project.org

and mirrored worldwide, is the center of information about the R

environment. It features screenshots, news, documentation, and

distributions (both source code and precompiled binaries, for R

and a variety of packages).

R’s documentation includes internal help systems (see

help(), help.start(), and help.search()), printed

documentation [particularly “An Introduction to R” (approxi-

mately 100 pages), based on a document first written by Bill

Venables and David Smith, and the “R Installation and Admin-

istration” guide (approximately 30 pages)], a frequently asked

questions (FAQ) list (Hornik 2004), and a number of textbooks

(see the R project Web page for a comprehensive bibliogra-

phy). Of the books, a classic reference is Modern Applied Statis-

tics with S (aka “MASS” or “Venables and Ripley”), now in its

fourth edition (Venables and Ripley 2002). Other books on R in-

clude Dalgaard (2002), Fox (2002), and Maindonald and Braun

(2003). An excellent introduction to programming in R is found

in Venables and Ripley (2000). In addition to the textbooks, the

R project Web page also features pointers to a dozen English

language contributed tutorials and manuals, plus a smattering in

Spanish, French, Italian, and German.

One of the strengths of R is the wide variety of add-on pack-

ages (or libraries) that have been contributed by users. These

extensions bolster what is available in the base R system. A

number of very useful routines are included in the MASS library,

which is included in the standard R distribution. More than 100

other packages are available for downloading, including code to

implement generalized estimating equations (gee), signal pro-

cessing using wavelets (waveslim), analysis of complex sur-

vey samples (survey), and statistical process control (spc).

Other resources include R News, the newsletter of the R

project that is published approximately three times per year, and

a number of mailing lists. These include R-announce (low vol-

ume, for major announcements about R), R-packages (for infor-

mation regarding new packages), R-help (high volume, dozens

of messages per day, for problems and solutions using R), and

R-devel (for developers).

2.2 Sample Session

We begin with a short sample session in R (see Figure 1),

to provide background for the examples we consider in Sec-

tion 3 (though the resources described in Section 2.1 are better

suited as an introduction for new users). From the Linux, Unix,

or Mac OSX command line, R can be run directly (line 1). Al-

ternatively, a graphical user interface version can be initiated

through the Start menu (Windows) or Dock (MacOS). Lines 2–

14 provide the version, copyright, disclaimer, and background

information. On lines 15–16, two vectors of length 3 are created

(containing the integers 3, 4, 5 and 1, 2, 3, respectively). The

ls() command lists “objects” within R that have been created.

We can display the values of the vectors, and perform manipula-

tions of the individual elements (e.g., lines 23–24) for the entire

vector. Individual elements can also be manipulated (line 25). A

number of functions are available within R; lines 27–30 show

how to calculate the mean and standard deviation. Finally, the

q() command is used to exit, and the user is prompted whether

the objects (e.g., variables) created within the session should be

retained for future sessions (as a workspace image).

3. EXAMPLE SCRIPTS

The extensibility and flexibility of R, combined with the col-

lection of tools, make it attractive as a testbed (the fact that

it is freely available on almost all computing platforms helps

as well!). One problem, however, is that the environment has a

moderately steep learning curve, and as described earlier, can be
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Figure 1. Sample R session.

termed “expert-friendly,” that is, very powerful once mastered,

but nontrivial to learn. To attempt to address this issue, and to

help motivate learning this environment, we follow the general

approach of Baglivo (1995), and describe some problems that

arise in mathematical statistics education. The sample code to

solve problems in these areas are in most cases quite straightfor-

ward, and display the power and versatility of R as a statistical

education environment.

All of these scripts are available for download from our Web

site http://math.smith.edu/∼nhorton/R. Contributions of addi-

tional activities are encouraged.

3.1 Calculation of a Running Average

We begin with a simple example that displays the conver-

gence (or nonconvergence, for certain distributions) of a sample

mean. As described earlier, vectors are a fundamental structure

in R. Assume that X1, X2, . . . , Xn are independent and identi-

cally distributed realizations from some distribution with center

µ. We define X̄k =
∑k

i=1
Xi/k as the average of the first k

observations. Recall that because the expectation of a Cauchy

random variable is undefined (Romano and Siegel 1986), the

sample mean does not converge to the population parameter.

Figure 2 displays the R code to calculate and plot the running

average of a sample of Cauchy random variables with center

Figure 2. R code to calculate and display running average.
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Figure 3. Running average of the mean of a Cauchy random variables.

equal to zero. Line 1 defines the function called runave(),

which takes a single argument x (a vector). Lines 4–6 consist of a

for loop to calculate the mean of the first k observations, which

are stored in a vector called ret. Line 9 generates a sample of

100 independent Cauchy random variables with center 0 and

scale 1. For loops are not always the most efficient way to solve

a problem in R (but they have the benefit of being simple); a

more elegant, efficient but perhaps less clear solution can be

implemented in one line:

runave <- function(x)

{ return(cumsum(x))/(1:length(x))}

Finally, the returned values are plotted (see Figure 3), and a

title is added to the graph (lines 10–11). It is clear that the mean

does not exist; periodically an extreme positive or negative value

distorts the statistic.

3.2 Simulating the Sample Distribution of the Mean

It is often useful to conduct simulation studies to explore the

behavior of statistics in a variety of settings where analytic so-

lutions may not be tractable (Thisted and Velleman 1992); R

provides an extremely flexible environment to carry out such

studies. We consider the sampling distribution of the mean of a

set of independent and identically distributed exponential ran-

dom variables. In this setting, this behavior is well known, but

can be implemented in less than a dozen lines of code. More com-

plicated scenarios can be explored using this general framework,

with only slight variations.

Figure 4 displays the R code to conduct this simulation 100

(numsim) times (line 2) for samples of size 5, 25, and 100 from

an exponential random variable with rate parameter equal to λ.

Lines 3 and 4 create vectors of the correct length to store the re-

sults, and the for loop in lines 5–9 sample from the distribution

and store the results. Finally, a boxplot is displayed (line 10),

and a title added (line 11). The boxplots are displayed in Figure

5; the sampling distribution appears to be symmetric when sam-

ples are of size 25 or greater, and the distribution is less variable

when n = 100.

3.3 Sampling From Multivariate Normal Distribution

As described earlier, one of the strengths of R is the facility

with which new functions and routines can be prototyped and im-

plemented. As an example, consider sampling from a multivari-

ate normal (MVN) distribution. While routines exist to directly

sample from many distributions [see, e.g., rcauchy() from

a prior example, plus more commonly used functions such as

runif() (uniform), rnorm() (univariate normal), rf() (F),

rgamma() (Gamma), or in the MASS library, mvrnorm()],

it is straightforward to use existing linear algebra functions [e.g.,

the singular value decomposition (Harville 1997, chap. 21)] to

generate MVN samples directly. The function rmultnorm(),

in Figure 6, (original author unknown) first tests that its argu-

ments are appropriately specified [length of the mean vector

equals the dimension of the variance covariance matrix (lines 5–

6) and the variance covariance matrix is symmetric (lines 7–8)].

The singular value decomposition function returns three objects

named u, d, and v, where vmat = u ∗ d ∗ t(v). These values

can be used in conjunction with the sweep operator (Goodnight

1979) to generate multivariate normals from a set of n∗p univari-

ate normals (lines 9–12). Note that the %*% operator is used for

matrix multiplication (line 10) (the * operator is used for scalar

multiplication), and the t() function transposes a matrix. Fi-

nally, the dimnames() command adds descriptive names to

the columns of the matrix (of dimension n× length(µ)) with the

Figure 4. R code to simulate the sampling distribution of the mean.
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Figure 5. Boxplots of the sampling distribution of the mean.

results (line 13). Although this activity might better be suited to a

statistical computing rather than mathematical statistics course,

it shows off the matrix algebra capabilities of R.

The function is called (on line 16) to generate a set of 100

paired binary outcomes with mean 100, variance 14, and covari-

ance 11 (which corresponds to a correlation of 11/14 = .79). The

arguments to the matrix() function include a list of values,

and an indication of the dimension of the matrix (here it has two

rows, and because there are four entries, the number of columns

equals two). The values in the example were chosen to reflect a

set of IQ test results with a mean of 100 and standard deviation

of 14. Separate vectors x1 and x2 are created from the 100 × 2

matrix norms (lines 17–18) and a scatterplot of the relationship

between the two variables is displayed (line 19, see Figure 7).

3.4 Power and Sample Size Calculations (Analytic)

Power and sample size are confusing concepts for students

at all levels, and hands-on activities can be helpful in demys-

tifying their calculation. One approach to power is to deter-

mine the precision of an estimate. We consider the width of

a 95% confidence interval for a proportion, which is given by

2 ∗ 1.96 ∗
√

p ∗ (1 − p)/n, where p is the true proportion and n
is the sample size. Figure 8 displays the R code and output for

a program that calculates and displays these widths for a set of

sample sizes ranging from 100 to 1500 (line 1) and proportions

ranging from .10 to .50 (line 2). Lines 6–13 display a header for

the output file, including use of the paste command to turn an

R object (in this case the date() function) into a string (line

8) and the cat command to output a string (line 6). For each

sample size, the for loop on lines 15–23 calculates the width

for each of the proportions (note that the object called width is

a vector with length equal to the length of prop). The function

round() is used to improve the formatting of the results.

We note that R can be used to execute arbitrary functions in

the underlying operating system (similar to the use of date()
on line 8) using the system() command. For example, it is

straightforward for R to run other packages [e.g., symbolic math-

ematics programs such as Maple or Mathematica (Baglivo 1995)

or any other Unix tool] and read output from those packages.

3.5 Power Calculations (Empirical)

While formulas to calculate power analytically exist for many

settings, there are many situations where such formulas may be

intractable or otherwise unappealing. The use of R to simulate

data from a posited distribution and empirically calculate power

can more realistically model the study design, and may be quite

Figure 6. R code for function to generate multivariate normal random variables.
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Figure 7. Plot of bivariate normal random variables.

useful in a number of settings. We illustrate this approach us-

ing the design of a study of brain volumes in schizophrenics,

their unaffected relatives, and a set of normal controls (Seidman

et al. 2003). Here the investigators were interested in pairwise

comparison between brain volumes of schizophrenics and their

relatives. One complication is that the patients and relatives were

clustered within families. We consider a simplified version of the

study of Seidman and colleagues, where there are 50 families

with two schizophrenic patients, and one first-degree relative,

and 50 families with one schizophrenic patient, and two first-

degree relatives.

For the comparison of schizophrenics and their relatives, it

is straightforward to conduct empirical power studies by simu-

lating from a trivariate normal distribution, after assuming the

difference between group means (effect size, if the standard devi-

ations are set to 1), and covariance between observations within

a family, then fitting a random effects regression model (Laird

and Ware 1982) using the lme() function of the nlme pack-

age of Pinheiro and Bates (2000). Finally, we can summarize the

results as the proportion of observed p values less than α = .05.

Figure 9 displays the R code and output for this empirical

power calculation. Much of the example code involves house-

keeping to construct the design matrix [1’s indicate schizophren-

ics and 0’s indicate controls (lines 15–16)], and the indicators of

family id’s [with families 1–50 corresponding to data yielding

two patients and one control, and families 51–100 corresponding

Figure 8. R code to calculate confidence interval width (plus output).
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Figure 9. R code to estimate power empirically.

to data derived from families with one patient and two controls

(lines 17–18)].

Within the loop, thermultnorm() function, defined in Fig-

ure 6 is used to generate trivariate normal random variables with

the appropriate means and covariances (lines 24–25). These are

strung together into a single vector y (lines 27–28) with entries

that correspond to the x and id structures. The lme function

is called specifying a random intercept model (lines 30–31) and

the p value for the appropriate group comparison is saved (line

32). If this p value is less than .05 (line 33), then an indica-

tor is set to T (True, or 1). After the loops have run, the sum

of these indicators (divided by the number of simulations) is

used to estimate the power. For these 1,000 simulations, the em-

pirical estimate of power was .89. As a comparison, we also

calculated the power of a t test comparing two groups assum-

ing that all observations were independent. A comparison of

150 schizophrenics and 150 relatives with an effect size of .3

yields power of .74 (see the power.t.test() function). In

this setting, since we are interested in a comparison where group

membership varies within family, accounting for the correlation

within families yields smaller standard errors. Although analytic

formulas to account for correlated outcomes do exist (see, e.g.,

Diggle, Heagerty, Liang, and Zeger 2002, secs. 2.4 and 8.5), they

typically require a number of simplifying assumptions, which

may not always be tenable. Use of R for empirical simulation of

power is quite flexible.
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3.6 Bootstrapping of a Sample Statistic

Bootstrapping is a powerful and versatile approach to param-

eter estimation (see Efron and Tibshirani 1993 for a readable

introduction). The observed data are assumed to be a popula-

tion, and repeated samples (with replacement) are taken from

this population. A summary statistic (e.g., the mean) is calcu-

lated for each of these samples, and can be used to estimate

the empirical distribution of that statistic. While a number of

advanced implementations of bootstrapping are available for R

(see, e.g., the boot library), it is straightforward to implement

this technique directly.

Figure 10 displays the R code and output for a simple simu-

lation to compare 100 ∗ (1−α)% confidence intervals based on

the bootstrap and normal approximations. For this example we

take α = .10. Lines 1–7 set up initialization variables needed

for the simulation, including a call to the qnorm() function to

determine the .95 quantile of a standard normal random variable

(1.6449 in this case). For each of the number of simulations, a

set of random exponentials is sampled (line 11), normal approx-

imation 90% confidence intervals are calculated (line 12), and

stored in a matrix of dimension numsim ∗ 2 (line 13). Within

this loop, another loop runs to generate numboot samples with

replacement from the sample of exponentials, and the α/2 (.05)
and 1−α/2 (.95) quantiles are taken from these summary statis-

tics (line 20). Finally, an empty plot is made to create appropri-

ate axes (lines 22–23), the matlines() command is used to

add lines (lines 24–25) (a similar command to add points or

text exists), and a legend (line 27) is added. The results from the

matplot() function are displayed in Figure 11. In this setting,

the performance of the normal approximation and the bootstrap

confidence intervals are quite similar.

3.7 Iteration to Maximize a Likelihood

R is an excellent environment for iterative calculations.

Consider, for example, estimation of the unknown parame-

ter θ from a set X1, X2, . . . , Xn of independent and identi-

cally distributed realizations from a Weibull density f(X|θ) =
θλXθ−1 exp (−λXθ), where λ > 0 is known, and θ > 0. The

score function (derivative of the log-likelihood with respect to

θ) is given by:

U(θ|X) =
n

θ
− λ

n
∑

i=1

Xθ

i ln(Xi) +

n
∑

i=1

ln(Xi),

and observed information (negative of the second derivative of

the log-likelihood):

Î(θ|X) =
n

θ2
− λ

n
∑

i=1

Xθ

i (ln(Xi))
2
.

Figure 10. R code to calculate a bootstrap confidence interval of the mean.
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Figure 11. Normal approximation and bootstrap approximation 90%
confidence intervals for exponential (λ = 1, n = 50).

The Newton-Raphson algorithm (Thisted 1988) can be used to

find the maximum likelihood estimator of θ in this setting, using

the iterative procedure:

θ̂k+1 = θ̂k +
U(θ̂k)

Î(θk)
,

beginning with any θ0 = c > 0. Figure 12 displays the R code

and output for this procedure with a dataset of size 10 (see line

1). Two functions are defined (lines 4–10), and a while loop

is used to iterate until convergence is reached.

3.8 ROC Curves

A receiver operating characteristic (ROC) curve is a popular

tool for assessing the predictive ability of a logistic regression

model (Pepe 2000; Murphy 1995). For any cutoff point in the

predicted values, one can calculate the sensitivity and specificity

associated with that point. For example, assume Y = 1 indicates

that a subject is diseased, Y = 0 indicates no disease, and the

expected probability of disease is E(Y ) = p. If an individual

is defined as diseased if their expected probability p is greater

than some cutoff value, pc, then it is straightforward to calculate

the sensitivity and specificity associated with pc. Repeating this

for all possible cutoff values provides values for a plot of (1-

specificity) against the sensitivity, which is known as the ROC

curve.

Figure 13 displays the R code to calculate an ROC curve for a

given model. Assume that data is collected on N subjects along

with disease status Yi, i = 1, . . . , N and a vector of two pre-

dictors (X1i, X2i). We begin by generating data from a known

Figure 12. R code to use the Newton-Raphson algorithm to maximize a likelihood mean.
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logistic regression model [with parameters β0 = 2, β1 = .2
and β2 = 1 (lines 2–8)] using the sample() function with the

appropriate probabilities.

Using this simulated data, we can fit a logistic regression

model (line 9), and then calculate the corresponding fitted val-

ues for each subject [p̂i, i = 1, . . . , N given Xi, i = 1, . . . , N
(line 10)]. We estimate the ROC curve by selecting a vector of

unique cutoff values, pc (line 11). For each element of pc, we

calculate the specificity and sensitivity (lines 14–17) and then

plot the resulting sensitivities against the calculated specificities

(subtracted from 1) to yield the estimated ROC curve (lines 18–

19). An ROC curve with slope = 1 indicates that the model does

not discriminate between diseased and nondiseased individuals,

and the area under this ROC curve equals .5. If the area under

the ROC curve is greater than .5, the model discriminates dis-

eased from nondiseased. If it is less than .5, the model will assign

diseased status to nondiseased individuals. For this reason, the

area under the ROC curve can be a useful statistic for assessing

the predictive ability of a binary regression model. We estimate

the area using the trapezoidal rule (line 21). The estimated ROC

curve is displayed in Figure 14; the area under the curve in this

example was .62.

It is straightforward to use the bootstrap to estimate the stan-

dard error of the AUC; the code to implement this is included

on the examples Web site (see Appendix).

3.9 EM Algorithm

The EM (Expectation-Maximization) algorithm (Dempster,

Laird, and Rubin 1977; McLachlan and Krishnan 1997) is a

powerful and elegant framework for estimation of incomplete

data problems. Although this approach is typically not taught

in an introductory mathematical statistics course, it is included

in some texts on the subject (e.g. Casella and Berger 2002).

The general technique is to calculate the expected values for

missing objects, given current parameter estimates (expectation

step), then to use those expected values to find new parameter

estimates (maximization step). These steps are then repeated

until convergence.

We consider the application of this algorithm to estimation of

the parameters of a mixture distribution of two normals (Titter-

ington, Smith, and Makov 1985):

f(y|θ) = πf1(y|µ1, σ1) + (1 − π)f0(y|µ0, σ0),

where θ = (µ1, µ0, σ1, σ0, π), and f1() and f0() are univari-

ate normals. While problems involving mixtures of distributions

may not at first blush appear to be a “missing-data” problem, the

EM algorithm is quite natural. If one knew the parameters of the

two distributions, and the mixture probability, it is straightfor-

ward to calculate the expected values. Given the expected values,

it is easy to find new parameter estimates.

Figure 15 displays the R code that implements a new function

mixnorm(), which takes as arguments the observed values

from the mixture distribution, and a set of starting values. After

some initialization (lines 3–8), the main routine is repeatedly

called (until convergence, which is defined on line 9). The ex-

pectation step is implemented in lines 14–16, while the max-

imization (given those conditional expectations) is found on

lines 17–21. For this problem, we set π = .8, µ = (0, 3), and

σ = (1, 3), and simulated 1,000 normals. Figure 16 displays the

(sometimes) slow convergence of the algorithm as it proceeds

Figure 13. R code to calculate the area under the curve (AUC) for a receiver operating characteristic (ROC) curve.
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Figure 14. Plot of estimated ROC curve.

from the arbitrary starting values (µ = (−1, 2), σ = (1, 1.1)

and π = .7 [line 33]). The mixnorm() function returns a list

of values, the names of which can be found by use of a call to

names(vals).

3.10 Bayesian Inference

Our catalog of examples would be incomplete without a men-

tion of Bayesian inference (Gelman, Carlin, Stern, and Rubin

1995), a topic that is now often included in a modern mathemat-

ical statistics course (see, e.g., Casella and Berger 2002; Rice

1995). While this example is by far our most complicated, it

is also among the most powerful, and allows students (as well

as instructors!) to visualize the relative contributions of various

priors and the likelihood to help clarify the Bayesian approach.

We consider the binomial likelihood with a beta prior on the

probability p. This is often used as an example (see Rice 1995,

sec. 15.3.2) because this is a family of conjugate priors and

an analytic form for the posterior distribution exists. Numerical

integration and/or Gibbs sampling is needed in situations where

conjugate priors do not exist, and we describe a simple setting

and provide R code on our Web site.

Figure 17 displays the R code to explore the posterior of a

binomial likelihood with a beta prior on the probability, p. We

consider a sample of size 50 (line 1), and set the pseudo-random

number seed to a fixed value (Adams 1980) to allow results to

be replicated. The functionpostbetbin() (lines 4–6) defines

the posterior distribution as the product of the binomial likeli-

Figure 15. R code to use the EM algorithm to find MLE’s of the parameters for a mixture of two normal distributions.
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Figure 16.  Convergence of the EM algorithm.

Figure 17.  R code to explore posterior distribution of a binomial likelihood with a beta prior on the probability.
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Figure 18. Posterior distributions for a set of four different prior distributions.

hood and the beta prior. The functions lbinom() and dbe-
tas2() (lines 7–8) redefine the binomial and beta probability

functions as functions of their parameters instead of functions

of the data. Lines 12–16 define four sets of parameters for four

beta distributions. The first prior (line 13) is noninformative and

puts equal weight on all values of p, line 14 reflects a strong

prior belief that p = .5, line 15 is a moderate prior that p = 0.5,

and line 16 reflects a belief that less than half the population has

the trait p < .5. Lines 20–35 plot the resulting posteriors for

the four priors along with the priors and the likelihood. These

are plotted on two different scales so that the features in each

density function are more obvious to the viewer. The result is

shown in Figure 18.

This example, which addresses a very simple setting, can eas-

ily be extended by students to explore the effect of other prior

distributions on the posterior, such as a mixture of betas or a

truncated normal or gamma. It can also be used to explore the

effect of the prior distribution on the posterior distribution when

the sample size changes.

4. DISCUSSION

In this article, we have described how the R environment can

be used as a testbed for exploration of concepts in mathematical

statistics education. This exploration can help students lay the

groundwork for future use of R as a foundation for more com-

plex computational statistical research and development, as well

as the more standard use of R as an analysis package. Hands-

on activities are an important component of experiential educa-

tion, and the flexibility of this environment, combined with the

rich variety of lower level routines, facilitates this type of learn-

ing. In addition to providing insights into advanced concepts in

mathematical statistics, experiences with R provide a basis for

later implementation of novel methodologies. We believe that

this type of teaching environment helps students to address and

solve problems that he or she might encounter in the real world,

whether or not they are isomorphic to problems seen in class (p.

46) (Thisted and Velleman 1992).

The examples that we present are not intended to provide a

gentle introduction to the use of R, though such tutorials exist

[see the excellent Appendix A of An Introduction to R or chap-

ters 1 and 2 of Venables and Ripley (2002)]. Instead, we hope

to present the possibilities of its use on a series of interesting

problems.

We have focused on R rather than S-Plus, since most code

written for one system works on the other, and R has the advan-

tage of being freely redistributable. Although there are aspects

of S-Plus that are quite attractive for students (in particular, the

graphical user interface), this is less pertinent for the application

we discuss.

Symbolic mathematics packages such as Maple (Baglivo

2005) or Mathematica also provide a reasonable exploration

environment. Other platforms have the capability to be used

in a similar fashion. For example, Matlab, Octave, Gauss, and

SAS/IML (see Appendix) are relatively high-level languages in-

tended for numerical computations. Moler (2004) is an example

of a text which shares our philosophy of providing examples
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(in his case for a numerical methods course implemented using

Matlab) that students can explore, modify, and extend. While

these programs offer a wide variety of routines, they are more

general purpose numerical engines than R, and tend to have less

support for certain statistical functions.

The flexible programming environment of R is both a plus

and a minus as a teaching tool. Students with no prior expe-

rience with computer programming may find the environment

uncomfortable at first. The provision of sample code (the me-

dian length of our examples was 23 lines) combined with the

existence of built-in functions and routines minimize the pro-

gramming requirements and anxiety-level while still providing

a rich toolset for experimentation.

APPENDIX

The following list of Web sites, while not comprehensive, is

intended to provide a useful starting point for exploring R and

related tools.

A.1 R AND S-PLUS RESOURCES

http://www.r-project.org

The home of R: this is the main location for distributions,

packages, and documentation.

http://math.smith.edu/∼nhorton/R

This link by the authors provides a repository for sample code

and activities useful in teaching mathematical statistics con-

cepts using R.

http://www.insightful.com/products

This link is the home of S-Plus, a commercial version of

S sold by Insightful Corporation. A number of very useful

add-on modules provide support for missing data modeling,

wavelets, spatial statistics, and design of experiments.

http://www.stat.umn.edu/∼galin/teaching/Rstuff

The site provides a general introduction to R. One attractive

feature for those exploring use of R is that it provides a Web

interface to run R on their server.

http://www.stats.ox.ac.uk/pub/MASS4

This link contains resource materials (example code, answers

to exercises, etc.) for Venables and Ripley’s classic book

Modern Applied Statistics with S, now in its fourth edition. It

provides an introduction to S/R as well as a course in modern

statistical methods.

http://www.stats.ox.ac.uk/pub/MASS3/Sprog

The site is a source for background materials for Venables and

Ripley’s text S Programming which provides a comprehen-

sive introduction to programming in S and R. This book is

particularly well-suited for those who like to spelunk in the

innards of complex computing environments.

http://socserv.mcmaster.ca/jfox/Books/Companion

This link connects to the companion Web site to Fox’s R and

S-plus Companion to Applied Regression book.

http://stat-www.berkeley.edu/users/statlabs

Materials related to the book Stat Labs: Mathematical Statis-

tics Through Applications (Nolan and Speed 1999), which

teaches the theory of statistics through a collection of ex-

tended case studies using R, are found at this link.

A.2 OTHER PACKAGES AND PROCEDURES

http://www.stat.sc.edu/rsrch/gasp

This site is the home of the GASP (globally accessible sta-

tistical procedures initiative). It features a number of Java

applets and Web pages related to data analysis and statistical

education.

http://www.keypress.com/fathom

Fathom is a statistical education tool that allows students to

understand concepts by dynamic manipulation and simula-

tion.

http://www.gnu.org

This is the home of the GNU (Gnu’s Not Unix) project and

the FSF (Free Software Foundation). The site includes a large

number of free software packages, including R and Octave,

that are available for distribution under the GNU GPL (gen-

eral public license). As of July, 2004, 3,316 packages were

indexed on the site.

http://www.mathworks.com/products/matlab

Matlab is a commercial high-level technical computing envi-

ronment.

http://www.octave.org

This is the home of the GNU Octave language for numerical

computations that is mostly compatible with Matlab.

http://www.sas.com/technologies/analytics/statistics/iml

The site provides information on the commercial SAS/IML

interactive matrix programming environment.

http://www.aptech.com

The official site of the GAUSS system, a data analysis, math-

ematical and statistical matrix environment.
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