
Abstract Satellite remote sensing data has significant potential use in analysis of
natural hazards such as landslides. Relying on the recent advances in satellite remote
sensing and geographic information system (GIS) techniques, this paper aims to map
landslide susceptibility over most of the globe using a GIS-based weighted linear
combination method. First, six relevant landslide-controlling factors are derived
from geospatial remote sensing data and coded into a GIS system. Next, continuous
susceptibility values from low to high are assigned to each of the six factors. Second,
a continuous scale of a global landslide susceptibility index is derived using GIS
weighted linear combination based on each factor’s relative significance to the
process of landslide occurrence (e.g., slope is the most important factor, soil types
and soil texture are also primary-level parameters, while elevation, land cover types,
and drainage density are secondary in importance). Finally, the continuous index
map is further classified into six susceptibility categories. Results show the hot spots
of landslide-prone regions include the Pacific Rim, the Himalayas and South Asia,
Rocky Mountains, Appalachian Mountains, Alps, and parts of the Middle East and
Africa. India, China, Nepal, Japan, the USA, and Peru are shown to have landslide-
prone areas. This first-cut global landslide susceptibility map forms a starting point
to provide a global view of landslide risks and may be used in conjunction with
satellite-based precipitation information to potentially detect areas with significant
landslide potential due to heavy rainfall.
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1 Introduction

Shallow landslides, often called mudslides or debris flows, are rapidly moving flows
of mixed rocks and mud that move downhill at speeds of 55 km per hour or more,
kill people and destroy homes, roads, bridges, and other property. They are caused
primarily by prolonged, heavy rainfall on saturated hill slopes (Baum et al. 2002).
For example, hurricane Mitch caused catastrophic landslides throughout the
Caribbean and Central America area in October, 1998. It was reported that 6,600
persons were killed and 8,052 injured. Approximately 1.4 million people were left
homeless. More than 92 bridges had been destroyed, and nearly 70% of crops were
damaged. Although landslide events occur frequently worldwide, unfortunately, no
map or guideline currently exists to assess the relative landslide potential throughout
the globe. Although it is still difficult to predict a landslide event in space and time,
an area may be ranked according to the degree of potential hazard from landslides in
order to possibly minimize damage (Saha et al. 2005).

Landslide occurrence depends on complex interactions among a large number of
partially interrelated factors. These parameters, according to Dai and Lee (2002) can
be grouped into two categories: (1) preparatory variables including slope, soil
properties, elevation, aspect, land cover, lithology etc; and (1) the triggering vari-
ables such as heavy rainfall and glacier outburst. A field survey, conventionally, is
the most exact method to assess landslide susceptibility (LS). However, analyzing
landslide potential that might occur in a large area is very difficult and expensive in
terms of time and money. This is especially true in developing countries where
expensive ground observation networks are prohibitive and in mountainous areas
where access is difficult. In many countries, remote sensing information may be the
only possible source available for such studies. Currently available satellite data may
provide useful and accurate information on earth surface features and dynamic
processes involved in landslide occurrence.

This paper takes the opportunity to use high-resolution satellite remote sensing
products to attempt a global-scale landslide hazard assessment. Information from
remotely sensed data is digitally processed and integrated with other ancillary
information using a Geographical Information System (GIS). By using GIS-based
map overlay techniques, it is possible to quantitatively combine several layers of
different parameters (e.g. elevation, slope, land use, etc.) to produce spatial patterns
of LS on a global scale. This first-cut global LS map may form a starting point to
provide a global assessment of landslide hazards and could be used in conjunction
with satellite-based precipitation information to predict landslides triggered by
heavy rainfall over susceptible areas.

The outline of this paper is as follows: landslide-controlling factors and geospatial
data sets are described in Sect. 2; development of the global LS map is presented in
Sect. 3, followed by discussion of results in Sect. 4.

2 Satellite remote sensing and geospatial datasets

2.1 landslide controlling factors

Landslide occurrence depends on complex interactions among a large number of
factors. Table 1 lists landslide controlling factors: geologic setting, geomorphic
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feature, soil property, land cover characteristics, and hydrological and human im-
pacts. According to Dai and Lee (2002), these factors can also breakdown into two
interactive categories: static and dynamic factors. Factors that trigger mass move-
ments are called dynamic factors, mainly rainfall and earthquakes. Basic surface-
related characteristics that are related to sliding are called static factors or primary
factors (Sidle and Ochiai, 2006). Static factors are the determinants of landslide
susceptibility, and can be derived from surface characteristics.

2.2 Geospatial data sets

Remote sensing products can be utilized for deriving various parameters related to
landslide controlling factors. Several geospatial data sets were used in this study and
their spatial scales arrange from 30-meter to 0.25 degree grid sizes. Brief descriptions
of the data sets are below.

2.2.1 Digital elevation model data and its derivatives

The basic digital elevation model (DEM) data set used in this study includes Na-
tional Aeronautics and Space Administration (NASA) Shuttle Radar Topography
Mission (SRTM; http://www2.jpl.nasa.gov/srtm/) dataset. The SRTM data are a
major breakthrough in digital mapping of the world (with 30 m horizontal spatial
resolution and vertical error less then 16 m), and provides a major advance in the
availability of high quality elevation data for large portions of the tropics and other
areas of the developing world. SRTM data are distributed in two levels: SRTM1 (for
the U.S. and its territories and possessions) with data sampled at one arc-second
interval in latitude and longitude, and SRTM3 (60� N–60� S) sampled at three arc-
seconds. The horizontal resolution of SRTM1 has about 30-meter resolution and
SRTM3 has 90-meter resolution in equator areas. A description of the SRTM
mission can be found in Farr and Kobrick (2000).

DEM data can be used to derive topographic factors, other than simply elevation,
including slopes, aspects, hill shading, slope curvature, slope roughness, slope area
and qualitative classification of landforms (Fernandez et al. 2003). DEM data can be
also used to derive hydrological parameters (flow direction, flow path, and basin and
river network basin). Figure 1 shows the Puerto Rico 30-meter SRTM DEM map
and slopes calculated at various resolutions. Table 2 lists the statistics of their slopes

Table 1 Landslide controlling factors

Category Controlling factors Availability

Geology Lithological makeup, rock units
(mudstone, sandstone, limestone and greentuffes),
tectonics, bedrock structure

Local

Geomorphology Elevation, Slope, slope shape, aspect, curvature, concavity Global
Soil Soil types (clay, silt, foam, sand ...), soil texture, soil depth Global
Land cover Vegetated, barren, built-up, developed, shrub, grass ... Global
Hydrology Rainfall, Soil moisture, snowmelt, drainage density or

flow accumulation, flow direction (sliding path), infiltration
Global

Human impact Urban build-up, road construction, deforestation (burning),
irrigation, mining, artificial vibration ....

Regional
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derived from 30-m, 90-m, and 1000-m spatial resolution of DEM over Puerto Rico,
respectively.

The United States Geological Survey’s GTOPO30 DEM (http://edcdaac.usgs.gov/
gtopo30/gtopo30.html), with a 1-km horizontal resolution is used in this study to fill
the SRTM gaps. The SRTM data covers all land between 56 degrees south and 60
degrees north latitude, about 80% of global land.

2.2.2 Land cover data

MODIS (Moderate Resolution Imaging Spectroradiometer) is a key instrument
aboard the Terra and Aqua satellites. Terra’s orbit around the Earth is timed so that
it passes from north to south across the equator in the morning, while Aqua passes
south to north over the equator in the afternoon. MODIS is viewing the entire
Earth’s surface every 1–2 days, acquiring data in 36 spectral bands, or groups of
wavelengths (http://modis.gsfc.nasa.gov/index.php). These data improve our under-
standing of global dynamics and processes occurring on the land, in the oceans, and
in the lower atmosphere. The global land cover data from MODIS are used as a
simple surrogate for vegetation and land use types. The MODIS land cover classi-
fication map is available at the highest resolution available, 250 m. This land cover
product uses the classification scheme proposed by the International Geosphere
Biosphere Programme (IGBP). The MODIS land cover products describe the
geographic distribution of the 17 IGBP land cover types based on an annual time
series of observations (Friedl et al. 2002). For each spatial resolution there is a land
cover type classification layer (with numbers from 0 to 17), a classifier confidence

Fig. 1 Slope derived from NASA Shuttle Radar Topography Mission data over Puerto Rico. Top
Panel-Slope derived from 30, 90, and 1000 m DEM; Bottom panel-histogram of slope distribution

Table 2 The statistics of slopes derived from different resolution DEM over Puerto Rico

Slope property (degree) Number of pixels

Max Mean Median Standard deviation

DEM 30-m 89.95 13.45 11.31 12.41 11,947,162
90-m 73 13.48 12.16 11.8 1,322,659
1000-m 58 13.15 12.12 11.42 11,029
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assessment layer, and 17 associated layers that provide the percentage, from 0 to 100,
of each land cover type per cell. The data set also provides the fraction of each of the
17 classes within the coarser resolution cells.

2.2.3 FAO digital soil map

Information on soil properties is obtained from the Digital Soil of the World pub-
lished in 2003 by Food and Agriculture Organization (FAO) of the United Nations
(http://www.fao.org/AG/agl/agll/dsmw.htm). The soil parameters available include
soil type classification, clay mineralogy, soil depth, soil moisture capacity, soil bulk
density, soil compaction, etc. This product is not based on satellite information
directly, but is based primarily on ground surveys and national databases.

2.2.4 Soil characteristics

A second non-satellite database is the International Satellite Land Surface Clima-
tology Project (ISLSCP) Initiative II Data Collection (http://www.gewex.org/is-
lscp.html), which provides gridded data of 18 selected soil parameters. These data
sets are distributed by the Oak Ridge National Laboratory Distributed Active Ar-
chive Center (http://daac.ornl.gov/) at quarter degree resolution. One important
parameter for this study is the soil texture. Following the U.S. Department of
Agriculture soil texture classification, the 13 textural classes reflect the relative
proportions of clay (granules size less than 0.002 mm), silt (0.002–0.05 mm) and sand
(0.05–2 mm) in the soil. Three textural categories are recognized among the 13
original texture classes: coarse (1) sands, loamy sands, and sandy loams with less
than 18% clay and more than 65% sand; medium (2) sandy loams, loams, sandy clay
loams, silt loams, silt, silty clay loams, and clay loams with less than 35% clay and
less than 65% sand (the sand fraction may be as high as 82 if a minimum of 18% clay
is present); and fine (3) clay, silty clays, sandy clays, clay loams, with more than 35%
clay. Note that these soil texture classes are interpolated to the highest DEM spatial
scale.

3 Development of the global landslide susceptibility map

Landslide susceptibility can be mapped out using various methods depending on the
data availability (Guzzetti et al. 1999). However, is it possible for a landslide sus-
ceptibility map to be produced with limited data? Fabbri et al. (2003) and Coe et al.
(2004) suggest that this is not only possible, but also more accurate. More infor-
mation does not necessarily lead to better results, depending on the quality of the
data. Coe et al. (2004) evaluated the effectiveness of a landslide susceptibility map
derived from four topographic parameters (elevation, slope angle, curvature, and
aspect) and found two of these, a combination of elevation and slope angle, best
portrayed landslide susceptibility. Similarly, Fabbri et al. (2003) found three data
layers (slope, elevation, and aspect) derived exclusively from a DEM provided
better results than six data layers (including other geology, surficial materials, and
land use). These results seemingly indicate that topography was the dominant
control in determining location of landslide occurrence.
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The statements below describe the landslide susceptibility mapping process used
in this study:

1) classifying landslide-controlling factors into nominal categories with a contin-
uum of increasing susceptibility to shallow landslides;

2) assigning susceptibility values from zero to one for each factors; and
3) mapping the landslide susceptibility using weighted linear combination methods.

3.1 Assignment of numerical values for landslide-controlling factors

Based on the aforementioned geospatial data sets, a number of landslide-controlling
parameters are derived, including elevation, slope, aspect, curvature, concavity,
percentage of soil types (including clay, foam, silt, and sand etc.), soil texture, land
use classification, and hydrological variables (drainage density, flow accumulation,
and flow path). All parameters have been downscaled or interpolated to the SRTM
elemental horizontal scale of 30 m. Due to the lack of global landslide occurrence
data, landslide -factor selection and assignment of numerical values are based on the
referenced studies and on information availability. Among these factors, previous
studies (Dai and Lee 2002; Carrara et al. 1991; Anbalagan et al. 1992; Larsen and
Torres Sanchez 1998; Lee and Min 2001; Saha et al. 2002; Fabbri et al. 2003; Sarkar
and Kanungo 2004; Coe et al. 2004) demonstrated that six parameters; slope, type of
soil (clay, soam, percentage of clay), soil texture, elevation, MODIS land cover, and
drainage density, are closely associated with landslide occurrences.

The first step is to classify each landslide-controlling factor into various catego-
ries. For example, using an approach published by Larsen and Torres Sanchez
(1998), land cover can be discretized into several general categories: (a) forested
land; (b) shrub land; (c) grass land; (d) pasture and/or cropland, and (e) developed
land and/or road corridors. These land use/land cover categories describe a con-
tinuum of increasing susceptibility to shallow landslides. In this study, following the
same approach, the 17 MODIS land cover types are classified into 11 categories
(Table 3), which describe increasing landslide susceptibility to shallow landslides.
Therefore, landslide susceptibility values from zero to one are assigned to each
category, respectively. The effect of slope, soil type, and soil texture on landslides
was widely documented by Dai and Lee (2002) and Lee and Min (2001). In many

Table 3 Assignment of numerical values of landslide susceptibility for different land cover types

Category Assignment of
susceptibility

Original MODIS
classes

Contents

0 0 0, 15 Water bodies; permanent snow and ice
1 0.1 11, 1, 2 Evergreen Forests, permanent wetland
2 0.2 3, 4 Deciduous Forests or mixed forested lands
3 0.3 5 Mixed forests
4 0.4 6, 7 Open or closed Shrub lands
5 0.5 8, 9 Woody Savannas or Savannas
6 0.6 10 Grass land
7 0.7 12 Croplands
8 0.8 14 Cropland and/or Natural Vegetation Mosaic
9 0.9 16 Barren or Sparsely Vegetated land
10 1.0 13, 17 Developed land, road corridors, coastal area
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regions, elevation according to Coe et al. (2004) is approximately a proxy for mean
rainfall that increases with height due to orographic effects and high elevation areas
are preferentially susceptible to landslides because they receive greater amounts of
rainfall than areas at lower elevations. Drainage density provides an indirect mea-
sure of groundwater conditions, which have an important role to play in landslide
activity (Sarkar and Kanungo 2004). Sarkar and Kanungo (2004) also found an
inverse relationship between landslides and drainage density, which may be due to
high infiltration in weathered gneisses causing more instability in the area. Based on
these previous studies, assignment of landslide susceptibility values for other
parameters is based on several empirical assumptions: (1) higher slope, higher sus-
ceptibility; (2) coarser and looser soil, higher susceptibility; (3) higher elevation,
higher susceptibility, and (4) decreasing susceptibility for larger drainage density.
Under assumption (1), for example, the slope map units are given zero susceptibility
value for class of flat slopes and susceptibility value one is assigned to the class of
steepest slopes. Thus, numerical values xk(i,j,t) of parameter k are normalized from
zero to one, as shown in Eq. 1:

ykði; j; tÞ ¼
xkði; j; tÞ � xmin

k

xmax
k � xmin

k

; ð1Þ

where xk(i, j, t) is the original numerical value of kth factor at pixel location (i, j) at
time t and yk(i, j, t) is the numerical value normalized from xk (i, j, t). Where xk

max

(xk
min) is the upper (lower) numerical value limit of kth factor. As pointed out above,

these landslide-controlling factors are semi-static so that the time t only represents
the sampling time of these geospatial data sets. Final landslide susceptibility values
are combined results of the numerical values assigned to each of the landslide-
controlling parameters.

3.2 Weighted linear combination

To represent and interactively examine these factors, a series of thematic maps have
been created, using the GIS overlay concept of weighted linear combination (WLC).
WLC is a method where landslide-controlling factors can be combined by applying
primary- and second-level weights (Ayalew et al. 2004). In this study, the weighted
linear combination method is performed to derive the final susceptibility values, as
shown in Eq. 2.

Zði; j; tÞ ¼
Xn

k¼1

wkykði; j; tÞ;where
Xn

k¼1

wk ¼ 1 ð2Þ

Z(i, j, t) is final susceptibility value for pixel (i, j) and wk is the linear combination
weight for kth factor, where k = 1–6 in this study. Next step is to determine the
weight for each parameter.

Both Coe et al. (2004) and Fabbri et al. (2003) found that topography was the
dominant control in determining location of landslide occurrences. Dai and Lee
(2002) and Lee and Min (2001) reported slope steepness has the most influence on
shallow landslide likelihood, followed by soil texture and soil types that mantles the
slope. The other parameters, land covers (Larsen and Torres Sanchez 1998), ele-
vation (Coe et al. 2004), and drainage density (Sarkar and Kanungo 2004), also play
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important but secondary roles in determining landslide potentials. Following these
analysis, among the six parameters, we find that the slope is the most important
factor and soil types and soil texture are also primary-level parameters, while the
elevation, land cover types, and drainage density are of secondary-level importance.
Several WLC susceptibility models were tried reflecting different weights combi-
nations. Results were inter-compared with existing regional susceptibility maps
(http://landslides.usgs.gov) and Fig. 2. The best model obtained was the one with
weight determination (0.3, 0.2, 0.2, 0.1, 0.1, and 0.1) for the six parameters (slope,
type of soil, soil texture, elevation, MODIS land cover type, and drainage density),
respectively. The consequent range in susceptibility values is normalized from zero
to one. The larger the susceptibility value, numerically, the greater the potential to
produce landslide.

Fig. 2 North America geospatial data such as (a) DEM; (b) slope; (c) MODIS land cover
classification, (d) landslide susceptibility indices derived from this study, and (e, f) landslide
susceptibility map from USGS. All rescaled to 1km for display purpose
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3.3 The global landslide susceptibility map

This continuous scale of numerical indices of landslide susceptibility can be further
classified into several categories (Sarkar and Kanungo 2004). A judicious way for
such classification is to search the category boundaries at abrupt changes in histo-
gram of the landslide susceptibility values (Davis 1986). As shown in Figs. 2–3, the
global landslide susceptibility index is divided into six categories of landslide sus-
ceptibility: 1-water bodies; 0-permanent snow or ice; 1-very low; 2-low; 3-moderate;
4-high; 5-very high susceptibility. One can see that the North America landslide
susceptibility map produced from this approach (Fig. 2d) captures most of the
landslide-prone areas according to USGS North American study (Fig. 2e, f). Fig-
ure 2(d–f) shows that landslides can occur in all of the contiguous 48 states, but more
often in the coastal and mountainous areas of California, Oregon, and Washington,
as well as Rocky Mountain states, and mountainous and hilly regions of the East.

The resulting global LS map (Fig. 3a) demonstrates the hot spots of the high
landslide potential regions: the Pacific Rim, the Alps, the Himalayas and South Asia,
Rocky Mountains, Appalachian Mountains, and parts of the Middle East and Africa.
India, China, Nepal, Japan, the USA, and Peru are shown to be landslide-prone
countries. These results are similar to those reported by Sidle and Ochiai (2006).
Figure 3b, c also shows the percentage of five categories. The categories of very high
and high susceptibility account for 3.2% and 14.6% out of global land areas
(Table 4), respectively. These two categories are dominated by areas with steep

Fig. 3 (a) Global landslide susceptibility map derived from surface multi-geospatial data; (b)
histogram of global landslide susceptibility at continuous numerical values from zero to one; (c)
histogram of global landslide susceptibility classified into 6 categories
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slopes, high elevations, high concentration of clay, and fine soil texture. Excluding
the permanent snow and ice over land, the very high susceptibility category (cate-
gory 5) accounts for approximately 5% of the land area (Table 4, row 6). The
majority of the land is placed into the moderate or low landslide-prone categories.

4 Conclusion and discussion

A major outcome of this work is the development of a global view of landslide
susceptibility, only possible because of the utilization of satellite products. By using
GIS-based map overlay techniques, the derived landslide susceptibility values are
the weighted linear summation of the slope, soil type, soil texture, elevation, vege-
tation cover, and drainage density. The global LS map will provide guidelines to
assess the spatial distribution of potential landslides by identifying landslide-prone
areas. For example, areas identified as ‘‘high potential for landslides’’ could be
scrutinized more thoroughly from the ground than would those with ‘‘low potential’’.
Improved susceptibility information would be available for these candidate areas
after a site inspection. This landslide susceptibility information should provide a
useful new tool for study and evaluation of landslide occurrence.

The LS map provides a starting point to give a global view of landslide hazard
information by combining with satellite-based, real-time rainfall measuring system
(http://trmm.gsfc.nasa.gov) to monitor when areas with significant landslide potential
receive heavy rainfall which might initiate landslides in those susceptible areas. For
example, an empirical landslide-triggering rainfall intensity-duration threshold can
be calibrated using the TRMM-based Multi-satellite Precipitation Analysis (TMPA)
(Huffman et al. 2006) with the global landslide susceptibility map. This rainfall
calibration could be done globally (Caine 1980; Fig. 4) or for major climatologic
regions (Larsen and Simon 1993; Godt et al. 2004). Therefore, the landslide hazard
(H) over site (i, j) at time (t) can be expressed as a function of landslide susceptibility
(z) and the rainfall (r) intensity-duration at continuously over a time-space domain

Table 4 Distribution of landslide susceptibility map

Category –1 0 1 2 3 4 5

Susceptibility Water Snow/ice Very low Low Moderate High Very high
Numerical Values –1 0 0~0.18 0.19~0.29 0.3~0.4 0.4~0.55 ‡0.55
% (globe) 66.42 11.53 3.31 5.51 6.62 5.51 1.10
% (all land) N/A 34.35 8.84 18.33 20.69 14.60 3.19
% (land w/o

permanent snow/ice)
N/A N/A 13.46 27.90 31.51 22.22 4.86

Fig. 4 An empirical antecedent precipitation accumulation threshold derived from Caine 1980
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(Eq. 3). The location and timing of any threshold exceedence can then be identified
and compared to reports of actual occurrences.

Hði; j; tÞ ¼ f zði; j; tÞ; rði; j; tÞð Þ ð3Þ

The quality of the LS map obtained, will rely heavily on accuracy and scale of
information derived from the geospatial data. The first-cut global landslide suscep-
tibility map produced here needs validation from local inventory data and we believe
that the iterative verification processes can correct and enhance this map with many
existing local inventory datasets. The LS map can be updated whenever new or
better geospatial datasets become available. The LS map can also behave semi-
dynamically by routinely updating it from information of monthly land cover change
and/or antecedent precipitation conditions. The procedure can be systematic and
applicable over the globe. In addition, more information (e.g. lithology) could be
incorporated into this LS map in a general or site-specific fashion as they become
available. Additionally, soil moisture conditions from NASA Aqua AMSR-E and
TRMM will be examined for usefulness in a planned quasi-global landslide pre-
diction system. We expect that the accuracy of such susceptibility maps will increase
in time.
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