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Metagenomics is a rapidly emerging field of research for studying microbial communities. To 

evaluate methods presently used to process metagenomic sequences, we constructed three 

simulated data sets of varying complexity by combining sequencing reads randomly selected from 

113 isolate genomes. These data sets were designed to model real metagenomes in terms of 

complexity and phylogenetic composition. We assembled sampled reads using three commonly used 

genome assemblers (Phrap, Arachne and JAZZ), and predicted genes using two popular gene 

finding pipelines (fgenesb and CRITICA/GLIMMER). The phylogenetic origins of the assembled 

contigs were predicted using one sequence similarity–based (blast hit distribution) and two 

sequence composition–based (PhyloPythia, oligonucleotide frequencies) binning methods. We 

explored the effects of the simulated community structure and method combinations on the fidelity 

of each processing step by comparison to the corresponding isolate genomes. The simulated data 

sets are available online to facilitate standardized benchmarking of tools for metagenomic analysis. 

Recent advances in sequencing technology are mediating a transition from organismal to community 

genomics (metagenomics), allowing us to directly examine the molecular blueprints of microbial 

communities. Metagenomic data processing follows essentially the same steps as processing of shotgun 

sequences generated for isolate genomes, starting with the assembly of sequence reads, followed by gene 

prediction and functional annotation. The genome sequence of an isolated microorganism, however, is 

typically derived from a clonal population, whereas metagenomic projects sample the genomes of 

multiple species and strains present in highly variable abundance in a microbial community. Quality 

control steps that detect assembly and gene-finding errors, such as finishing and gap closure, or manual 

curation of genes and functions, are mostly omitted. The final output of this process is similar to that 



generated for draft isolate genomes and includes scaffolds, contigs and unassembled reads. An additional 

step of assigning scaffolds and contigs to phylogenetically related groups, called binning, is necessary 

because multiple species are present in the data set. This can range from coarse-level groupings such as 

domain (bacteria, archaea) down to fine-level groupings such as individual strains of a given species, 

depending on the binning method, community structure as well as sequencing quality and depth.

To our knowledge, no metagenome-specific assemblers are yet available, and methods developed 

for isolate genomes have been used with parameter modifications, such as JAZZ1, Celera Assembler2 and 

Phrap3. Owing to the nature of the samples and the algorithms used, assembly can produce chimeric 

contigs and scaffolds comprising reads from different organisms. Strain heterogeneity can add 

considerably to this problem as the probability of co-assembly increases with closely related genomes4. 

Furthermore, it is difficult to distinguish whether the chimerism is the result of assembly or is natural, 

owing to homologous recombination1.

Accuracy of gene prediction methods, originally developed for finding genes in isolate microbial 

genomes, is impaired by shorter average sequence fragment length and a higher frequency of sequencing 

errors, which leads to inevitable fragmentation of genes. Additionally, the chimeric nature of assembled 

metagenomic sequences enhances the problem. Methods for ab initio gene prediction usually rely on 

identification of oligonucleotide composition and codon usage in the sequence fragments to predict 

coding regions5,6. Depending on the phylogenetic heterogeneity of the organisms in the environmental 

sample, however, the oligonucleotide composition and codon usage preference of the different contigs 

can be quite different. This makes it difficult for most gene prediction algorithms to produce accurate 

models of protein-coding regions. Evidence-based methods that rely on the similarity of new sequences 

to genes in the database may also fail to identify genes when there are no sequenced homologs, or when 

the predicted genes contain chimeric or shuffled sequences. Owing to these limitations, the quality of 

gene annotations is likely to be reduced.

Binning methods fall into two main categories: sequence composition–based and sequence 

similarity–based. Composition-based classifiers distinguish genomes from one another by intrinsic 

features of the sequence such as oligonucleotide frequencies caused by codon usage or restriction-site 

frequencies7–9. Short sequences are difficult to classify by this approach because of insufficient signal9. 

Two composition-based classifiers have been applied to metagenomic data sets, TETRA9 and 

PhyloPythia10. Similarity-based methods assign metagenomic fragments to their closest phylogenetic 

neighbor based on coding-sequence identity3. This approach is entirely dependent on the availability of 

reference sequences that are related to the species present in the microbial community under study. 



Unfortunately, owing to the cultivation bias, the phylogenetic representation of naturally occurring 

microbial species is very poor11, and similarity-based binning has limited resolution.

A fundamental problem common to all methods applied to metagenomic data sets is the inability 

to quantify error rates since the ‘correct’ solution is not known. The rapid accumulation of metagenomic 

data sets12 makes the need for benchmarking such methods even more pressing. To address this need, we 

created three data sets of varying complexity, and benchmarked several commonly used assembly, gene 

prediction and binning methods against them.

RESULTS

Simulated data sets

We constructed three simulated metagenomic data sets of varying complexity by combining sequencing 

reads randomly selected from 113 isolate genomes sequenced at the Department of Energy Joint Genome 

Institute (DOE-JGI) and available through IMG13. This approach allows the incorporation of real 

sequencing and sequence-dependent processing errors and does not rely on their simulation. We designed 

the first data set (simLC) to simulate low-complexity communities dominated by a single near-clonal 

population flanked by low-abundance ones. These types of data sets result in a near-complete draft 

assembly of the dominant population, as seen, for example, in bioreactor communities3,14 

(Supplementary Table 1 online). 

We designed the second data set (simMC) to resemble moderately complex communities with 

more than one dominant population, also flanked by low-abundance ones, as has been observed in an 

acid mine drainage biofilm1 and Olavius algarvensis symbionts15 (Supplementary Table 1). These types 

of communities usually result in substantial  assembly of the dominant populations according to their 

clonality. The third data set (simHC) simulates high-complexity communities lacking dominant 

populations, such as agricultural soil16, where no dominant strain is present, and typically results in 

minimal assembly.

Assembly

We assembled the simulated data sets using three commonly used programs at the DOE-JGI; Phrap v3.57 

(see URL in Methods), Arachne v.2 (ref. 17) and JAZZ18 (Supplementary Methods online).

First we investigated the degree of assembly (Table 1). Phrap incorporated more reads and 

produced the largest number of contigs in all three meta-assemblies. This trend is most obvious in the 

case of the simHC data set, where Phrap assembled 40% of the reads compared to only 2.4% and 2.3% 

by JAZZ and Arachne, respectively. Only a small percentage of the reads assembled by Phrap, however, 



were incorporated into major contigs (10 reads), as expected for a community with no dominant 

populations. In contrast, the assemblers had comparable performance for the simLC data set, which most 

closely resembled an isolate genome. As data-set complexity increased, JAZZ exhibited a considerable 

drop in degree of assembly (Table 1). 

We then assessed contig chimerism, caused by coassembly of reads from two or more isolate 

genomes, by reference to the known origin of individual reads (Fig. 1 and Supplementary Figure 1). 

We assigned contigs to the phylogenetic group that contributed the majority of constituent reads at each 

taxonomic level from strain to domain, and we defined the degree of contig chimerism at each taxonomic 

level as the percentage of reads not belonging to the major phylogenetic group.

Encouragingly, the majority of contigs comprised reads belonging to a single isolate genome for 

all assembly methods (Fig. 1a,b). Chimerism at progressively higher taxonomic ranks indicated that 

Arachne produced the highest proportion of accurate contigs, followed by JAZZ and Phrap (Fig. 1a,b). In 

absolute terms, Phrap produced the highest number of homogeneous contigs (Table 1), but the inability 

to distinguish these from chimeric contigs makes the other assemblies, with lower chimeric fractions, 

more reliable. We attribute the generation of chimeric contigs to the presence of ubiquitous  sequences 

(for example, transposases) and low-quality sequencing mainly at the end of the reads (data not shown).

The percentage of chimeric contigs in the simLC assembly was small, and the taxonomic level at 

which read homogeneity was achieved varied (Fig. 1c). By contrast, most simMC chimeric contigs were 

the result of coassembly of strains belonging to the same species (Fig. 1c). We anticipated this as the 

simMC data set comprised closely related dominant populations, and this highlights the fact that none of 

the assemblers could effectively discriminate sequences belonging to strains of the same species (Fig. 

1a). Chimerism was distributed randomly at all taxonomic levels among the simHC contigs, reflecting 

the absence of a large number of sequences from the same organism. For all assembly methods and all 

data sets, the degree of chimerism was most pronounced in contigs larger than 8 kb (Fig. 1b,c). 

Therefore, employing these assemblers for highly complex community data sets, such as simHC, has 

limited value since most contigs are below 8 kb and will provide misleading information.

Gene prediction

We applied the two gene prediction pipelines that have been previously used for the DOE-JGI 

metagenomic projects, to each of the assemblies resulting in 18 sets of identified genes. The first, fgenesb 

(see URL in Methods), was used to predict coding sequences both on the assembled contigs and the 

unassembled reads. The second pipeline used a combination of CRITICA and GLIMMER (CG), which is 

also used to predict genes in all the isolate genomes sequenced at the DOE-JGI19.



To evaluate the accuracy of each pipeline, we compared the genes identified on the simulated data 

sets to the genes originally predicted on the corresponding reads of the isolate genomes (reference genes) 

using blastp20, and categorized them into four groups. The first comprised genes common to both data 

sets (correctly identified genes). In this group we included only genes identified on the same sequence 

reads, with >80% amino acid identity over 50% of the shortest gene length. Genes falling below these 

thresholds formed the second group (inaccurately predicted genes). The third group contained genes 

predicted in the simulated data sets with no corresponding reference gene (newly predicted genes). 

Finally, reference genes without a corresponding predicted gene in the simulated data set formed the 

group of missed genes. We expected reference genes represented by <90 bp in the meta-assemblies to be 

missed by blastp owing to their length and were excluded from the comparisons. These comprised <7.5% 

of all identified genes in simLC and simMC and <10% in simHC.

Fgenesb correctly identified 10–30% more reference genes on the contigs than the CG pipeline in 

every data set (Fig. 2a). Both pipelines called 7–15% of the genes inaccurately (Fig. 2a), hence the 

difference in correctly called genes between the two pipelines is due to CG missing a greater proportion 

of reference genes, mainly located on small contigs (data not shown). Additionally, 1–10% of the genes 

were newly predicted. The effect of assembly quality was striking in the gene-prediction results. In all 

cases, the higher quality Arachne assemblies resulted in more accurate gene predictions (higher correctly 

and lower inaccurately identified genes) than the other two assemblers (Fig. 2a).

We also evaluated the accuracy of the gene calls on unassembled reads (where low-abundance 

species are usually represented). Fgenesb correctly identified ~70% and missed ~20% of reference genes 

on unassembled reads in all data sets (Fig. 2b). The remaining 10% of reference genes were inaccurately 

called and another ~8% were newly predicted. Notably, the contribution of assembly to accurate gene 

prediction was not more than 20%, whereas its effect on the missed and inaccurately predicted genes 

were only slightly higher. The CG pipeline exhibited poor results (7% accurately predicted, 85% missed 

and 8% inaccurately predicted genes), and we did not use these data for the following steps of the 

analysis.

Although some of the inaccurate or new genes could be real (that is, they were either miscalled or 

missed in the analysis of the original isolate genomes), it is more likely they represent gene prediction 

errors that can be attributed to the following factors. In the case of fgenesb, the use of gene modeling 

parameters of one ‘generic’ microorganism cannot describe the diversity observed in communities, 

especially in complex communities such as simHC. Contig chimerism exacerbates this problem. For the 

CG pipeline, the low percentage of accurately predicted genes could be explained by CRITICA’s low 

sensitivity, which uses only sequence similarity and di-codon frequencies as a measure of coding 



probability. Therefore it would be strongly affected by the heterogeneity of the metagenomic sequence 

fragments and the absence of similar sequences in the database. Furthermore, both pipelines are affected 

by the presence of low-quality sequences (especially in singlets and contigs of low coverage) with errors 

(for example, frameshifts).

Based on the simulated data sets, we predict that approximately 10–20% of genes called in 

metagenomic data sets (that have not been manually curated) are inaccurate. This noise will contribute to 

the contamination of sequence databases with ‘ghost’ genes and may lead to the generation of inaccurate 

community metabolic models.

Gene function prediction

Gene-centric or environmental gene tag (EGT) analysis is a recently proposed method for comparing the 

metabolic potential of microbial communities21,22. This approach is especially useful for highly 

fragmented metagenomic data sets, and is dependent on the accuracy of gene calling and annotation. To 

assess the effect of annotation accuracy on gene-centric analyses, we compared the annotations of the 

simulated data sets to those of the reference genes (reference annotation). We also assessed the effect of 

excluding singlet annotations from the EGT profiles because they have been omitted in previous 

studies1,3. We chose the widely used Clusters of Orthologous Groups (COG)  classification23 as the basis 

for comparison. Functional prediction profiles for each data set using fgenesb and the CG pipeline were 

compared to each other using hierarchical clustering (Fig. 3).

The distance between the reference and fgenesb annotations reflects gene-calling errors caused by 

the inaccurate gene models and much shorter average sequence-fragment length. We estimate that these 

errors resulted in 5–20% of COGs having misrepresented frequencies (both over- and underrepresented; 

Fig. 3). We attribute the small distances between the fgenesb annotations for each data set to the fact that 

the majority of genes are called on singlets with a uniform error rate (Fig. 2b), resulting in profiles 

essentially assembly independent.

Excluding singlet annotations produced pronounced differences in EGT profiles of the same data 

sets, and in all cases profiles based on genes predicted on contigs and singlets were more similar to the 

reference set than to the genes predicted by any of the methods on contigs alone (Fig. 3). We attribute 

this to the fact that the majority of the genes are called on singlets for all data sets (Fig. 2), which will 

likely be the case for most real metagenomic data sets. Therefore, it is critical to include singlet 

annotations in EGT calculations.



Binning

We binned assembled sequences using three different methods previously used at the DOE-JGI. These 

include two sequence composition–based methods (PhyloPythia10 and kmers), and a sequence similarity–

based approach (BLAST distr). kmers and Blast distr were developed at the DOE-JGI (Supplementary 

Methods). All three methods assign contigs to phylogenetic groups by comparison to third-party data 

(isolate genomes), but the potential binning resolution differs. In specific, BLAST methods classified 

contigs only to the predefined rank of Class, kmer to Family and PhyloPythia to varying ranks from 

domain to genus. It has already been shown that the fidelity of composition-based binning declines with 

decreasing fragment length9,10, and chimerism will very likely reduce binning fidelity. Indeed, binning of 

short sequences (<8 Kb in simLC and simMC, and the entire simHC) resulted in low-quality bins 

(Supplementary Table 2 online), and thus we excluded them from subsequent analysis.

For benchmarking binning accuracy, we determined the reference identity of each bin as the 

lowest taxonomic rank to which all contigs belong. For example, if a bin comprised contigs assembled 

from the genomes of Rhodopseudomonas palustris (a member of the class Alphaproteobacteria), and 

Xylella fastidiosa (a member of the class Gammaproteobacteria) its reference identity would be the 

phylum proteobacteria because this is the lowest rank to which all contigs belong. If one or more of the 

contigs in a bin were chimeric, we used their phylogenetic identity, based on the majority read 

composition, in the reference identity calculation.

We used PhyloPythia both in a sample-specific and a generic mode (Supplementary Methods), 

and in both cases it performed better than the other two methods, as it typically exhibited higher 

specificity values (Fig. 4 and Supplementary Table 2). Training PhyloPythia on contigs belonging to 

individual dominant community members provided higher resolution binning for those organisms than 

runs based on the generic model (Supplementary Table 2). However, it also resulted in slightly lower 

specificity values because by attempting to bin contigs to its training rank of genus, it included small 

amounts of sequence data from more distantly related organisms.

In most cases, both BLAST distr and kmer performed poorly, as evidenced by their low average 

specificity values and high s.d. (Supplementary Table 2). BLAST distr is dependent on the availability 

of closely related reference genomes, which are frequently absent11. Even when a closely related genome 

is available, the variation in genomic content between similar organisms may result in the absence of 

corresponding genes in the reference genome. Notably, kmer, although failing to assign bins to the correct 

taxonomic group, did produce phylogenetically coherent clusters at the rank of order and above.

To determine which combinations of tools best approximate the true population structure, we 

calculated the relative abundance of the two dominant populations in the binned data (that is, Alpha and 



Gamma proteobacteria for both simLC and simMC) and compared it to the original data set 

(Supplementary Fig. 2 online). Typically, dominant populations are overrepresented, and their ratio is 

distorted in the final binned data sets. This can be attributed to either insufficient assembly of minor 

populations or the assignment of contigs to very broad bins (for example, bacteria).

Notably, chimeric contigs did not have a noticeable effect on binning accuracy. This was probably 

because small grossly chimeric contigs had been excluded from the analysis and because chimericity 

largely occurs at taxonomic levels below binning resolution of each method  (Fig. 1c). Contigs belonging 

to a given dominant population were assigned with variable accuracy and taxonomic resolution, and 

distributed across multiple bins, as shown by low sensitivity values (Supplementary Table 2). We 

attribute this to intrinsic limitations of the binning methods, as we observed it in many cases regardless of 

the assembly and binning method used. Ideally, researchers would like to see binning down to individual 

component populations. But even with the best binning method used in the present study, only a fraction 

of large contigs were accurately assigned down to genus (~60% of contigs for the sample-specific model 

version of PhyloPythia).

DISCUSSION

Even though a large amount of metagenomic data has already being generated12 methods to process these 

data are in their infancy, and objective measures of their efficacy are lacking. This study provides for the 

first time such a quantitative measure, through the design of simulated metagenomic data sets of varying 

complexity. We present a critical evaluation of various assembly, gene prediction and binning methods, 

previously used for analysis of metagenomic data sets at the DOE-JGI, by benchmarking them against 

the simulated data sets. Although this study does not test all methods presently available to analyze such 

data, it highlights the utility of the simulated data sets and illustrates some of the typical problems of 

existing methods to guide future improvements.

Although all metagenomics processing steps will greatly benefit from the availability of an 

adequate number of reference genomes from all branches of the tree of life, this study additionally 

demonstrates that there is considerable need for both the improvement of existing methods and the 

development of new ones. The iterative application of methods may also contribute to an increase in the 

quality of the metagenomic analysis as downstream steps often provide information about the quality of 

the previous ones.

The simulated data sets and comparative analysis of the methods presented here are available at 

the FAMES webserver (see URL in methods) which can also be used as a tool for the evaluation of new 

methods. Selected data sets are also available in the IMG/M24 system, which facilitates their analysis and 

http://fames.jgi-psf.orgFAMES/


the identification of errors. We anticipate that these simulated data sets will become a standard metric for 

comparison and improvement of methods used in metagenomic analysis.

METHODS 

Additional methods. Descriptions of the data sets and the methods used are available in Supplementary 

Methods.

URL. Phrap: http://www.phrap.org; fgenesb: 

http://sun1.softberry.com/berry.phtml?topic=fgenesb&group=programs&subgroup=gfindb;FAMES: 

http://fames.jgi-psf.org

Note: Supplementary information is available on the Nature Methods website.
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Table 1 | Assembly summary

simLC simMC simHC

Phrap
Arachn

e JAZZ Phrap
Arachn

e JAZZ Phrap
Arachn

e JAZZ

Total reads
100,62

8
100,62

8
100,54

6
125,65

2
125,65

2
125,51

3
118,06

4
118,06

4
117,89

0

Contigs (>1 
reads) 10,320 1,400 1,953 12,644 4,692 5,840 19,236 558 1,066

Homogeneous 
contigs 9,055 1,333 1,941 11,026 4,329 5,282 16,451 477 1,012

Reads in contigs 56,843 33,065 29,390 82,693 55,022 39,808 47,338 2,744 2,832

Degree of 
assembly in 
contigs (%) 56.49 32.86 29.23 65.81 43.79 31.71 40.10 2.32 2.40

Major contigs (
10 reads) 482 367 503 1,980 1,372 876 86 20 11

Homogeneous 
contigs 287 330 502 1,380 1,133 605 5 18 9



Reads in major 
contigs 30,852 28,060 24,405 50,267 39,190 1,9719 1,521 290 192

Degree of 
assembly in 

major contigs 
(%) 30.66 27.88 24.28 40.00 31.19 15.71 1.29 0.25 0.16

The total number of reads each data set comprised is reported in the first line. The number of contigs, 
homogeneous contigs, reads included in these and the degree of assembly for each assembly method used are 
reported, both for all contigs and for contigs with at least 10 reads.

Figure 1 | Quality of assembly. (a) Percentage of assembled sequence that contains assembly errors at 

any phylogenetic level. Only contigs with at least 10 reads are included. (b) Degree of chimericity of 

contigs; color corresponds to the assembler used. (c) Degree of chimericity of contigs; color corresponds 

to the taxonomic level from which the contig is homogeneous. All contigs with at least 2 reads are 

included in b and c. Larger versions of panels b and c are included in Supplementary Fig. 1. 

Figure 2 | Gene prediction in data sets. (a) Predicted genes on assembled sequences. (b) Predicted genes 

on unassembled reads. The combination of assembler/gene prediction method is shown on the x axis. The 

total number of original genes included in these sequences are shown on the top of the columns.

Figure 3 | Hierarchical clustering of genes assigned to COGs in the simulated data sets. COGs are on the 

horizontal axis. Red and green color represent over- and under-abundant functions in each data set, 

respectively.

Figure 4 | Specificity and sensitivity values for selected binning methods. Only contigs larger than 8 kb 

were used. Error bars indicate s.d. A complete list of all the specificity and sensitivity values are available 

in Supplementary Table 2. 


