
Use of Relative Code Churn Measures to Predict
System Defect Density

Nachiappan Nagappan*

Department of Computer Science
North Carolina State University

Raleigh, NC 27695
nnagapp@ncsu.edu

Thomas Ball
Microsoft Research

Redmond, WA 98052
tball@microsoft.com

ABSTRACT
Software systems evolve over time due to changes in
requirements, optimization of code, fixes for security and
reliability bugs etc. Code churn, which measures the changes
made to a component over a period of time, quantifies the extent
of this change. We present a technique for early prediction of
system defect density using a set of relative code churn measures
that relate the amount of churn to other variables such as
component size and the temporal extent of churn.
Using statistical regression models, we show that while absolute
measures of code churn are poor predictors of defect density, our
set of relative measures of code churn is highly predictive of
defect density. A case study performed on Windows Server 2003
indicates the validity of the relative code churn measures as early
indicators of system defect density. Furthermore, our code churn
metric suite is able to discriminate between fault and not fault-
prone binaries with an accuracy of 89.0 percent.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement – Version control. D.2.8 [Software Engineering]:
Metrics - Performance measures, Process metrics, Product
metrics.

General Terms
Measurement, Design, Reliability.

Keywords
Relative code churn, defect density, fault-proneness, multiple
regression, principal component analysis.

1. INTRODUCTION
A “reliability chasm” often separates the quality of a software
product observed in its pre-release testing in a software
development shop and its post-release use in the field. That is,
true field reliability, as measured by the number of failures found

by customers over a period of time, cannot be measured before a
product has been completed and delivered to a customer. Because
true reliability information is available late in the process,
corrective actions tend to be expensive [3]. Clearly, software
organizations can benefit in many ways from an early warning
system concerning potential post-release defects in their product
to guide corrective actions to the quality of the software.

We use code churn to predict the defect density in software
systems. Code churn is a measure of the amount of code change
taking place within a software unit over time. It is easily extracted
from a system’s change history, as recorded automatically by a
version control system. Most version control systems use a file
comparison utility (such as diff) to automatically estimate how
many lines were added, deleted and changed by a programmer to
create a new version of a file from an old version. These
differences are the basis of churn measures.

We create and validate a set of relative code churn measures as
early indicators of system defect density. Relative churn measures
are normalized values of the various measures obtained during the
churn process. Some of the normalization parameters are total
lines of code, file churn, file count etc. Munson et al. [17] use a
similar relative approach towards establishing a baseline while
studying code churn. Studies have shown that absolute measures
like LOC are poor predictors of pre- and post release faults [7] in
industrial software systems. In general, process measures based on
change history have been found be better indicators of fault rates
than product metrics of code [9]. In an evolving system it is highly
beneficial to use a relative approach to quantify the change in a
system. As we show, these relative measures can be devised to
cross check each other so that the metrics do not provide
conflicting information.

Our basic hypothesis is that code that changes many times pre-
release will likely have more post-release defects than code that
changes less over the same period of time. More precisely, we
address the hypotheses shown in Table 1.

Our experiments on Windows Server 2003 (W2k3) support these
four hypotheses with high statistical significance. We analyzed the
code churn between the release of W2k3 and the release of the
W2k3 Service Pack 1 (W2k3-SP1) to predict the defect density in
W2k3-SP1. The relative code churn measures are statistically

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

ICSE ’05, May 15–21, 2005, St. Louis, MO, USA.
Copyright 2005 ACM 1-58113-963-2/05/0005...$5.00.

* Nachiappan Nagappan was an intern with the Testing,
Verification and Measurement Group, Microsoft Research in the
Summer of 2004 when this work was carried out.

better predictors of defect density than the absolute measures.
They also they are indicative of increase in system defect density
and can accurately predict the system defect density with a high
degree of sensitivity. Our metric suite is able to discriminate
between fault and not fault-prone binaries in W2k3-SP1 with an
accuracy of 89.0 percent.

Table 1. Research Hypotheses

 Hypothesis
H1 Increase in relative code churn measures is

accompanied by an increase in system defect
density

H2 Using relative values of code churn predictors is
better than using direct (absolute) values to explain
the system defect density

H3 Relative code churn measures can be used as
efficient predictors of system defect density.

H4 Relative code churn measures can be used to
discriminate between fault and not fault-prone
binaries.

The organization of this paper is as follows. Section 2 describes
the related work. Section 3 explains data collection and section 4
the relative code churn measures. Section 5 presents the case
study and the observed results. Section 6 discusses our
conclusions and future work.

2. RELATED WORK
Prior analyses on predicting defect density used code churn
measures as part of a larger set of metrics. Code churn measures
have not been studied in isolation as predictors of software defect
density. The background work presented below is from studies
that involved industrial software systems. The source code base of
W2k3 is two orders of magnitude larger than the largest example
considered below.

Munson et al. [17] observe that as a system is developed, the
relative complexity of each program module that has been altered
(or churned) also will change. The rate of change in relative
complexity serves as a good index of the rate of fault injection.
They studied a 300 KLOC (thousand lines of code) embedded real
time system with 3700 modules programmed in C. Code churn
metrics were found to be among the most highly correlated with
problem reports [17].

Khoshgoftaar et al.[13] define debug churn as the number of lines
of code added or changed for bug fixes. Their objective was to
identify modules where debug code churn exceeds a threshold, in
order to classify the modules as fault-prone. They studied two
consecutive releases of a large legacy system for
telecommunications. The system contained over 38,000
procedures in 171 modules. Discriminant analysis identified fault-
prone modules based on 16 static software product metrics. Their
model when used on the second release showed a type I and II
misclassification rate of 21.7%, 19.1% respectively and an overall
misclassification rate of 21.0%.

Ohlsson et al. [19] identify fault-prone modules by analyzing
legacy software through successive releases. They use a total of
28 measures, twelve of which are based on size and change
measures. These measures were used to identify 25 percent of the
most fault-prone components successfully.

Karunanithi [12] uses a neural network approach for software
reliability growth modeling in the presence of continuous code
churn, which he shows improves over the traditional time-domain
based models. Similarly Khoshgoftaar et al. [15] use code churn
as a measure of software quality in a program of 225,000 lines of
assembly language. Using eight complexity measures, including
code churn, they found neural networks and multiple regression to
be an efficient predictor of software quality, as measured by gross
change in the code. They suggest that using neural networks may
not work in all environments and the results obtained are
environment specific. Neural networks can be used for improving
software maintenance [15].

Ostrand et al. [20] use information of file status such as new,
changed, unchanged files along with other explanatory variables
such as lines of code, age, prior faults etc. as predictors in a
negative binomial regression equation to predict the number of
faults in a multiple release software system. The predictions made
using binomial regression model were of a high accuracy for
faults found in both early and later stages of development. [20]

Closely related to our study is the work performed by Graves et al.
[9] on predicting fault incidences using software change history.
Several statistical models were built based on a weighted time
damp model using the sum of contributions from all changes to a
module in its history. The most successful model computes the
fault potential by summing contributions from changes to the
module, where large and/or recent changes contribute the most to
fault potential [9]. This is similar to our approach of using relative
measures to predict fault potential.

Drawing general conclusions from empirical studies in software
engineering is difficult because any process depends to a large
degree on a potentially large number of relevant context variables.
For this reason, we cannot assume a priori that the results of a
study generalize beyond the specific environment in which it was
conducted [2]. Researchers become more confident in a theory
when similar findings emerge in different contexts [2]. Towards
this end we intend that our case study contributes towards
strengthening the existing empirical body of knowledge in this
field [7, 9, 13, 15, 17, 19, 20].

3. DATA COLLECTION
The baseline used for measuring the code churn and other
measures described below is Windows Server 2003 (W2k3). We
measured churn between this baseline and Windows Server 2003
Service Pack 1 (W2k3-SP1). We sometimes refer to W2k3-SP1 as
the “new version” of the code. Service packs are a means by
which product updates are distributed1. Service packs contain
updates for system reliability, program compatibility, security, etc.
that are conveniently bundled for easy downloading.

The size of the code base analyzed is 44.97 million LOC (44,970
KLOC). This consisted of 2465 binaries which were compiled
from 96,189 files. Some files contribute to more than one binary.
As defects for W2k3-SP1 are reported at the binary level, we
relate churn to defects at the level of binaries.

1 http://support.microsoft.com/

The absolute measures and methods of data collection are
described below:

• Total LOC is the number of lines of non-commented
executable lines in the files comprising the new version
of a binary. Internal Microsoft tools were used to
compute this measure.

• Churned LOC is the sum of the added and changed
lines of code between a baseline version and a new
version of the files comprising a binary.

• Deleted LOC is the number of lines of code deleted
between the baseline version and the new version of a
binary. The churned LOC and the deleted LOC are
computed by the version control systems using a file
comparison utility like diff.

• File count is the number of files compiled to create a
binary.

• Weeks of churn is the cumulative time that a file was
opened for editing from the version control system.

• Churn count is the number of changes made to the files
comprising a binary between the two versions (W2k3
and W2k3-SP1).

• Files churned is the number of files within the binary
that churned.

4. RELATIVE CODE CHURN MEASURES
In this section we describe our relative code churn measures. The
churn measures are denoted by the elements M1-M8. The
elements and their relationship to defect density are explained
below (these relationships are verified in section 5.1):

• M1: Churned LOC / Total LOC. We expect the larger
the proportion of churned (added + changed) code to the
LOC of the new binary, the larger the magnitude of the
defect density for that binary will be.

• M2: Deleted LOC / Total LOC. We expect the larger
the proportion of deleted code to the LOC of the new
binary, the larger the magnitude of the defect density for
that binary will be.

• M3: Files churned / File count. We expect the greater
the proportion of files in a binary that get churned, the
greater the probability of these files introducing defects.
For e.g. suppose binaries A and B contain twenty files
each. If binary A has five churned files and binary B has
two churned files, we expect binary A to have a higher
defect density.

• M4: Churn count / Files churned. Suppose binaries A
and B have twenty files each and also have five churned
files each. If the five files in binary A are churned
twenty times and the five files in binary B are churned
ten times, then we expect binary A to have a higher
defect density. M4 acts as a cross check on M3.

• M5: Weeks of churn / File count. M5 is used to
account for the temporal extent of churn. A higher value
of M5 indicates that it took a longer time to fix a smaller

number of files. This may indicate that the binary
contains complex files that may be hard to modify
correctly. Thus, we expect that an increase in M5 would
be accompanied by an increase in the defect density of
the related binary.

• M6: Lines worked on / Weeks of churn: The measure
“Lines worked on” is the sum of the churned LOC and
the deleted LOC. M6 measures the extent of code churn
over time in order to cross check on M5. Weeks of
churn does not necessarily indicate the amount of churn.
M6 reflects our expectation that the more lines are
worked on, the longer the weeks of churn should be. A
high value of M6 cross checks on M5 and should
predict a higher defect density.

• M7: Churned LOC / Deleted LOC. M7 is used in order
to quantify new development. All churn is not due to
bug fixes. In feature development the lines churned is
much greater than the lines deleted, so a high value of
M7 indicates new feature development. M7 acts as a
cross check on M1 and M2, neither of which accurately
predicts new feature development.

• M8: Lines worked on / Churn count: We expect that
the larger a change (lines worked on) relative to the
number of changes (churn count), the greater the defect
density will be. M8 acts as a cross check on M3 and
M4, as well as M5 and M6. With respect to M3 and M4,
M8 measures the amount of actual change that took
place. M8 cross checks to account for the fact that files
are not getting churned repeatedly for small fixes. M8
also cross checks on M5 and M6 to account for the fact
that the higher the value of M8 (more lines per churn),
the higher is the time (M5) and lines worked on per
week (M6).). If this is not so then a large amount of
churn might have been performed in a small amount of
time, which can cause an increased defect density.

Figure 1 illustrates the cross check relationships of these relative
code churn measures. As discussed above M1, M2 and M7 cross
check on each other and M8 cross checks on the set of M3, M4
and M5, M6. All these measures triangulate on their respective
dependent measures with the goal of providing the best possible
estimate of defect density with a minimum inflation in the
estimation.

5. CASE STUDY
We now describe the case study performed at Microsoft. Section
5.1 presents the correlation analysis between the relative code
churn measures and system defect density. Section 5.2 details the
model building activities and Section 5.3 the predictive ability of
the models. Section 5.4 discusses the discriminative power of the
relative code churn measures and Section 5.5 the limitations of the
study.

Figure 1. Relative Churn Measure Cross Check Relationships

Table 2. Cross Correlations. All correlations are significant at the 0.01 (99%) level (2-tailed).

 M1 M2 M3 M4 M5 M6 M7 M8
Defects
/KLOC

M1 ρρρρ 1.000 .834 .795 .413 .707 .651 .466 .588 .883
M2 ρρρρ 1.000 .645 .553 .747 .446 .219 .492 .798
M3 ρρρρ 1.000 .186 .749 .434 .445 .269 .868
M4 ρρρρ 1.000 .531 .429 .210 .631 .288
M5 ρρρρ 1.000 .263 .201 .390 .729
M6 ρρρρ 1.000 .701 .843 .374
M7 ρρρρ 1.000 .507 .288
M8 ρρρρ 1.000 .262

Defects/
KLOC

ρρρρ 1.000

As mentioned before, the system defect density for W2k3-
SP1 was collected at the level of binaries. That is, for each
binary we have a count of the number of defects assigned to
that binary.

Throughout the rest of the paper we assume a statistical
significance at 99% confidence (level of significance (� =
0.01)).

5.1 Correlation Analysis

Our goal is to verify that with an increase in the code churn
measures (M1-M8) there is a statistically significant increase
in the defects/KLOC. Table 2 shows the Spearman rank
correlation (�) among the defects/KLOC and the relative
code churn measures. Spearman rank correlation is a
commonly-used robust correlation technique [8] because it
can be applied even when the association between elements
is non-linear.

Table 2 shows that there exists a statistically significant (at
99% confidence) positive relationship between the measures
and the defects/KLOC (shown in bold). Thus, with an
increase in the relative churn measures there is a

corresponding positive increase in the defects/KLOC. This is
indicated by the statistically significant positive Spearman
rank correlation coefficient . From the above observations we
conclude that an increase in relative code churn measures is
accompanied by an increase in system defect density (H1).
In order to illustrate the cross checks better consider the
measures M1, M2 and M7 in Figure 2 with their Spearman
rank correlation coefficients from Table 2.

Figure 2: Cross Correlation Relationships

M1

M2

M7 0.834

0.466

0.219

M7

M2

M1

M6

M3

M4

M5

M8

M1: Churned LOC / Total LOC
M2: Deleted LOC / Total LOC
M3: Files churned / File count
M4: Churn count / Files churned
M5: Weeks of churn/ File count
M6: Lines worked on / Weeks of churn
M7: Churned LOC / Deleted LOC
M8: Lines worked on / Churn count

Cross check

The Spearman correlation coefficient of 0.834 between M1
and M2 indicates that there is a very strong correlation
between the two measures. But this might not be the case
when there is a higher proportion of churned code compared
to deleted code (as measured by M7 for new feature
development). Since this cannot be measured by M1 or M2,
M7 acts as a cross check on them. The correlation between
M1 and M7 (0.466) indicates when there is a new feature
addition there is a corresponding increase in the churned
code. For M2 and M7 this correlation is not as strong (but is
statistically significant) because there were relatively fewer
new feature additions compared to other changes in the
W2k3-SP1 source base.

5.2 Model Fitting

We now compare predictive models built using absolute
measures against those built using the relative churn
measures. For the absolute model, defects/KLOC is the
dependent variable and the predictors are the absolute
measures described in Section 3. For the relative model,
defects/KLOC is the dependent variable and the predictors
are the relative measures described in Section 4.

R2 is a measure of variance in the dependent variable that is
accounted for by the model built using the predictors [4]. R2

is a measure of the fit for the given data set. (It cannot be
interpreted as the quality of the dataset to make future
predictions). The adjusted R2 measure also can be used to
evaluate how well a model will fit a given data set [5].
Adjusted R2 explains for any bias in the R2 measure by taking
into account the degrees of freedom of the predictor variables
and the sample population. The adjusted R2 tends to remain
constant as the R2 measure for large population samples.

The multiple regression model fit for absolute measures
using all the predictors has an R2 value of 0.052 (F=16.922,
p<0.0005). (The F-ratio is used to test the hypothesis that all
regression coefficients are zero). This is a poor fit of the data
and irrespective of other transformations (like for e.g. log)
we cannot get a marked improvement in R2. The adjusted R2
value for the absolute measures is 0.49. Throughout the rest
of this paper we present the adjusted R2 values in addition to
the R2 measures in order to eliminate any bias in model
building. But with respect to the large sample size (2465
binaries) the adjusted R2 and R2 value show only minor
variation, not sufficient enough to drop the R2 value and
employ the adjusted R2 value.

There are different ways in which regression models [16] can
be built. Three common regression methods [16] are forward,
backward and step-wise regression. In forward regression,
one adds a single predictor at a time to the model based on
the strength of its correlation with the dependent variable.
The effect of adding each predictor is evaluated based on the
results of an F-ratio test [16]. Variables that do not
significantly add to the success of the model are excluded. In
backward regression, a model is built using all the predictors.
The weakest predictor variable is removed and the strength
of the overall built model is assessed similar to the forward
regression procedure. If this significantly weakens the model
then the predictor is put back (and otherwise removed). Step-
wise regression [16] is the more robust technique of these

methods. The initial model consists of the predictor having
the single largest correlation with the dependent variable.
Subsequently, new predictors are selected for addition into
the model based on their partial correlation with the
predictors already in the model. With each new set of
predictors, the model is evaluated and predictors that do not
significantly contribute towards statistical significance in
terms of the F-ratio are removed so that, in the end, the best
set of predictors explaining the maximum possible variance
is left.

A step-wise regression analysis using the absolute set of
predictors does not lead to any significant change in the R2

values (=0.051) (adjusted R2 = 0.050). Only the LOC and the
number of times a file is churned are kept as predictors. This
further confirms the fact that using the absolute measures is
not an appropriate method for assessing the system defect
density.

Several empirical studies use Principal Component Analysis
(PCA) [10] to build regression models [6]. In PCA a smaller
number of uncorrelated linear combinations of metrics,
which account for as much sample variance as possible, are
selected for use in regression. PCA is not a possible solution
when using absolute measures because the correlation matrix
is not positive definite. We still use the two principal
components generated to build a multiple regression
equation. The multiple regression equation constructed has
an even lower value of R2=0.026, (F=33.279, p<0.0005).

Based on the three results discussed above (multiple
regression using all the predictors, step-wise regression and
PCA) we conclude that the absolute measures are not good
predictors of system defect density.

As outlined in Section 3 we calculate the relative code churn
measures (M1-M8) and build regression models using all the
measures, step-wise regression and PCA. Table 3 shows the
R2 value of the regression equation built using all the
measures. We also present the adjusted R2 value and the root
MSE (Mean Squared Error).

Table 3. Regression Fit Using All Measures

Model R2 Adjusted R2 Root MSE
All Measures .811 .811 1.301215

Table 4 shows how the R2 value changes in step-wise
regression for all the models built during that process. In the
step-wise regression model the measure M7 is dropped. The
best R2 value in Table 4 (without M7) is the same as that of
Table 3 (.811) but there is a change in the third decimal place
of the standard error of the estimate. M7 probably was
dropped because there were relatively fewer new feature
additions compared to other changes in the W2k3-SP1 source
base. The adjusted R2 values are also shown but are not
significantly different from the R2 values due to the large
sample size used to build the models.

Table 4. Step-wise Regression Models

Model R-Square

Adjusted
R-Square Root MSE

(a) .592 .592 1.908727
(b) .685 .685 1.677762
(c) .769 .769 1.437246
(d) .802 .801 1.331717
(e) .808 .807 1.312777
(f) .810 .809 1.305817
(g) .811 .811 1.300985

a Predictors: (Constant), M2
b Predictors: (Constant), M2, M3
c Predictors: (Constant), M2, M3, M8
d Predictors: (Constant), M2, M3, M8, M1
e Predictors: (Constant), M2, M3, M8, M1, M6
f Predictors: (Constant), M2, M3, M8, M1, M6, M5
g Predictors: (Constant), M2, M3, M8, M1, M6, M5, M4.

The PCA of the eight relative code churn measures yields
three principal components. PCA can account for the

multicollinearity among the measures, which can lead to
inflated variance in the estimation of the defect density.

But for PCA to be applicable the KMO (Kaiser-Meyer-
Olkin) measure[11] of sampling adequacy should be greater
than 0.6 [4]. The KMO measure of sampling adequacy is a
test of the amount of variance within the data that can be
explained by the measures. The KMO measure of the eight
relative code churn measures is 0.594 which indicates that
PCA might not be an appropriate method to apply.

We still perform the analysis to investigate and present those
results as well on a comparative basis. The results for all
three models are summarized in Table 5.

Table 5. Relative Measures Model Fits

Model R2 Adjusted R2 F-Test sig.
All measures 0.811 0.811 1318.44,

(p<0.0005)
Step-wise
regression

0.811 0.811 1507.31,
(p<0.0005)

PCA 0.749 0.748 2450.89,
(p<0.0005)

From the above results we can see that using relative values
of code churn predictors is better than using absolute values
to explain the system defect density (H2).

Figure 3: Actual vs. Estimated System Defect Density

5.3 Defect Density Prediction

We use the technique of data splitting [18] to measure the
ability of the relative code churn measures to predict system
defect density. The data splitting technique was employed to
get an independent assessment of how well the defect density
can be estimated from a population sample. We randomly
select two thirds of the binaries (1645) to build the prediction
model and use the remaining one third (820) to verify the
prediction accuracy. We constructed models using all the
measures, step-wise regression and PCA (for purpose of
completeness). Table 6 shows the results for these models.

Table 6. Regression Data Fit

Model R2 Adjusted
R2

F-Test sig.

All measures 0.821 0.820 938.304,
(p<0.0005)

Step-wise
regression

(M7 dropped)

0.821 0.820 1072.975,
(p<0.0005)

PCA 0.762 0.761 1749.113,
(p<0.0005)

Using the fitted regression equation we estimate the system
defect density for the remaining 820 binaries. Figure 3 shows
the estimated and actual defect density using the regression
equation constructed using all the measures (sorted by
estimated defect density). The estimated defect density is
shown by the thicker continuous line. From the graph we can
see that the estimated defect density is similar to the actual
defect density. The axes on the graphs are removed in order
to protect proprietary data

To quantify the sensitivity of prediction, we run a correlation
analysis between the estimated and actual values. A high
positive correlation coefficient indicates that with an increase
in the actual defect density there is a corresponding positive
increase in the estimated defect density. We perform Pearson
and Spearman correlations to indicate their sensitivity. The
Pearson correlation indicates a linear relationship. The
Spearman correlation is a more robust correlation technique.

Table 7 shows that the correlations are all positive and
statistically significant. The magnitude of the correlations
indicates the sensitivity of the predictions (the stronger the
correlations the more sensitive are the predictions). The
models built using all the measures and the step-wise method
have the same sensitivity and are better than the model built
using PCA.

Table 7. Correlation Results

Model Pearson (sig.) Spearman (sig.)
All measures 0.889 (p<0.0005) 0.929 (p<0.0005)
Step-wise
regression

0.889 (p<0.0005) 0.929 (p<0.0005)

PCA 0.849 (p<0.0005) 0.826 (p<0.0005)

Analyses that are based on a single dataset that use the same
data to both estimate the model and to assess its performance
can lead to unreasonably negative biased estimates of
sampling variability. In order to address this we repeat the

random sampling with 3 different random samples to verify
if the above results are repeatable. For each sample the model
is fit with 1645 binaries to build the model. Table 8 shows
the fit of the various models built for each sample.

Table 8. Random Splits Data Fit

Model R2 Adjusted
R2

F-Test (Sig.)

Random 1: All 0.836 0.835 1045.07,
(p<0.0005)

Random 1:
Stepwise (drop

none)

0.836 0.835 1045.07,
(p<0.0005)

Random 1: PCA 0.757 0.756 1701.98,
(p<0.0005)

Random 2: All 0.822 0.821 941.86,
(p<0.0005)

Random 2:
Stepwise (drop

M4)

0.821 0.820 1074.05,
(p<0.0005)

Random 2: PCA 0.765 0.764 1776.87,
(p<0.0005)

Random 3: All 0.799 0.798 813.12,
(p<0.0005)

Random 3:
Stepwise (drop

M7)

0.799 0.798 927.54,
(p<0.0005)

Random 3: PCA 0.737 0.736 1529.25,
(p<0.0005)

Using each of the above predictive models we calculate the
estimated defect density for the remaining 820 binaries.
Table 9 shows the correlation between the estimated and the
actual defect density.

Table 9. Correlation Between Actual and Estimated
Defects/KLOC

Model Pearson
Correlation (sig.)

Spearman
Correlation (sig.)

Random 1:
All

0.873 (p<0.0005) 0.931 (p<0.0005)

Random 1:
Stepwise

0.873 (p<0.0005) 0.931 (p<0.0005)

Random 1:
PCA

0.858 (p<0.0005) 0.836 (p<0.0005)

Random 2:
All

0.878 (p<0.0005) 0.917 (p<0.0005)

Random 2:
Stepwise

0.876 (p<0.0005) 0.906 (p<0.0005)

Random 2:
PCA

0.847 (p<0.0005) 0.825 (p<0.0005)

Random 3:
All

0.899 (p<0.0005) 0.892 (p<0.0005)

Random 3:
Stepwise

0.901 (p<0.0005) 0.893 (p<0.0005)

Random 3:
PCA

0.880 (p<0.0005) 0.818 (p<0.0005)

Based on the consistent positive and statistically significant
correlations, indicating the sensitivity of predictions obtained

in Table 9 we can say that relative code churn measures can
be used as efficient predictors of system defect density (H3).

Our results demonstrate it is effective to use all eight
measures rather than dropping any of them from the
predictive equation. Each of these measures cross check on
each other and any abnormal behavior in one of the measures
(for e.g. like a file getting churned too many times) would be
immediately highlighted.

By interchanging the measures in a model equation we can
get estimated values for all the relative measures
independently. For example, in order to determine the
maximum allowable code churn with respect to the file size
(i.e. M1), say for a particular software model we fix the
maximum allowable system defect density. We then can
build a regression model with M2-M8 and defect density as
predictors and M1 as the dependent variable.

5.4 Discriminant Analysis

Discriminant analysis, is a statistical technique used to
categorize programs into groups based on the metric values.
It has been used as a tool for the detection of fault-prone
programs [13, 14, 18]. The ANSI-IEEE Std. [1] defines a
fault as an accidental condition that causes a functional unit
to fail to perform its required function. We use discriminant
analysis to identify binaries as fault-prone or not fault-prone.
To classify if a binary is fault-prone or not we use the system
defect density in a normal confidence interval calculation as
shown in equation 1.

LB = � x-z� /2*Standard deviation of defect density... (1)

 n

where

• LB is the lower bound on system defect density;

• � x is the mean of defect density;

• Z � /2 is the upper � /2 quantile of the standard normal
distribution;

• n is the number of observations.

We conservatively classify all binaries that have a defect
density less than LB as not fault-prone and the remaining as
fault-prone. Table 10 shows the eigenvalue and overall
classification ability of using the eight measures and the three
principal components. The eigenvalue is a measure of the
discriminative ability of the discriminant function. The
higher the eigenvalue the better is the discriminative ability.
For all measures, the function correctly classifies nearly nine
out of every ten binaries.

Table 10. Overall Discriminant Function Fit

Model Eigenvalue Classification ability
All Measures 1.025 2188/2465 (88.8%)

PCA 0.624 2195/2465 (89.0%)

As before, we split the data set into 1645 programs to build
the discriminant function and the remaining 820 binaries to
verify the classification ability of the discriminant function.

We perform this analysis using all the measures and the
principal components. The results of this fit and classification
are shown below in table 11.

Table 11. Discriminant Analysis

 For Model Fit (for 1645
binaries to build the model)

For Test Data
(820 binaries)

Model Eigen
value

Classification
ability

Classification
ability

All
Measures

1.063 1464/1645
(90.0%)

735/820
(89.6%)

PCA 0.601 1461/1645
(88.8%)

739/820
(90.1%)

Table 11 shows that the relative code churn measures have
effective discriminant ability (comparable to prior studies
done on industrial software [13]). We conclude that relative
code churn measures can be used to discriminate between
fault and not fault-prone binaries (H4).

5.5 Limitations of Study
Internal validity. Internal validity issues arise when there
are errors in measurement. This is negated to an extent by the
fact that the entire data collection process is automated via
the version control systems. However, the version control
systems only records data upon developer check-out or
check-in of files. If a developer made many overlapping edits
to a file in a single check-out/check-in period then a certain
amount of churn will not be visible. A developer also might
have a file checked out for a very long period of time during
which few changes were made, inflating the “weeks of
churn” measure.

These concerns are alleviated to some extent by the cross
check among the measures to identify abnormal values for
any of the measures and the huge size and diversity of our
dataset.

In our case study we provide evidence for using all the
relative churn measures rather than a subset of values or
principal components. This is case study specific and should
be refined based on further results.

External validity. External validity issues may arise from
the fact that all the data is from one software system (albeit
one with many different components) and that the software is
very large (some 44 million lines of code) as other software
systems used for a similar analysis might not be of
comparable size.

6. CONCLUSIONS AND FUTURE
WORK
We have shown how relative code churn metrics are
excellent predictors of defect density in a large industrial
software system. Our case study provides strong support for
the following conclusions:

• Increase in relative code churn measures is
accompanied by an increase in system defect
density;

• Using relative values of code churn predictors is
better than using absolute values to explain the
system defect density;

• Relative code churn measures can be used as
efficient predictors of system defect density; and

• Relative code churn measures can be used to
discriminate between fault and not fault-prone
binaries.

We plan to validate our approach on other products
developed inside Microsoft like SQL Server and Office. We
also plan to develop standards for all the measures to provide
guidance to the developers on the maximum allowable
change. We also plan to investigate how testing can more
effectively be directed towards churned code.

ACKNOWLEDGEMENTS
We would like to express our appreciation to Brendan
Murphy of Microsoft Research for providing the Windows
Server 2003 SP1 data set. We would like to thank Madan
Musuvathi of Microsoft Research, for critical feedback on
the relative churn measures. We would like to thank Jim
Larus of Microsoft Research, Laurie Williams, Jason
Osborne of North Carolina State University for reviewing
initial drafts of this paper and the anonymous referees for
their thoughtful comments on an earlier draft of this paper.

REFERENCES

[1] ANSI/IEEE, "IEEE Standard Glossary of of Software

Engineering Terminology, Standard 729," 1983.
[2] Basili, V., Shull, F.,Lanubile, F., "Building

Knowledge through Families of Experiments," IEEE
Transactions on Software Engineering, vol. Vol. 25,
No.4, 1999.

[3] Boehm, B. W., Software Engineering Economics.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1981.

[4] Brace, N., Kemp, R., Snelgar, R., SPSS for
Psychologists: Palgrave Macmillan, 2003.

[5] Brito e Abreu, F., Melo, W., "Evaluating the Impact
of Object-Oriented Design on Software Quality,"
Proceedings of Third International Software Metrics
Symposium, 1996.pp 90-99.

[6] Denaro, G., Pezze, M., "An empirical evaluation of
fault-proneness models," Proceedings of International
Conference on Software Engineering, 2002.pp 241 -
251.

[7] Fenton, N. E., Ohlsson, N., "Quantitative analysis of
faults and failures in a complex software system,"
IEEE Transactions on Software Engineering, vol. 26,
pp. 797-814, 2000.

[8] Fenton, N. E., Pfleeger, S.L., Software Metrics.
Boston, MA: International Thompson Publishing,
1997.

[9] Graves, T. L., Karr, A.F., Marron, J.S., Siy, H.,
"Predicting Fault Incidence Using Software Change
History," IEEE Transactions on Software
Engineering, vol. 26, pp. 653-661, 2000.

[10] Jackson, E. J., A User's Guide to Principal
Components: John Wiley & Sons, Inc., 1991.

[11] Kaiser, H. F., "An Index of Factorial Simplicity,"
Psychometrika, vol. 39, pp. 31-36, 1974.

[12] Karunanithi, N., "A Neural Network approach for
Software Reliability Growth Modeling in the Presence
of Code Churn," Proceedings of International
Symposium on Software Reliability Engineering,
1993.pp 310-317.

[13] Khoshgoftaar, T. M., Allen, E.B., Goel, N., Nandi, A.,
McMullan, J., "Detection of Software Modules with
high Debug Code Churn in a very large Legacy
System," Proceedings of International Symposium on
Software Reliability Engineering, 1996.pp 364-371.

[14] Khoshgoftaar, T. M., Allen, E.B., Kalaichelvan, K.S.,
Goel, N., Hudepohl, J.P., Mayrand, J., "Detection of
fault-prone program modules in a very large
telecommunications system," Proceedings of
International Symposium Software Reliability
Engineering, 1995.pp 24-33.

[15] Khoshgoftaar, T. M., Szabo, R.M., "Improving Code
Churn Predictions During the System Test and
Maintenance Phases," Proceedings of IEEE
International Conference on Software Maintainence,
1994.pp 58-67.

[16] Kleinbaum, D. G., Kupper, L.L., Muller, K.E.,
Applied Regression Analysis and Other Multivariable
Methods. Boston: PWS-KENT Publishing Company,
1987.

[17] Munson, J. C., Elbaum, S., "Code Churn: A Measure
for Estimating the Impact of Code Change,"
Proceedings of IEEE International Conference on
Software Maintenence, 1998.pp 24-31.

[18] Munson, J. C., Khoshgoftaar, T.M., "The Detection of
Fault-Prone Programs," IEEE Transactions on
Software Engineering, vol. 18, pp. 423-433, 1992.

[19] Ohlsson, M. C., von Mayrhauser, A., McGuire, B.,
Wohlin, C., "Code Decay Analysis of Legacy
Software through Successive Releases," Proceedings
of IEEE Aerospace Conference, 1999.pp 69-81.

[20] Ostrand, T. J., Weyuker, E.J, Bell, R.M., "Where the
Bugs Are," Proceedings of the 2004 ACM SIGSOFT
International Symposium on Software Testing and
Analysis (ISSTA), 2004.pp 86-96.

