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ABSTRACT

Selecting an optimum maintenance policy independent
other parameters of the production system does not alw
yield  the overall optimum operating conditions. Fo
instance, high levels of in-process inventories affect t
performance of a given maintenance policy by reducing 
effects of machine breakdowns. In this study, paramet
of the production system, in particular the allowable i
process buffers,  and the design parameters of 
maintenance plan are considered simultaneously as inte
parts of the whole decision process for selection a
implementation of a maintenance  policy. The results fro
the simulation experiments show that the response surfa
for these systems are of the forms that yield themselves
an optimization search. However, the optimization proble
itself is not trivial, as the performance of the syste
depends on a combination of qualitative and polic
variables (the choice of the maintenance policy) as well
a set of quantitative variables (allowable buffer spaces).
this paper, a methodology is presented for solving th
class of problems that is based on a combined compu
simulation and optimization integrated with a genet
algorithm search.

1 INTRODUCTION

Allowing for build up of work-in-process (WIP) can often
reduce the effects of machine breakdowns on a syste
productivity. In most production systems, howeve
attempts are made to keep WIP at an absolute minimu
These conflicting effects give rise to a new way of thinkin
about selection and optimization of maintenance policie
The idea here is that in order to obtain an overall optimu
operating condition the selection and optimization 
maintenance policies should be considered simultaneou
with deciding on the levels of allowable in-proces
inventories. A systematic optimization of such system
however, is not simple. Decision variables for th
optimization procedure consist of some qualitative facto
(the type of maintenance policy) and some quantitati
parameters (the size of allowable in-process inventories)
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Earlier researches reported on maintenance plan
usually studied push-type production systems. They
also more directed towards monitoring and control of
system under a given maintenance policy than specific
and optimization of the policy to select. Examples of th
systems appear in the work by Kobbacy (1992),  
Ulusoy et al. (1992). There has also been work don
dynamic scheduling of maintenance jobs for opti
results, in particular policies by researchers such
Enscore and Burns (1983) and  Wu et al. (19
Bruggeman and Dierdonck (1985) suggested applying t
Manufacturing Resource Planning (MRP II) concept
maintenance resource planning.

For JIT type systems, Abdulnour et al. (1995), us
computer simulation and experimental design, develo
some regression models to describe the effects of 
preventive maintenance policies on performance o
production system.    In an earlier work, Azadivar and 
(1996) ranked maintenance policies in terms of t
performance on JIT systems defined by cer
characteristic factors.

In designing an overall optimum maintenance polic
is necessary to set optimum values for all deci
parameters of the system. Unfortunately, most of 
factors affecting the performance of  maintenance pol
are inherent to the system and cannot be used as de
variables.  One of the few factors  that plays a role in
performance and at the same time can be considered
design parameter  for all systems is the size of bu
spaces allowed. There are, however, other dec
variables which are applicable only when a partic
maintenance policy is selected. These are the frequen
maintenance when a preventive or predictive policy
selected.

In this work, a systematic method is proposed for
overall optimization of the system. The optimu
determined consists of specifying the maintenance p
to employ along with its design parameters, if applica
and the level of in-process inventories that will result in
overall optimum performance. A general algorithm 
been developed based on the genetic algorithm appro
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that yields a near-optimum solution for a combination
quantitative and qualitative variables.

2 OBJECTIVES

Five maintenance policies were investigated. These 
predictive maintenance policy, reactive polic
opportunistic policy, time-based preventive policy, a
MTBF-based preventive policy.

 There are many system performance measures 
could be used as the objective of the optimization. In m
production systems, where in-process inventory is kept 
minimum level, late delivery has a significant disrupti
effect on the downstream processes. This makes on-
delivery one of the most important aspects of syste
operations. In this study, a function of on-time delivery, 
service level, has been selected as the measure
performance. The service level is defined as  
percentage of jobs delivered on time.

3 RESPONSE SURFACE TOPOLOGY

Derivation of analytical forms for the response surface
performance as a function of the maintenance policy 
other controllable variables is not possible; systems co
get very complicated and some decision factors 
qualitative in nature. Here, response surfaces were der
by evaluating the system at several points using comp
simulation. The results were then used to depict th
graphically.

Four examples, P1 through P4 were used in this st
These examples represent different problems with var
levels of complexity and sizes containing between 12 to
controllable variables. The simplest and most complica
of these examples are represented in Figure 1 and 2
these figures nodes represent the status of the produc
ddd

Figure 1: Graphic Representation of P1
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Figure 2: Graphic Representation of P4

arrows are the processes used to change the part from o
status to the next. The letters on the arrows denote th
resource used for each process represented by t
corresponding arrow.

For each problem a set of points in the feasible regio
were chosen at which the performance measures of th
system were evaluated. Each point represents a set 
values for allowable buffer spaces in front of each statio
and a maintenance policy. The set of values for buffe
spaces used in evaluating example P1 is given in Table 
The results of performing the evaluations for all
combinations of the sets of buffer spaces specified abov
and maintenance policies for this example is summarize
2
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in Table 2. A plot of these values in a 3-dimensional space
is given in Figure 3. Similar results were obtained for the
other three examples. The form of this graph, which
indicates a local maximum at the predictive policy and
buffer allocation No. 3, suggests that there is a potential for
a systematic search to yield a desirable answer to this type
of maintenance policy optimization problems.

Table 1: Buffer Placements Configurations for P1

Buffer placement
configurations

Buffer capacity
at  nodes

1 2 3 4 5 6

2 1 2 2 2 1 0
3 1 1 0 2 2 2
4 2 2 3 1 1 0
5 1 1 2 1 1 2
6 2 1 0 1 2 3
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4 FORMULATION OF THE  PROBLEM

This problem has some special characteristics that
distinguishes it from regular non-linear programming type
optimization routines. It has both quantitative variables
such as buffer allocations and qualitative variables such as
the policy choices. It also has both explicit constraints such
as the total available inventory storage spaces at all work
stations and implicit constraints such as the lead time for
delivering a product. A simulation optimization that can
solve qualitative controllable variables must require only
the responses from discrete points in the search space.

Existing methods that can solve that kind of problems
are all direct search methods and often require complete
enumeration. The existence of structural (qualitative)
decision variables eliminates even these direct search
methods. For these methods to be applicable, the variables
must be quantitative so that the feasible space can be
represented by a geometrical n-dimensional space. As a
result, for these problems the
Table 2:  Service Level as a Function of Buffer Allocations and Maintenance Policy

policybuffer
allocation reactive opportune predictive MTBF-PM time-PM

No. 1 0.653 0.693 0.818 0.784 0.764

No. 2 0.724 0.754 0.876 0.837 0.827

No. 3 0.785 0.809 0.951 0.917
(0 003)

0.885

No. 4 0.654 0.680 0.801 0.768 0.759

No. 5 0.572 0.613 0.720 0.680 0.668

No. 6 0.422 0.425 0.479 0.462 0.462

N o . 1
N o .  2

N o .  3
N o .  4

N o .  5
N o .  6
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Figure 3:  3-D Representation of the Response Surface for Example P1
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random search has often been used as the only fea
approach. In this work, a method based on a gen
algorithm has been developed and implemented and
results have been compared with those obtained from
random search.

The general form of the maintenance polic
optimization formulation can be stated as follows,

Maximize:
         E[f(X,Y)] =  E[f(x1, x2, ..., xn, y1, y2, …. ym)]

Subject to:
   hj(x1, x2, ..., xn) ≤ aj,   for j = 1, 2, .., p

  gk(X,Y) = ≤ bk  for k = 1, 2, ..., q
  Li ≤ xi ≤ Ui,   for   i =  1, 2, ..., n

where X: x1,  x2, ..., xn is the vector of quantitative
controllable variables, which are deterministic in natu
and are bounded by  upper and lower limits Ui and Li , Y:
y1,  y2, ..., ym is the vector of the  qualitative factors, f(X,Y
is the objective function, which is an implicit function o
the controllable variables and can be evaluated only 
simulation. hj(x1, x2, ..., xn) ≤ aj,   for j = 1, 2, ..., p, denotes
the explicit constraints, whose analytical forms are kno
and can be evaluated analytically. aj is the limit for the j-th
explicit constraint. gk(X,Y), for k = 1, 2, ..., q, denote
implicit constraints. bk is the pre-set goal for the k-th
implicit constraint.

Note that the explicit constraints, like th
objective functions, are also responses of the simula
model. For instance, one such constraint may require 
average lead time not to exceed a certain value. Th
constraints are stochastic. Therefore, they may be obe
in one replication of the simulation, yet violated in anoth
Thus they need to be treated stochastically. The way t
are treated in this study is that it is assumed that they 
always have a chance to be violated, but a probability li
is assigned to this violation according to the comfort lev
of the decision maker. Assuming this comfort level to 
αk, the k-th implicit constraint can be written as:

P[gk(X,Y) < bk] ≥ 1 - αIk.

In simulation experiments the form of thes
constraints can be transformed into

   UCL1-αkgk(X,Y) ≤ bk

where UCL1-αk denotes the upper confidence limit for th
response gk at 1 - αk level.
the
 is
ues
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4.1 Definitions

X  =  Vector of quantitative variables consisting of vecto
X1 and X2

Y =  Vector of  qualitative variables or policy choice
consisting of  y1 and y2
X1 = Vector of buffer sizes
X2 = Vector of preventive maintenance frequencies
y1 = Variable representing the maintenance policy
y2 = Variable representing maintenance task priority
SL = The random variable representing the response for
service level
LTs = The random variable representing the response 
lead time for part s
LTDs = The desired value for LTs
IL = The random variable representing the total invento
level in the system
ILD =  The  desired level for IL
x1i = the buffer size at the i-th machine station,
si = the storage limit at the i-th machine station,
SS = Upper bound on the total number of  storage space

Then, the optimization problem can be formulated as

   Max  E[SL(X1, X2, Y1, Y2)]

   S.T.   P[LT(X1, X2, Y1, Y2)< LTDs] ≥ 0.95
             P[IL(X1, X2, Y1, Y2)  <ILD] ≥ 0.95
             ∑x1i ≤ SS,   for   k = 1, 2, ..., p
              i

0 < x1I <  si

4.2 Applying Optimization Procedures

The search methods were implemented and compared
four examples. These examples denoted by P1 through
represent different problem sizes containing between 12
60 controllable variables. Response surfaces w
generated as functions of  maintenance polic
maintenance task priority, preventive maintenan
frequency, and buffer placements.

During the search process, explicit constraints a
checked first because they are in analytic forms, thus e
to check. Implicit constraints are checked after simulati
runs are made. The result  obtained from applying ea
optimization technique is accepted only if both explicit a
implicit constraints are satisfied.

In the constrained random search, a finite number
randomly selected points in the feasible space are chec
and evaluated. A point is generated by a pre-determi
scheme and checked against all explicit constraints. If n
is violated, the simulation runs are performed and then
implicit constraints are checked. If no implicit constraint 
violated, the value of the response is compared with 
best existing solution and is retained as the best if it
better, but is discarded otherwise. The process contin
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with the next point in the feasible region until all points a
evaluated and compared. The best result is considered
optimal solution to the problem.

Genetic algorithms (GA) are a set of search meth
that mimic the process of biological evolution. In gene
algorithms, controllable variables are usually encoded
fixed-length strings the same way as genetic informatio
encoded in chromosomes in the biological world. 
population of these strings, which each represents
solution to the problem at hand, is created randomly 
then transformed according to some probabilistic transit
rules. Transition rules usually include selection, crosso
and mutation. The selection process generates parents 
the current population to reproduce offspring in the n
generation. Crossover is used to combine a partial st
from one parent string with a partial string at the sa
location from another parent string to form a whole n
string. Mutation, which introduces diversity to th
population, is used to change the value of the variabl
one position in the string according to a random decis
suggested by a probability distribution.

These transformation processes generate new s
patterns that do not exist in their parents. These n
patterns may represent better results for the system
better result in the genetic algorithm terminology 
referred to as a better fitness value. In an environm
where the right to reproduce is determined by individ
fitness and luck, better fitness provides better chance
survive and reproduce and over time, the average fitnes
the population improves. For further information o
genetic algorithms used in optimization, refer to textboo
such as those of  Davis(1991), Goldberg(1989), a
Chambers(1995).

The results of performance of different search meth
were compared in terms of the value of the object
function and the number of simulation runs to obtain 
solution. In performing the comparison the attempt w
made to compare the results obtained for the same num
of simulation runs spent. This was possible by using
many number of runs that took for GA to find the soluti
be spent on random search.

Table 3 through 6 show these comparisons for serv
levels obtained by random search and GA for a giv
number of simulation runs for problems P1 through P
The general trends in these figures indicate that 
performs relatively better than the random search and
superiority increases as the problem size increases.

In these experiments a simple GA without ma
available enhancements was employed. Additio
experimentation with various values for GA paramet
was conducted. The results indicated a signific
improvement over the simple GA. For instance, when
binary representation, rank scaling, generational stab
stopping rule, elitist roulette wheel selection, 1-po
crossover,  and  bit swap  mutation were used  to  achie
1065
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Table 3:  Comparison for P1

number of
evaluations

random search genetic
algorithm

111 0.713 0.713
130 0.713 0.720
292 0.720 0.738
1802 0.720 0.751

Table 4: Comparison for P2

number of
evaluations

random search genetic
algorithm

593 0.484 0.574
598 0.484 0.523
608 0.511 0.579
1901 0.511 0.588
2183 0.531 0.657
2504 0.531 0.634
2973 0.603 0.697
4846 0.603 0.682

Table 5: Comparison for constrained P3

number of
evaluations

random search genetic
algorithm

218 0.321 0.492
332 0.321 0.512
568 0.357 0.491
739 0.357 0.510
1049 0.363 0.528
1070 0.403 0.571
1432 0.403 0.535
1569 0.405 0.535
1756 0.405 0.519
1831 0.418 0.577
2508 0.418 0.533

the same value or even better values for the service le
the number of simulation runs required decreas
drastically. These results for P2 are shown in Table 7. 
numbers in parenthesis show the number of  simula
runs used to obtain the indicated service level.
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Table 6: Comparison for P4

number of
evaluations

random search genetic
algorithm

117 0.861 0.883
473 0.861 0.897
660 0.875 0.893
2634 0.875 0.919
3241 0.876 0.913
4381 0.876 0.925

Table 7: Comparison of Basic and Enhanced GA for P

crossover = 0.4 crossover = 0.5
Pop.

size
Basic
GA

Enhanced
GA

Basic
GA

Enhanced
GA

60 0.907
(397)

0.918
(271)

0.918
(607)

0.911
(334)

90 0.915
(726)

0.924
(382)

0.918
(1120)

0.917
(435)

120 0.925
(1218)

0.925
(616)

0.919
(1381)

0.920
(507)

150 0.923
(1558)

0.915
(647)

0.918
(2748)

0.919
(916)

180 0.933
(2306)

0.931
(798)

0.938
(2816)

0.938
(956)

5 CONCLUSIONS

Optimum maintenance policy for a manufacturing syst
has to consider all of the factors that have influence on
consequences of machine breakdowns. A major facto
these systems that has such an effect is the level of W
each workstation, as low WIP leaves little tolerance 
machine failures. In order to make an overall best deci
on the type of maintenance policy and the ot
characteristics of the system, in this paper the problem
formulated as an optimization problem consisting 
quantitative decision variables as well as qualitative 
policy variables.  A simulation-optimization procedu
based on genetic algorithms was developed and applie
four problems ranging from a very simple to a ve
complex system.  A procedure was developed 
automatically build and execute simulation models 
configurations suggested by the optimization algorith
The results obtained were then compared with th
obtained from a random search.

The results obtained demonstrated that the propo
formulation could indeed provide acceptable solutions
this complex problem. In particular, the genetic algorit
based optimization routine demonstrated a great flexib
in solving problems that are defined by a set of combi
quantitative and qualitative variables.
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