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Abstract

Background: SNP (single nucleotide polymorphisms) genotype data are increasingly available in cattle populations

and, among other things, can be used to predict carriers of specific mutations. It is therefore convenient to have a

practical statistical method for the accurate classification of individuals into carriers and non-carriers. In this paper, we

compared – through cross-validation– five classification models (Lasso-penalized logistic regression –Lasso, Support

Vector Machines with either linear or radial kernel –SVML and SVMR, k-nearest neighbors –KNN, and multi-allelic gene

prediction –MAG), for the identification of carriers of the TUBD1 recessive mutation on BTA19 (Bos taurus autosome

19), known to be associated with high calf mortality. A population of 3116 Fleckvieh and 392 Brown Swiss animals

genotyped with the 54K SNP-chip was available for the analysis.

Results: In general, the use of SNP genotypes proved to be very effective for the identification of mutation carriers.

The best predictive models were Lasso, SVML and MAG, with an average error rate, respectively, of 0.2%, 0.4% and

0.6% in Fleckvieh, and 1.2%, 0.9% and 1.7% in Brown Swiss. For the three models, the false positive rate was,

respectively, 0.1%, 0.1% and 0.2% in Fleckvieh, and 3.0%, 2.4% and 1.6% in Brown Swiss; the false negative rate was

4.4%, 7.6% 1.0% in Fleckvieh, and 0.0%, 0.1% and 0.8% in Brown Swiss. MAG appeared to be more robust to sample

size reduction: with 25 % of the data, the average error rate was 0.7% and 2.2% in Fleckvieh and Brown Swiss,

compared to 2.1% and 5.5% with Lasso, and 2.6% and 12.0% with SVML.

Conclusions: The use of SNP genotypes is a very effective and efficient technique for the identification of mutation

carriers in cattle populations. Very few misclassifications were observed, overall and both in the carriers and

non-carriers classes. This indicates that this is a very reliable approach for potential applications in cattle breeding.

Keywords: SNP genotypes, Recessive mutations, Carrier identification, Lasso-penalised logistic regression, support

vector machines, KNN, MAG, Haplotypes, Cattle

Background

Several monogenic (Mendelian) mutations have been

revealed in the cattle genome (e.g. [1, 2]): although some

are useful (e.g. casein variants [3]), most of suchmutations

are harmful (e.g. [4, 5] for a review). Dominant mutations

can easily be purged from the population, since carriers

are easily identified and excluded from the breeding stock.
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Recessive mutations, on the other hand, are more diffi-

cult to manage: a small proportion of carriers is bound

to remain in the population. In case of phenotypic selec-

tion (natural or artificial) against homozygotes (animals

showing the defect), the frequency of such carriers would

asymptotycally approach zero, and the occurrence of the

disorder would be a rare event. When top-ranked bulls for

relevant breeding objectives are carriers, though, higher

frequencies of the mutation remain in the population

and the related genetic disorder becomes a more seri-

ous issue. This is critical in domesticated cattle -especially

in highly specialized dairy breeds- given their specific
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population structure: high inbreeding, small number of

founder animals, declining effective population size and

widespread use of artificial insemination, all contribute

to making modern cattle breeds particularly susceptible

to recessive genetic disorders [6]. Examples of harmful

recessive mutations in cattle include some long known

mutations like BLAD (Bovine Leukocyte Adhesion Defi-

ciency) [7] and CVM (Complex Vertebral Malformation)

[8], and some recently detected mutations like the one

in the CWC15 gene on BTA15 (haplotype JH1) in Jersey

cattle [9].

In the case of harmful recessive mutations, it is essen-

tial to identify carriers in order to remove them from the

breeding population, or to apply effective mating strate-

gies to counteract the diffusion of the undesired allele and

keep its frequency low. The causal mutation of a harmful

defect may be already known (as is the case of CWC15,

or of the Weaver syndrome [10]) or not yet (for exam-

ple the mutation behind syndactyly in Holsteins [11]):

in this latter case, haplotypes associated with the defect

can be detected [12, 13] (e.g. the HHM haplotype associ-

ated to syndactyly). Such haplotypes may be more or less

tightly associated with the underlying mutation: some-

times the association is almost indissoluble as is between

the JH1 haplotype and the CWC15 mutation in Jerseys

(99.3%). Some other times it is less reliable, as for instance

between the HHC haplotype on BTA3 and CVM: two ver-

sions of the haplotype exist, one with and one without the

causative mutation [9].

The identification of specific mutations or haplotypes

carried by animals is traditionally performed through spe-

cific laboratory assays in individual animals. Examples

include: microsatellite markers [14] or, in cows, milk iso-

forms for casein variants [15]; specific gene tests for CVM

[16]. These methods, though accurate, can be expensive

and time-consuming. Haplotypes can be reconstructed

in silico from marker genotypes and pedigree records

[17, 18], and have been used successfully for the predic-

tion of κ-casein alleles [19]. Pedigree records, though,

are not always available, and add to the complexity of

the analysis. Whole-genome SNP data are a most valu-

able source of information and can offer a low-cost and

convenient alternative. SNP genotypes (e.g. from SNP

chips or genotyping-by-sequencing –GBS– experiments)

are increasingly available for large numbers of animals,

as a consequence of genomic selection programmes and

research projects, and can be used effectively to predict

haplotypes or gene alleles of interest. SNP genotypes can

be used as they are, or haplotypes can be reconstructed

without pedigree information (e.g. they are often read-

ily available from imputation software like “Beagle” [20]).

In a previous study the successful identification of carri-

ers of the BH2 haplotype from SNP genotypes only was

described [21].

In this work, the use of SNP genotypes alone for the

identification of carriers of harmful recessive mutations

in cattle is presented. Five classification methods were

compared in two cattle breeds with different population

and genetic structure, and with opposite carriers to non-

carriers ratio. The causative mutation behind the BH2

haplotype [12, 22] was used for illustration. This has been

recently demonstrated to be a missense mutation in the

gene TUBD1, and is linked to high juvenile mortality in

the Brown Swiss and Fleckvieh cattle breeds [23].

Methods

Animal population, carrier status and SNP genotypes

A population of 3508 bulls and cows from two cattle

breeds was used for this study: 3116 Fleckvieh (3103

males, 13 females) and 392 Brown Swiss (333 males,

59 females) animals from farms in Austria and South-

ern Germany (Bayern). Fleckvieh is a dual-purpose breed

(milk and meat production), Brown Swiss is a specialised

dairy breed.

All animals were genotyped with the BovineSNP50 v2

(54 K) Illumina BeadChip. Only the 1512 SNPs on BTA19

(Bos taurus autosome 19) were used for the analysis. The

missing-rate was 5.78% in the Fleckvieh and 4.92% in the

Brown Swiss. No individual animal had a call-rate lower

than 95%; SNPs with a call-rate < 95% were removed

from the analysis (195 and 142 SNPs in Fleckvieh and

Brown Swiss respectively). Residual missing genotypes

were imputed based on linkage disequilibrium, using the

localized haplotype clustering imputation method imple-

mented in the computer package “Beagle” v.3 ([20]). After

imputation, average MAF (minor allele frequency) was

0.224 and 0.187 in the Fleckvieh and Brown Swiss popula-

tion respectively.

A direct gene test was performed on all animals to deter-

mine carrier status for theTUBD1mutation. Genotypes at

the mutation site were obtained using a KASP genotyping

assay carried out at the laboratory of the Technische Uni-

versitätMünchen (Freising, Germany: see [23] for details).

The mutation of interest was a T > C substitution in the

coding region of the TUBD1 gene, at SNP rs383232842,

located at the beginning of BTA19 (at 11 063 520 bps on

the UMD 3.1 bovine genome assembly). This is the muta-

tion underlying the BH2 haplotype in Brown Swiss and

Fleckvieh cattle [13], and has been reported to be asso-

ciated with stillbirth and low calf survival rate (e.g. [22]).

The degree of association between the BH2 haplotype

and the mutation TUBD1 is 99.2 % [23]. The mutation

causes the substitution of a histidin by an arginine in the

Tubulin delta 1 protein. The function of the protein is

damaged, which is thought to lead to defective cilia in the

respiratory tract and, consequently, to chronic airway dis-

ease in calves. Animals were identified as carriers (coded

as 1) or not (coded as 0) of the mutation. There were
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126 (4.04%) and 250 (63.78%) carriers in the Fleckvieh

and Brown Swiss datasets, respectively. Data were there-

fore unbalanced in different directions in the two breeds

(more carriers than non-carriers in Brown Swiss, the other

way around in Fleckvieh). Table 1 summarizes the animal

population and SNP data.

Identification of mutation carriers

The identification of mutation carriers from SNP geno-

types was carried out separately in the two breeds. Two

parallel sets of analysis were therefore conducted. First,

data were randomly split into a test set and a train-

ing set. The test set was kept aside, and used only in

the end to test the accuracy of the predictive model.

The training set was used to build the predictive model:

a 10-fold cross validation scheme was adopted to tune

hyperparameters, select variables and estimate parame-

ter coefficients. Five classification methods were tested:

four methods that just use single SNP loci as they

are: Lasso-penalized logistic regression, support vector

machines (SVM) with linear or radial kernel, K-nearest

neighbor (KNN); and one method that builds on hap-

lotype reconstructed from SNP genotypes: multi-allelic

gene prediction (MAG: [24]). Figure. 1 summarizes the

procedure.

Classificationmethods

Lasso-penalized logistic regression: The Lasso (least

absolute shrinkage and selection operator) is a regular-

ization method for regression models [25]. The Lasso

imposes an ℓ1-norm constraint on the vector of model

coefficients, thereby shrinking some parameter estimates

to zero and thus selecting variables in or out of the model.

The starting point is a logistic regression model for the

probability of carrying themutation in a generalized linear

model framework with logit link function:

Table 1 Description of cattle populations, SNP marker genotypes

and carrier status with respect to the TUBD1mutation on BTA19

Fleckvieh Brown Swiss

N. animals 3116 392

Mutation carriers 126 250

% carriers 4.04% 63.78%

% non-carriers 95.96% 36.22%

SNPs on BTA19 1512 1512

missing rate 5.78% 4.92%

SNPs with call-rate < 95% 195 142

SNPs used 1317 1370

average MAF 22.4% 18.7%

All animals were genotyped with the Illumina 54 K SNP-chip v2; only SNPs on BTA19

were used in the analysis

logit(p(xi)) = log

(

p(xi)

1 − p(xi)

)

= μ +

m
∑

j=1

zijSNPj (1)

where p(xi) is the P(Y = 1|X) for individual i with vector

of predictors xi; SNPj is the effect of the jth SNP marker;

zij is the genotype of individual i at locus j (0, 1 or 2 for

AA, AB, and BB genotypes). The model in Eq. 1 was fit-

ted by maximizing the corresponding Lasso-penalized log

likelihood function [26]:

L(SNP|y,X) =

n
∑

i=1

[

yilog(pi) + (1 − yi)log(1 − pi)
]

− λ

m
∑

j=1

|SNPj|

(2)

The rightmost term in Eq. 2 is the Lasso (ℓ1) penaliza-

tion; the tuning parameter λ controls the degree of reg-

ularization, and was specified through cross-validation.

Logistic regression returns the log-odds of p(x) which are

backtransformed to P(Y = 1|X) through the cumula-

tive distribution function of the logistic distribution (i.e.

the logistic function). Individuals with p(x)>/<0.5 were

classified as carriers or not of the mutation.

The Lasso, by setting some of the coefficients to be equal

to zero, performs variable selection, thus yielding sparse

models involving only a subset of the original variables.

Lasso regularization is therefore particularly appropri-

ate when many of the predictor coefficients are indeed

expected to truly be close or equal to zero. This may

apply well to the modelling of mutation carrier status as

function of SNP genotypes, since SNP close to the muta-

tion are expected to contribute largely to the prediction

accuracy [27]. A regularizationmethod like the Lasso esti-

mator was needed for Brown Swiss, where the number

of SNPs exceeds the number of animals (p > n). In the

Fleckvieh, though not required, still the Lasso estimator

may be helpful for the interpretation of the model.

SVM: Two support vector machines (SVM) models were

fitted for the classification of carriers and non-carriers

of the mutation: with linear (SVML, see Eqs. 3 and (6))

and radial (SVMR, see Eqs. 3 and (7)) kernel functions. In

binary classification problems, SVM attempts at separat-

ing classes by a p− 1 dimensional hyperplane. SVMmaps

the vector of SNP genotypes x ∈ R into a higher dimen-

sional feature space φ(x) ∈ H and constructs a separating

hyperplane -linear in R- which maximises the margin M,

the distance between the hyperplane and the nearest data

points. The mapping is performed by a kernel function

K(xi, xj) = 〈h(xi), h(xj)〉 which defines an inner product

of some functions h(·) of pairs of observations in the space

H (a full description of SVM can be found in [28, 29]).

A kernel is a function that quantifies the similarity

between observations. In its basic form, the SVM classifier

applies the kernel function K to all
(N
2

)

pairs of observa-
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Fig. 1 Procedure for the identification of mutation carriers. First data were randomly split into training and test set. Five classifiers (LASSO, SVML,

SVMR, KNN, MAG) were trained through a 10-fold cross-validation. The final classification models were applied to the test set for the estimation of

the classification accuracy. This process was repeated 100 times

tions, and returns the following linear (in R) classifier for

any observed feature vector x:

f (x) = β0 +
∑

i∈N

αiK(x, xi) (3)

The intercept β0 and coefficients αi are obtained by

maximizing the margin around the separating hyperplane

subject to i) allowing some observations to violate the

margin M (or even fall on the incorrect side of the hyper-

plane) by a ii) positive quantity ξ , and iii) constraining

such violations and misclassifications to sum up to a

constant C:

max
β0 ,α,ξ

M subject to

⎧

⎨

⎩

i) yi

(

β0 +
∑N

i=1 αiK(x, xi)
)

≥M(1 − ξi) ∀i

ii) ξi ≥ 0
iii)

∑

ξi ≤ C

(4)

This is a convex optimization problem that is solved

with the method of Lagrange multipliers [30] by re-

expressing all parameters in terms of the α multipliers in

the Lagrange dual function:

LD =

N
∑

i=1

αi −
1

2

N
∑

i=1

N
∑

j=1

αiαjyiyj〈(h(xi), h(xj)〉 (5)

The maximization of LD yields the solutions for the

coefficients α, which in turn give us the SVM classifier

in Eq. 3. An interesting properties of the SVM classifier

is that αi �= 0 only for observations that lie on or within

the margin M, the support vectors, thus making SVM

computations relatively inexpensive.

When h(x) = x, we have the following linear kernel:

K(xi, xi′) = 〈h(xi), h(xi′)〉 = 〈xi, xi′〉 =

p
∑

j=1

xij · xi′j (6)

where p are the parameters (SNP) in the model. The lin-

ear kernel quantifies the similarity between observations

using Pearson correlations and the corresponding SVM

classifier is equivalent to the support vector classifier [31].

The linear kernel produces a linear decision boundary

between classes. Non-linear decision boundaries can be

obtained using more complex kernel functions, like in the

radial kernel:

K(xi, xi′) = exp

⎛

⎝−γ

p
∑

j=1

(xij − xi′j)
2

⎞

⎠ (7)

where the xij’s are again 0/1/2-coded SNP genotypes. For

both SVML and SVMR the constant C defines how much

the margin M can be violated when building the SVM

classifier; C is therefore a tuning parameter that controls

the bias/variance trade-off in SVM classification.

KNN: k-nearest neighbors (KNN) is a general non-

parametric classification method. For any given obser-

vation x0, Euclidean distances based on SNP genotypes

were calculated to identify the K nearest observations



Biscarini et al. BMC Genomics  (2016) 17:857 Page 5 of 17

defining the neighborhoodN0 (the “neighbors”). The con-

ditional probability of carrying or not the mutation was

then estimated as the fraction of carriers/non-carriers

inN0:

P(Y =[ 0/1] |X = x0) =
1

K

∑

i∈N0

I (yi =[ 0/1] ) (8)

The observation x0 was then assigned to the class

(carrier/non-carrier) with the largest probability from

Eq. 8.

MAG: Multi-allelic gene prediction (MAG, [24]) is a

method specifically aimed at predicting gene alleles from

SNP data. As a consequence, it is significantly different

from the previously illustrated methods, that are gen-

eral classification algorithms, and is a representative of

the general class of haplotype-based prediction methods.

MAG was developed for the prediction of HLA alleles in

humans, but has been previously applied to the prediction

of k-casein alleles in cattle [19].

Given the SNP genotype gi = (g′
i1g

′′
i1, . . . , g

′
img

′′
im) and

the gene genotype hi = h′
ih

′′
i of each individual i of a

training population T, the method estimates the frequen-

cies Pr(h′
iG

′
i) and Pr(h′′

i G
′′
i ) of the extended haplotypes

h′
iG

′
i and h′′

i G
′′
i , where G′

i and G′′
i are pairs of SNP hap-

lotypes consistent with the observed SNP genotype gi.

This estimation is performed, assuming Hardy-Weinberg

equilibrium, by maximizing the following log likelihood

function:

∑

i∈T

log

⎛

⎝

∑

(h′
iG

′
i,h

′′
i G

′′
i )∈
(hi,gi)

Pr(h′
iG

′
i) · Pr(h′′

i G
′′
i )

⎞

⎠

where 
(hi, gi) denotes the set of extended haplo-

types pairs consistent with the observed genotypes.

Standard maximization methods (such as Expectation-

Maximization) are computationally demanding since the

number of haplotypes consistent with the observed geno-

types increases at exponential rate as the number of

SNPs increases. MAG, instead, is based on an estimat-

ing equation approach developed by the same authors

that makes computationally more efficient the covariance

matrix computation component without invalidating the

consistency of the computed haplotype probabilities.

Once the extended haplotype probabilities have been

estimated, the prediction is simply performed by comput-

ing the gene genotype h′h′′ that maximizes the probability

of having such a gene genotype given the observed SNP

genotypes using the Bayes’ theorem.

For the present application of MAG to predicting muta-

tion carriers, carrier and non-carrier status were encoded

as heterozygous 01 and homozygous 00 gene genotypes,

respectively.

Tuning hyperparameters andmeasuring prediction accuracy

The data were partitioned into training and test datasets:

80% of the observations (∼2492 Fleckvieh, ∼313 Brown

Swiss) were used to train the predictive model; the

remaining 20% of the data (∼624 Fleckvieh, ∼79 Brown

Swiss) was set aside and used only to measure the classi-

fication accuracy. A 10-fold cross-validation scheme was

applied to the training data in order to tune the hyperpa-

rameters (λ, C, K) and estimate the effects of the model.

The training data were split in 10 subsets of approximately

equal size. The first subset was treated as validation set,

while the model was fit on the remaining 9 subsets (the

training set). Prior to fitting the model, monomorphic

and collinear SNPs were edited out of the training set, to

get rid of non-informative and redundant predictors and

avoid problems due to linear dependecies. In turn, each of

the 10 subsets was used as validation set, so that in the end

every observation was used both to train and validate the

model. The final classification model was then applied to

the test set to estimate the accuracy of identifying carriers

of themutation in independent data. These procedure was

repeated 100 times (10-fold CV x 100), each time resam-

pling different training and test sets, eventually yielding

100 replicates of the analysis (per breed, per model). The

procedure is illustrated in Fig. 1.

The error rate was estimated as the fraction of mis-

classified observations: ER = 1
n

∑n
i=1 I(yi �= ŷi). Three

different error rates were measured: 1) the Total Error

Rate (TER) defined as the total number of misclassifica-

tions over the total test sample size; 2) the False Positive

Rate (FPR) defined as the number of non-carriers misclas-

sified as carriers over the total number of non carriers; and

3) the False Negative Rate (FNR) defined as the number of

carriers misclassified as non-carriers over the total num-

ber of carriers. TER, FPR and FNR were averaged over the

100 replicates to estimate the test error and the variability

of the prediction accuracy.

Software and computation resources

Data preparation and editing, and all statistical analysis

were performed using the R programming environment

v.3.2.3 [32], except missing genotype imputation, which

was carried out with the computer package “Beagle”

v.3.3.2 [20]. The R packages glmnet [33], e1071 [34] and

class were used to fit the Lasso logistic regression, SVM

with linear and radial kernels and KNN classification

models. MAG has been performed using the MATLAB-

based program provided by the authors on their website

(http://www.mybiosoftware.com/magprediction-gene-

allele-prediction-unphased-snp-data.html). The analyses

were run on the bioinformatics platform at PTP Science

Park (www.ptp.it), which includes a high performance

computing cluster with 600 CPUs, 2.5 TB of RAM and

100 TB of storage space for archiving and back-up.

http://www.mybiosoftware.com/magprediction-gene-allele-prediction-unphased-snp-data.html
http://www.mybiosoftware.com/magprediction-gene-allele-prediction-unphased-snp-data.html
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Results

The accuracy of identifying carriers of the TUBD1 muta-

tion on BTA19 was measured over all animals and

per class (carriers and non-carriers) for each of the

five classification methods, in Brown Swiss and Fleck-

vieh separately. Average values over 100 replicates are

presented. The total predictive accuracy (TPA=1-TER)

ranged between 0.837 and 0.991 in Brown Swiss, and

between 0.970 and 0.998 in Fleckvieh. The accuracy

among carriers (true positive rate: TPR=1-FNR) was in the

range 0.862 - 1.000 in Brown Swiss and 0.288 - 0.991 in

Fleckvieh. The accuracy among non-carriers (true nega-

tive rate: TNR=1-FPR) varied between 0.798 and 0.984 in

Brown Swiss, and between 0.998 and 0.999 in Fleckvieh.

Lasso penalized logistic regression, SVML and MAG

consistently gave the highest accuracy in both classes and

breeds, while KNN was always the worst performing clas-

sification method. MAG showed the highest accuracy in

the minority class in both breeds (highest TNR in Brown

Swiss, highest TPR in Fleckvieh). Table 2 summarizes the

predictive accuracy over methods and breeds.

Figures 2 and 3 show the error rates (TER, FPR, FNR) for

each of the 100 replicates of the analysis in Brown Swiss

and Fleckvieh, thereby visualizing the variability of pre-

diction: the closer to the center of the target, the lower

the prediction error. The error rate was generally low,

with very limited variability. The error was lower than

5% (with standard deviation ≤ 4 percentage points – pp)

in all cases except all KNN predictions in Brown Swiss

(TER, FNR and FPR: 16.3% ± 4.8pp, 13.8 % ± 8.6pp and

20.6% ± 6.2pp), and FNR with KNN (71.2% ± 8.7pp),

SVML (7.58% ± 4.7 pp) and SVMR (22.5% ± 7.3 pp) in

Fleckvieh.

Table 2 Total prediction accuracy (TPA), true positive rate (TPR)

and true negative rate (TNR) with kNN, Lasso, SVML and SVMR in

Brown Swiss and Fleckvieh cattle

Method TPA TPR TNR

Brown KNN 0.837 (±0.047) 0.862 (±0.062) 0.798 (±0.088)

Lasso 0.988 (±0.010) 1.000 (±0.000) 0.968 (±0.029)

SVML 0.991 (±0.010) 0.998 (±0.005) 0.976 (±0.025)

SVMR 0.978 (±0.016) 0.989 (±0.015) 0.961 (±0.034)

MAG 0.983 (±0.015) 0.992 (±0.011) 0.984 (±0.016)

Fleckvieh KNN 0.970 (±0.007) 0.288 (±0.087) 0.998 (±0.002)

Lasso 0.998 (±0.002) 0.957 (±0.037) 0.999 (±0.001)

SVML 0.996 (±0.002) 0.924 (±0.047) 0.999 (±0.001)

SVMR 0.991 (±0.003) 0.775 (±0.073) 0.999 (±0.001)

MAG 0.994 (±0.003) 0.991 (±0.003) 0.998 (±0.002)

KNN k-nearest neighbors, Lasso ℓ1-penalized logistic regression, SVML suport vector

machine with linear kernel, SVMR support vector machine with radial kernelMAG

multi-allelic gene prediction

As for hyperparameters, the average λ (Lasso penalty),

CSVML, CSVMR (SVM cost parameter with either linear or

radial kernel) and K (neighbourhood size in KNN) were:

λ = 0.0304, CSVML = 0.0131, CSVMR = 0.9401 and K =

6.18 in the Brown Swiss population, and λ = 0.00091,

CSVML = 0.0164, CSVMR = 0.7352 and K = 5.75 in the

Fleckvieh population.

The average number of SNPs selected in the predictive

model by the Lasso penalizationwas 7.5 and 25.9 in Brown

Swiss and Fleckvieh respectively (min 3 and 14, max 19

and 51 in the two breeds).

The computation time was quite different in relation to

the population size and classification method. The total

time taken to complete one replicate of the classification

procedure was as short as 3.51 seconds with Lasso logis-

tic regression in Brown Swiss, and as long as 1 655.55

seconds (27.6 minutes) with KNN in Fleckvieh. In both

breeds, Lasso logistic regression was the fastest method,

while MAG and KNNwere the slowest methods in Brown

Swiss and Fleckvieh, respectively. SVM took intermediate

times to compute, with the linear kernel being more than

two-fold faster than the radial kernel. The computation

time grew approximately linearly with sample size (Brown

Swiss vs Fleckvieh) for all methods, except for KNN, for

which it grew approximately quadratically.

Table 3 gives a complete overview of the time needed to

run the five classification models in the two breeds.

Discussion

In this paper, a general framework for the identifica-

tion of mutation carriers from SNP genotypes has been

described. In a previous publication [21], SNP geno-

types were used to predict carriers of the BH2 haplo-

type in cattle populations. The BH2 haplotype has been

associated to stillbirth and peri-natal mortility in calves.

The mutation behind BH2 has in the meantime been

characterized (point substitution in the TUBD1 gene,

see [23] for details), and the step forward towards the

prediction of carriers of the actual mutation — rather

than of the associated haplotype — is presented in

this paper.

The use of SNP genotypes to identify mutation carri-

ers builds on special characteristics of the genome around

the mutation, i.e. SNP loci in linkage disequilibrium and

in recombination phase with the mutation. This approach

has proved to be very accurate: in this study, the accu-

racy of identifying mutation carriers was higher than 95%

in both cattle breeds. These results are in line with those

from similar studies (e.g. test error rate ≤ 1% for BH2

haplotype in cattle [21], 0−5% for HLA alleles in humans

[24], ∼ 6% for casein alleles in cattle [19]), and con-

firm that this is a highly effective approach with accuracy

potentially close to 100% (virtually faultless) for practical

applications in animal genetics.
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Fig. 2 Accuracy of identifying mutation carriers in Brown Swiss cattle. TPA: total prediction accuracy; TNR: true negative rate; TPR: true positive rate.

Reported accuracy are obtained from 10-fold cross-validation repeated 100 times

Lasso-penalized logistic regression, support vector

machines with linear kernel (SVML) andmulti-allelic gene

prediction (MAG) gave the highest prediction accuracy

both in Brown Swiss and Fleckvieh cattle, with limited

variation over replicates. KNN and SVMR, on the other

hand, showed a substantially lower and more variable pre-

diction accuracy. The fact that more flexible models like

KNN and SVMR perform worse than Lasso-penalized

logistic regression, SVML and MAG indicates that the

decision boundary in this classification problem is prob-

ably linear. KNN is a non-parametric method that acco-

modates to the local structure of the data. The use of

a radial kernel in support vector machines tends to give

small weight to observations which are far — in terms

of Euclidean distance — from the classification candi-

date and, conversely, large weight to closer observations

(thereby displaying a “local” behaviour). KNN and SVMR

are therefore designed for non-linear classification prob-

lems, when the decision boundary between classes is far

from linear and they’re expected to outperform linear

methods under these circumstances. The linearity of the

decision boundary therefore, accounts — at least partly —

for the relatively worse performance of KNN and SVMR.

Among the tested classification methods, MAG is the

only one that makes use of reconstructed haplotypes

around the mutation. The additional information from

phased SNP genotypes proved to be helpful especially in

classifying observations belonging to the least frequent

class (non-carriers in Brown Swiss, carriers in Fleckvieh).

Despite a slighlty lower TPA (� 1%), MAG showed TNR

� 1.6%−0.8% in Brown Swiss and TPR� 3.5%−7.2% in

Fleckvieh compared to Lasso and SVML. Reconstructing

haplotypes, however, though relatively inexpensive under

some circumstances, adds complexity to the problem.

Lasso and SVML may offer a valid alternative, which is

particularly attractive from the machine/statistical learn-

ing perspective where a matrix of “features” (variables) is

used to predict “labels” (observations).

In terms of computation time, Lasso logistic regres-

sion was by far the fastest method, followed by SVML
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Fig. 3 Accuracy of identifying mutation carriers in Fleckvieh cattle. TER: total error rate; FPR: false positive rate; FNR: false negative rate rate. Reported

accuracy are obtained from 10-fold cross-validation repeated 100 times

and SVMR. MAG and KNN were the slowest methods

with the Brown Swiss and Fleckvieh datasets, respectively.

Additionally, KNN computation time appears to grow

quadratically with problem size, while all other methods

behaved linearly in terms of computation time as function

of data size. In this work, no efforts were made to opti-

mise the implementation of the different algorithms and

computation strategies, and therefore the reported com-

putation times are only indicative. Still, they can provide

Table 3 Time (in seconds) needed to complete 1 run of

prediction with the five predictive models (Lasso, KNN, SVML,

SVMR, MAG) in Brown Swiss and Fleckvieh cattle

Method Brown Swiss Fleckvieh

Lasso 3.51 25.01

KNN 38.71 1 655.55

SVML 10.16 115.89

SVMR 26.01 248.24

MAG 59.31 264.08

valuable information and useful guidelines as to the rel-

ative expected performance of the different classification

methods.

Fleckvieh vs Braunvieh

The identification of mutation carriers proved to be very

accurate in both breeds. Looking at results from Lasso,

SVML and MAG – the best performing classifiers —

the total prediction accuracy (TPA) was 0.998, 0.996 and

0.994 in Fleckvieh, and 0.988, 0.991 and 0.983 in Brown

Swiss. Carriers of the mutation (TPR) were identified with

accuracy 0.956, 0.924 and0.991 in Fleckvieh, and 1.000,

0.998 and 0.992 in Brown Swiss. The accuracy to identify

non-carriers of the mutation (TNR) was 0.999, 0.999 and

0.998 in Fleckvieh, and 0.968, 0.976 and 0.984 in Brown

Swiss. The variability of estimated accuracy was very lim-

ited, lower than 5 pp in all cases. Overall, TPA and TNR

were slightly higher in Fleckvieh, while TPR was substan-

tially higher in Brown Swiss: i.e. it was relatively more

difficult to identify mutation carriers in the Fleckvieh
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dataset, non-carriers in the Brown Swiss dataset. In par-

ticular, the identification of carriers showed highly vari-

able accuracy in the Fleckvieh (TPR � 0.99 with MAG,

� 0.95 with Lasso and SVML, and as low as 0.775 and

0.288 with SVMR and KNN), whereas in Brown Swiss also

non-carriers were quite accurately identified (TNR> 0.96

with Lasso, SVML, SVMR and MAG; TNR ≈ 0.8 with

KNN).

The different results observed in the two breeds, can

have both a statistical and a population genetics inter-

pretation. First, there is sample size. As a general rule,

prediction accuracy will asymptotically reach 100 % with

increasing sample size [35]: more data would increasingly

cause fewer overfitting problems and reduce the need

for penalization. In the field of genomic predictions, the

size of the reference population is known to influence the

accuracy of GEBVs (genomic estimated breeding values)

[36]. In the case of prediction of mutation carriers, this is

nicely illustrated by Pirola et al. [19] who showed how the

prediction error and variance are inversely related to sam-

ple size. In the present study, the sample size was about

ten times higher in the Fleckvieh (3116 animals) compared

to the Brown Swiss (392 animals) breed. Another statis-

tical aspect of importance is the class ratio. Unbalanced

data are a known issue in binary classification problems

[37]: when the two classes are not equally represented it

is much harder to predict observations belonging to the

minority class (the least represented class), and an overall

high prediction accuracy could mask very poor perfor-

mance in the minority class. The class ratio was very

unbalanced in the Fleckvieh (1:25), much less so in the

Brown Swiss (1:1.8).

More specifically linked to the genetic characteristics

of populations are two additional aspects. On one hand,

there are the genomic relationships among individuals;

the accuracy of genomic predictions have long been found

to be a function of genetic relatedness: “ceteris paribus”,

stronger genetic links between the training and valida-

tion animals lead to higher accuracy of predictions (e.g.

[38]). From SNP genotypes, higher average genomic rela-

tionships (à la Van Raden [39], rescaled to be in the range

[0 − 2]) were estimated in Brown swiss (0.421 ± 0.119)

rather than in Fleckvieh (0.339 ± 0.101); the heatmap in

Fig. 4 shows the genomic relationships estimated within

and across the two breeds. It can be argued that for predic-

tions on a single locus “local” instead of genome-wide rela-

tionships are moremeaningful. Average genomic relation-

ships were therefore re-estimated using only SNPs around

the TUBD1 mutation (the first 20 Mbs on BTA19). Local

relationships were higher than genome-wide relationships

Fig. 4 Heatmap of genomic relationships within and between breeds. Genetic relatedness estimated from SNP genotypes in Brown Swiss (top-left)

and Fleckvieh (bottom-right) cattle. Darker colors correspond to higher estimated genomic relationships
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in both breeds: still, Brown Swiss showed higher local

relatedness than Fleckvieh (0.4981 vs 0.4082). Another

genetic aspect, the linkage disequilibrium (LD) between

SNP markers and relevant loci/QTLs is known to influ-

ence the accuracy of genomic predictions: a sufficiently

high LD is required for SNP-based predictions to be reli-

able [36]. The LD around the TUBD1 mutation (first 20

Mbps on BTA19) was estimated as r2 [40]: the average r2

was 0.051 (interquartile range, IQR: [ 0.003 − 0.054]) in

Brown Swiss and 0.022 (IQR: [0.001−0.026]) in Fleckvieh.

Besides, better defined LD patterns and blocks around the

mutation on BTA19 could be identified in Brown Swiss

compared to Fleckvieh (Fig. 5).

Summarizing, sample size played in favour of the

Fleckvieh dataset, while class ratio, genetic relatedness

and linkage disequilibrium were more favourable in the

Brown Swiss dataset. This helps explain the generally bet-

ter predictive performances found in the Brown Swiss

breed in this study.

Error decomposition: variance and bias

The error incurred when making predictions can always

be decomposed into its variance and bias [41]. The vari-

ance is the part of the error due to the variability of the

predictor (E[ f̂ (x) − E(f̂ (x))]2); the bias refers to the sys-

tematic error, i.e. the expected value of the difference

between predicted and true values (E[ f̂ (x) − f (x)]).

For binary classification problems, with the misclassifi-

cation loss function, the variance and bias of the classifi-

cation error can be estimated as follows [42]:

Var[ p̂(x)]= |2 · p̂(x) − 1|I
[

(p̂(x) ≥ 0.5& p̄(x) < 0.5)

||(p̂(x) < 0.5 & p̄(x) ≥ 0.5)
]

(9)

Bias[ f̂ (x)]= |2 · p(x) − 1| I[ (p(x) ≥ 0.5& p̄(x) < 0.5)

|| (p(x) < 0.5& p̄(x) ≥ 0.5)]

(10)

We estimated the variance and bias of the classification

error given by the five models (LASSO, SVML, SVMR,

KNN, MAG) used to identify mutation carriers in the two

breeds. Results are in Table 4. The variance was in the

range between 0.00007 (FPR, Lasso) and 0.04131 (FNR,

SVML) in Fleckvieh, and between 0.0001 (FNR, MAG)

and 0.03306 (TER, KNN) in Brown Swiss. The bias ranged

from 0.00015 (FPR, Lasso) to 0.72386 (FNR, KNN) in

Fleckvieh, and from 0.00021 (FNR, SVML) to 0.21079

(FPR, KNN) in Brown Swiss. Overall, most of the error

was taken up by the bias component. This says that the

developed classifers make very stable predictions, even

when resampling the training and validation sets (which

changes the coefficients of the model). This is a desirable

Fig. 5 Linkage disequilibrium around the mutation on BTA19. r2

values in the region 1 - 20 Mbps on BTA19 in Brown Swiss (top) and

Fleckvieh (bottom) cattle. The TUBD1mutation is at 11 063 520 bps

property, especially when the error rate is as low as that

reported in this study: a small bias is not bound to severely

affect the accuracy of prediction. A bias larger than the

variance of the error partly stems out of class imbalance.

With unbalanced data, most errors occur in the minority

class, which means they are systematically misclassified.

For instance, for KNN predictions in Fleckvieh, the errors

in the minority class (FNR, Fig. 3) are in a well delimited

area around the target, with little variation.
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Table 4 Variance and bias of prediction error

Method
TER FNR FPR

Error Var Bias Error Var Bias Error Var Bias

Brown KNN 16.3% 0.03306 0.13923 13.8% 0.02989 0.09918 20.6% 0.02136 0.21079

Lasso 1.02% 0.00031 0.00962 0.00% - - 3.02% 0.00087 0.02653

SVML 0.91% 0.00161 0.00873 0.12% 0.00101 0.00021 2.41% 0.00267 0.02367

SVMR 2.15% 0.00221 0.20115 1.11% 0.00258 0.02264 3.92% 0.00153 0.15731

MAG 1.71% 0.00423 0.01513 0.81% 0.00010 0.01180 1.62% 0.01178 0.02107

Fleckvieh KNN 2.96% 0.00143 0.02981 71.8% 0.02688 0.72386 0.16% 0.00021 0.00167

Lasso 0.22% 0.00011 0.00192 4.48% 0.00115 0.04245 0.04% 0.00007 0.00015

SVML 0.37% 0.00043 0.00251 7.63% 0.04131 0.04083 0.07% 0.00014 0.00093

SVMR 0.93% 0.00046 0.00571 22.5% 0.01024 0.09911 0.05% 0.00011 0.00186

MAG 0.64% 0.00094 0.00487 0.98% 0.00101 0.06040 0.24% 0.00097 0.00252

KNN k-nearest neighbors, Lasso ℓ1-penalized logistic regression, SVML support vector machine with linear kernel, SVMR support vector machine with radial kernel,

MAGmulti-allelic gene prediction

As a proportion of the error, the bias was larger in

Brown Swiss than in Fleckvieh, for all error types (2.19,

4.24 and 1.95 times larger for TER, FPR and FNR, respec-

tively). In Brown Swiss, the number of parameters (p) in

the model (SNP) exceeded the number of observations (n)

in the training set (p > n), unlike in Fleckvieh (n > p): this

calls for stricter regularization in the Brown Swiss data,

which would tip the bias-variance trade-off more towards

the bias [41].

Effect of sample size on prediction accuracy

The size of the reference population (individuals with both

genotypic and phenotypic information) is known to play

a major role in determining the accuracy of genomic pre-

dictions (e.g. [36]); this was shown also for the problem

of predicting the carrier of specific gene alleles [19]. To

investigate this in the present work, both available cattle

populations (Fleckvieh and Brown Swiss) were reduced by

randomly sampling 75 %, 50 % and 25 % of the animals. On

the reduced subsets, Lasso, SVML andMAGwere applied

to identify carriers of the TUBD1 mutation, applying the

same procedure as in Fig. 1 (except that for Brown Swiss

5-fold instead of 10-fold cross-validation was used to tune

hyperparameters), repeated 10 times.

Results are reported in Table 5: TPA decreased by 11.2 %

(SVML), 4.3 % (Lasso) and 0.5 % (MAG) in Brown Swiss

and by 2.2 % (SVML), 1.8 % (Lasso) and 0.1 % (MAG)

in Fleckvieh, when going from the full dataset to 25 % of

the data. The larger drop in accuracy in Brown Swiss is

likely due to the initial smaller sample size (392 vs 3116

animals). Also the standard deviation of TPA increases

whith decreasing sample size, which suggests that predic-

tions become progressively less reliable. When looking at

TPR and TNR, it is clear that with smaller sample sizes

predictions in the minority class get dramatically worse

(in Brown Swiss and Fleckvieh respectively: by 24.8 % and

59.4 % with SVML, by 7.8 % and 12.4 % with Lasso, and

by 2.8 % and 9.6 % with MAG), whereas predictions in

the majority class are practically unaffected. This indi-

cates that when the training population gets small, the

trained binary classifier starts losing predictive power and

begins being dominated by the most frequent class. Over-

all, MAG appears to be the most resilient method to data

reduction, among those tested.

The size of the training population is confirmed to be a

major factor behind the accuracy of genomic predictions,

also in the identification of carriers of recessive mutations.

At each size-reduction step, the LD (r2) around TUBD1,

and the genome-wide and “local” (around TUBD1)

rescaled genomic relationships à la Van Raden were esti-

mated. Around the mutation was again defined by taking

SNPs from the first 20Mbps on BTA19. The estimated LD

around the mutation appears to increase with decreasing

sample size; however, LD estimates are known to be biased

upwards by small sample size in cattle [43]. Both genome-

wide and local genomic relationship are little affected by

sample size. This indicates that the drop in accuracy is

explained mainly by the size of the training set and appar-

ently not by a lower LD between SNP and the mutation,

or by looser relationships between animals.

Extension to another harmful recessive mutation

From an indipendent population of Italian Brown Swiss

cattle (provided by the Italian Brown Association:

www.anarb.it), three hundred and five Brown Swiss bulls

typed for congenital spinal dysmyelination (SDM, [44])

were available to test the accuracy of identifying mutation

carriers from SNP genotypes. SDM is another recessive

mutation of interest in cattle, caused by a missense muta-

tion in the SPAST gene on BTA 11 [45]. All bulls (8
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Table 5 Prediction accuracy with Lasso, SVML and MAG when the sample size is reduced from 100 to 25 % of the original size

Breed Reduction TPA TNR TPR LD K locK

SVML Brown Swiss 1.00 0.992 (0.0081) 0.981 (0.0237) 0.998 (0.0047) 0.0469 0.4212 0.4981

Brown Swiss 0.75 0.984 (0.0440) 0.983 (0.0521) 0.986 (0.0516) 0.0584 0.4165 0.4987

Brown Swiss 0.50 0.920 (0.1745) 0.871 (0.2961) 0.981 (0.0285) 0.0626 0.4237 0.4894

Brown Swiss 0.25 0.880 (0.1562) 0.738 (0.3751) 0.977 (0.0653) 0.0690 0.4183 0.4992

Fleckvieh 1.00 0.996 (0.0025) 0.999 (0.0009) 0.928 (0.0525) 0.0226 0.3392 0.4082

Fleckvieh 0.75 0.995 (0.0034) 0.998 (0.0014) 0.909 (0.0857) 0.0228 0.3252 0.4081

Fleckvieh 0.50 0.991 (0.0062) 1.000 (0.0001) 0.814 (0.1239) 0.0234 0.3195 0.3952

Fleckvieh 0.25 0.974 (0.0256) 1.000 (0.0003) 0.377 (0.2126) 0.0241 0.3197 0.4078

Lasso Brown Swiss 1.00 0.987 (0.0112) 0.966 (0.0292) 1.000 (0.0000) 0.0469 0.4212 0.4981

Brown Swiss 0.75 0.986 (0.0338) 0.972 (0.0640) 1.000 (0.0000) 0.0596 0.4176 0.4776

Brown Swiss 0.50 0.967 (0.0472) 0.913 (0.1405) 1.000 (0.0000) 0.0586 0.4078 0.4862

Brown Swiss 0.25 0.945 (0.1117) 0.891 (0.1329) 0.958 (0.1443) 0.0683 0.4526 0.5151

Fleckvieh 1.00 0.997 (0.0017) 1.000 (0.0000) 0.942 (0.0369) 0.0226 0.3392 0.4082

Fleckvieh 0.75 0.996 (0.0034) 1.000 (0.0000) 0.944 (0.0869) 0.0229 0.3235 0.4050

Fleckvieh 0.50 0.987 (0.0309) 0.988 (0.0329) 0.923 (0.1545) 0.0248 0.3000 0.3876

Fleckvieh 0.25 0.979 (0.0247) 0.989 (0.0002) 0.825 (0.2020) 0.0250 0.3106 0.3961

MAG Brown Swiss 1.00 0.984 (0.0152) 0.982 (0.0163) 0.992 (0.0112) 0.0469 0.4212 0.4981

Brown Swiss 0.75 0.983 (0.0155) 0.976 (0.0327) 0.989 (0.0161) 0.0589 0.4178 0.4832

Brown Swiss 0.50 0.982 (0.0194) 0.973 (0.0393) 0.987 (0.0259) 0.0586 0.4222 0.4891

Brown Swiss 0.25 0.978 (0.0352) 0.955 (0.0776) 0.992 (0.0331) 0.0683 0.4446 0.5097

Fleckvieh 1.00 0.994 (0.0030) 0.998 (0.0021) 0.991 (0.0030) 0.0226 0.3392 0.4082

Fleckvieh 0.75 0.994 (0.0032) 0.998 (0.0024) 0.939 (0.0603) 0.0225 0.3271 0.4069

Fleckvieh 0.50 0.994 (0.0048) 0.997 (0.0031) 0.917 (0.0871) 0.0239 0.3095 0.3962

Fleckvieh 0.25 0.993 (0.0074) 0.997 (0.0042) 0.896 (0.1438) 0.0251 0.3102 0.3960

LD average linkage disequilibrium estimated around the mutation, K average genome-wide genomic relationships, locK average genomic relationships estimated using only

SNPs around the mutation

carriers, 297 non-carriers) were genotyped with the Bovi-

neSNP50 v2 (54 K) Illumina BeadChip (2442 SNPs on

BTA11, after editing).

The three classification methods that gave the best

results on the TUBD1 mutation were applied to the iden-

tification of carriers of the SDM mutation: Lasso, SVML

and MAG. As in Fig. 1, 80% of the data were used to

train the classifier, and the remaining 20% to test it. Given

the smaller dataset size (∼ 240 animals for training),

a 60/40 cross-validation scheme was used to tune the

hyperparameters (λ, C). The procedure was repeated 100

times to estimate prediction accuracy. With Lasso, SVML

and MAG, respectively, TPA was 0.987 (±0.018), 0.978

(±0.016) and 0.983 (±0.016); TPR was 0.625 (±0.342),

0.435 (±0.356) and 0.611 (±0.341); and TNR was 0.997

(±0.007), 0.999 (±0.003) and 0.993 (±0.011).

Overall, the identification of carriers proved to be effec-

tive also when tested on a different mutation. However,

compared to the results with the TUBD1 mutation, a

higher test error rate was estimated for SDM, especially

in the minority class (carriers of the mutation): whereas

TPA and TNR were both very high and close to 100%,

TPR was quite lower, in the range 0.435 − 0.625. Proba-

bly, this is related to the different frequency of carriers:

4.04% (Fleckvieh) and 63.78% (Brown Swiss) for TUBD1,

as low as 2.62% for SDM. Highly unbalanced data are

expected to yield worse predictive performances. This was

especially true in the case of SDM for which there were

only eight carriers. The smaller sample size too, is likely to

have played a role in the higher prediction error rates and,

especially, the larger variability of estimates, as we showed

when reducing the size of the TUBD1 dataset (Table 5).

Unlike the TUBD1 mutation, MAG did not (slightly)

outperform Lasso and SVML in the minority class: using

haplotypes did not appear to be as beneficial with the

SDMmutation. This may be related to the different degree

of concordance between the mutation and the associated

haplotype: this was 99.2% between TUBD1 and the BH2
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haplotype [23], and 94.4% between SDM and the BHD

haplotype [9].

Prediction accuracy with the low density SNP chip

Several SNP-chips are available in cattle, with different

marker densities and costs (see [46]). In this work, an over-

all very high accuracy of prediction was achieved using

the BovineSNP50 v2 Illumina BeadChip, which contains

54 609 SNPs. It would be interesting to see what would be

the accuracy of identifying mutation carriers using lower

density SNP-chips. In particular, it is of interest to ver-

ify whether comparable accuracies could be achieved with

fewer SNPs. Since genotyping animals is a cost, especially

for commercial farms, low density SNP chips may offer

a cheaper alternative for the identification of mutation

carriers.

From the 54 K SNP-chip data, the SNP on BTA19 cor-

responding to the BovineLD v2 Illumina BeadChip (185

and 211 SNPs in Brown Swiss and Fleckvieh, respec-

tively) were extracted and used for classification. Lasso

and SVML, were used for classification, with the same

experimental design as in Fig. 1 (10-fold cross-validation,

100 replicates).

With Lasso, TER, FNR and FPR were 0.0183 (±0.0151),

0.009 (±0.0065) and 0.0350 (±0.0287) in Brown Swiss,

and 0.0111 (±0.0036), 0.0605 (±0.0309) and 0.0049

(±0.0037) in Fleckvieh. With SVML, TER, FNR and

FPR were 0.0167 (±0.0146), 0.0109 (±0.0145) and 0.0257

(±0.0294) in Brown Swiss, and 0.0116 (±0.0042), 0.228

(±0.0959) and 0.0025 (±0.0023) in Fleckvieh. The com-

putation time for one replicate of the model in the Brown

Swiss and Fleckvieh datasets, respectively, was 3.51 and

5.58 s using Lasso, and 7.88 and 33.55 s using SVML.

Overall, performances are comparable with the 54

SNP-chip: only the identification of carriers in Fleck-

vieh was notably less accurate with lower densitiy

SNP data.

Localize mutation via resampling

In predictive models, it can be of interest to find out

which variables are more relevant for accurate predic-

tions. When resampling strategies are adopted, the rele-

vance of individual predictors can be indirectly derived

from the frequency with which they appear in the dif-

ferent replicates of the predictive model. In the case of

SNP-based models, the most predictive SNPs are likely to

be linked to the target QTL/mutation. This approach was

already presented by Biffani et al. [21] to track the posi-

tion of the BH2 haplotype. The BH2 haplotype is located

at 10.140 − −11.049 Mb on BTA19 [22], and could be

accurately identified through the resampling approach.

However, SNP data were used both to first reconstruct

the BH2 haplotype and then localize it. Additionally, it

may be harder to localize a point mutation rather than a

longer associated haplotype. Therefore, a similar resam-

pling approach was adopted here to map the position of

the TUBD1mutation on BTA19.

The lasso penalised logistic regression model in Eq. 1

has the property of selecting, through cross-validation,

a subset of predictive SNPs. This subset can vary from

replicate to replicate. In Fig. 6, the absolute frequencies

of inclusion of SNPs in the predictive model were plot-

ted against their bps positions along BTA19, separately in

Brown Swiss (top) and Fleckvieh (bottom). The TUBD1

mutation is located at 11 063 520 bps [23], which corre-

spond to where the frequency peaks appear in both breeds

(Fig. 6): the mutation could thus be localized by mining

classification results, without any prior information on its

position.

To provide a comparison, p-values from a genome-

wide association study (GWAS) for the binary trait

carrier/non-carrier of the TUBD1 have been plotted in

Fig. 7. A logistic regression model for the probability of

being carrier of the mutation was fitted for every sin-

gle SNP on BTA 19, accounting for the polygenic effect

through the matrix of genomic relationships. The GWAS

approach also detected a strong signal of association

at around 11 Mbps on BTA19. The significant associ-

ations had a lower p-value in Fleckvieh than in Brown

Swiss, probably due to the much larger sample size in

the former.

The results reported here and -previously- by Biffani

et al. [21] show that resampling methods offer a valid

alternative or complement to GWAS studies, as discussed

by Biscarini et al. [47]. GWAS studies are in fact known

to suffer from some limitations, like susceptibility to

spurious associations and poor reproducibility of results

[48, 49]. Combining the two approaches may lead to more

robust association results.

Applications to the management of cattle populations

In cattle genetics, causal mutations or associated hap-

lotypes for inherited disorders are being discovered at

unprecedented rates (see USDA list: [13]). It is therefore

useful to have tools that allow breeders to identify car-

riers. The degree of association between haplotypes and

underlying mutations is variable [9]: sometimes very high

(e.g. JH1 haplotype and the CWC15 gene in Jersey cattle),

sometimesmuch looser (e.g. two versions of the haplotype

associated with complex vertebral malformation in the

Holstein breed, one with and one without the causative

mutation). This may increase the uncertainty of identify-

ing mutation carriers from SNP genotypes, and there is

therefore value in directly predicting mutation rather than

haplotype carriers.

In this paper, we showed that mutation carriers can

be identified very accurately from SNP genotypes. Bulls

and cows in breeding programmes are often routinely
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Fig. 6 Predictive SNPs selected by Lasso-penalization from the 50K SNP-chip. Frequency of inclusion of SNPs in the Lasso-penalised logistic

regression model for each of the 100 replicates, plotted against the SNP position on BTA19 (Top, Brown Swiss; bottom, Fleckvieh)

genotyped, e.g. for parentage verification, estimation of

genomic breeding values, and it would therefore be rather

straightforward and inexpensive to use already available

genotype data to identify mutation carriers. Using the

54 K SNP-chip, the accuracy of prediction has been shown

to be very high, close to 100 % in both breeds, with

very few misclassifications also in the minority class. At

lower SNP densities the overall accuracy was still impres-

sively high, slightly lower than 99%, but larger proportions

of misclassifications were observed in the minority class

(false positives in Brown Swiss, false negatives in Fleck-

vieh). In order to maximise prediction accuracy in all

classes while keeping costs low, mixed genotyping strate-

gies can be adopted by which most of the population is

genotyped at low densities and only relatively few animals

are genotyped with the 54 K chip: 54 K SNP genotypes

can then be imputed back in all animals [50]. Mixed geno-

typing strategies are current standard practice in several

national dairy selection schemes (e.g. Canada [51]). To

assess the effect on prediction accuracy of imputing back

to higher SNP densities, different proportions of extracted

BovineLD SNP genotypes were imputed back to 54K SNP

genotypes: 25 , 50 and 75 %, and Lasso was run on each of

them for the identification of carriers. Very similar results

to those reported in Table 2 were obtained. For instance,

with 75 % of the animals genotyped at low densities, TPA,

TNR and TPR were still 0.986, 0.962 and 1.000, respec-

tively. This may be related to the high imputation accuracy

in dairy cattle [52].

With the size of the data used in the present work

(∼ 3000 animals), Lasso and SVML were quite efficient

with an R implementation. For larger datasets, though

(e.g. hundreds of thousands of genotyped animals like

the US Holstein population), scalability would certainly

be an issue, and more efficient implementations of the

algorithms, combined with computation strategies like

parallel computing on multiple cores or distributed com-

puting on a computer cloud/cluster should be adopted.

A popular combination in machine learning and “big

data” analysis is given by the scripting language Python

within the Apache Spark framework for distributed

computing [53].
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Fig. 7Manhattan plot of −log(p − value). Results from a GWAS

analysis for carriers/non-carriers of the TUBD1 mutation. Brown Swiss

above, Fleckvieh below

Once mutation carriers have been identified, this infor-

mation can be used in breeding strategies to guide selec-

tion decisions and plan matings, with the objective of

reducing the frequency of carriers in the population and

avoiding mating of carriers. Mate allocation schemes to

control inbreeding and recessive disorders have been

already proposed in cattle [54, 55]. Besides breeding, the

accurate identification of mutation carriers can be use-

ful also in conservation programmes for marginal breeds

at risk of extinction. These breeds typically have higher

inbreeding (e.g. Chillingham [56]), which exposes them to

a higher incidence of recessive genetic diseases. Avoiding

the mating of carriers would therefore be very beneficial.

Conclusions

This paper shows that SNP genotypes can be used very

effectively to predict carriers of harmful recessive muta-

tions in cattle populations. The TUBD1 mutation on

BTA19, associated with reduced fertility in cows, was cho-

sen as illustration. Together with MAG, Lasso-penalized

logistic regression and Support Vector Machines with lin-

ear kernel gave the lowest error rates indicating the prob-

able linear nature of this classification problem. Overall,

the prediction accuracy was very high, close to 100%

in both breeds. Compared to single SNP genotypes, the

use of haplotypes gave better accuracy in the minor-

ity class when the haplotype-mutation concordance was

close to 100 % (BH2-TUBD1). The opposite was true

for looser associations between haplotype and mutation

(SDM). When using the low-density SNP-chip, the total

error rate was still very low (∼ 1%), but the proportion of

misclassifications in the minority class tended to increase

(relatively many false positives in Brown Swiss, false neg-

atives in Fleckvieh). This can however be compensated

by optimised genotyping strategies combined with geno-

type imputation techniques, which could potentially make

this a very effective and efficient tool for the identifica-

tion of carriers of any mutation or haplotype of interest

(both positive or negative) in Bos taurus. There is poten-

tial to build effective applications to be used by breeders

and farmers (e.g. the Zanardi pipeline [57]). The presented

procedure could in principle be extended to any other

diploid organism, for agriculture applications in farm ani-

mals, crops and trees, and for medical applications in

humans.
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