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Abstract Spectral analysis methods were used for detec-
tion of mineralogical features on a set of Enhanced
Thematic Mapper Plus data of Behabad zone, central Iran.
Several indicative minerals for hydrothermal alterations
were identified in the study area. The spectra of unknowns
were determined by comparing to USGS mineral spectral
library. Different pre-processings and processings were
performed to achieve the highest possible accuracy. These
are the minimum noise fraction, the pixel purity index
analysis, spectral feature fitting, spectral angle mapper and
binary encoding. The results of spectral analysis, as a map
of minerals abundances, along with the results of other
Image processing methods such as least square fit, and
Crosta method were integrated within ArcGIS Software to
achive a potential map of hydrothermal alterations. The
minerals: allanite, magnetite, alunite, clay minerals, and
muscovite were therefore detected and mapped in this
study. The detected alterations here highly match to the mineral
concentrations which are formerly found and measured in the
study area that emphasizes the reliability of the applied method.
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Introduction

A diversity of previous researches has proved the reliability
of multispectral data analysis in the field of alteration
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detection. Among them, Landsat data are important because
of their broad coverage and popularity. On the other hand,
Improvements in design of sensors and precise spectrom-
eters helped researchers to measure different laboratory
spectra. This advances spectral analysis as a quantitative
method for applied remote sensing.

The foundation for quantitative analysis of remote sensing
data through spectral analysis is reflectance spectroscopy.

Reflectance is generally defined as the ratio of the intensity
of the electromagnetic radiation scattered from a surface to the
intensity of the radiation incident upon it. When measured as a
function of wavelength, reflectance spectra exhibit specific
albedo, continuum, and absorption features which are a
function of material properties of the surface measured. The
absorption features are related to the chemical composition
and mineralogy of the surface, while the continuum and
overall albedo are a function of nonselective absorption and
scattering as well as broad wavelength selective absorption
(Rencz 1999).

Spectral analysis, one of the most advanced remote sensing
techniques, were used as a possible means of identifying the
mineralogy of the clay fractions in the Kuchuk, Izmir, Turkey.
Different spectral processes were used to execute the
prospective spectral analyses (Altinbas et al. 2005).

Spectroscopy by satellite images has many new and exciting
applications. Areas such as agriculture, forestry, geology and
many others have great potential for new research advances
using this technology (Islam et al. 2004)

Economic mineralization is often occurred by fluid
processes that substantially alter the mineralogy and chemis-
try of the host rocks. This alteration can produce distinctive
assemblages of minerals that vary according to the location,
degree and longevity of those flow processes. When exposed
to the surface of the Earth this alteration can sometimes be
mapped at a zonal pattern (Ferrier et al. 2001). By using
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remote sensing techniques, these zones can be detected in a
regional scale.

This study aims to detect and map alterations indicated
by mineral such as allanite, magnetite, jarosite, goethite,
clay minerals and muscovite using spectral analysis. Least
square fit (LS-Fit) and Crosta methods were also performed
to achieve better accuracy along with spectral analysis.

The outcomes of above mentioned methods were integrat-
ed in ArcGIS Software to verify the accuracy of the results
using the formerly done field observations. The high
coinciding to the places of the measured mineral concen-
trations illuminates the potential of Enhanced Thematic
Mapper Plus (ETM+) satellite imagery data to map spectral
signatures associated with the hydrothermal alterations.

Geology of study area

The study area (the Behabad zone) is located in the province of
Yazd, east of Yazd city and in the central Iranian continental
terrains, as part of the larger Alpine-Himalayan orogenic
system. It is located between 56° 00’ and 56° 30’ E and
between 31° 30" and 32° 00" N. This zone is extended from
Poshte-Badam block in the west to the Tabas block in the east
exposing a faulted facies like them. The Behabad covered by
cenozoic alluvial including interbeddings of thin clay and salts.

ETM+ imagery data

The launch of Landsat 7 on April 15, 1999 continued the series
of moderate resolution. The ETM+ sensor is the imaging
payload on the Landsat 7 spacecraft. It uses the whiskbroom
scanner architecture common to the Thematic Mapper (TM)
sensor family, also flown on Landsats 4 and 5, with several
evolutionary refinements including the addition of a 15-meter
resolution panchromatic band and a higher resolution (60 m)
thermal band (Markham et al. 2008). One of the improvements
of the ETM+ instrument over the previous TM one, for
enhancing radiometric precision, and consequently for better
land-cover discrimination, is its capability to scan in either a
low or highgain state. Gain is denoted as an increase in signal
power during its transmission from one point to another in
order to maximize the radiometric resolution (8 bits in the
case of the ETM+) without saturating the detectors (whose
digital number (DN) maximum is 255) (Karnieli et al. 2004).

Methods

Applying preprocessing is necessary for image processing,
clarity improving of image, and removing of some systemat-
ically errors. Preprocessing requires to prepare high quality data
for analysis purposes then performed on data(Oskouei and
Busch 2008).
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To this end, at the beginning of the path, radiance correlation
by ENVI4.2 software which is essential for multispectral
images, was implemented. Then, principal component analysis
transform (PCA) was applied to estimating the virtual
dimensionality in order to reduce the data volume and also
minimum noise fraction (MNF) to separate the noise and signal
in data. Different classes or endmembers were then determined
by n-dimensional visualizer and the minerals having best
match to the spectra of endmembers were distinguished using
spectral feature fitting (SFF) by comparing with the USGS
mineral spectral library. The results of LS-Fit and Crosta
methods were used for better recognition of alterations in the
region as well. Five minerals were successfully identified in
the study area. The outcomes of above mentioned processing
were integrated in ArcGIS desktop as data layers to achieve a
comprehensive potential map for the study area.

LS-Fit method

Both LS-Fit and Crosta methods were used to map spectral
signatures of hydrothermal alterations (i.e. clay minerals
and iron oxides). LS-Fit method performs a linear band
prediction using a least squares fitting technique. It is used
to find regions of anomalous spectral response (e.g. altered
clay minerals and Iron oxides) in a data set. It calculates the
covariance of the input data and uses it to predict the
selected band as a linear combination of the predictor bands
(Haroni and Lavafan 2007) (Fig. 2).

Figure 1 illustrates an output image of the LS-Fit model
indicating the distribution of clay alterations as dark pixels.
This map was created by using all the six visible and short
wave infrared bands as the input and band 7 as the modelled
band. This method was applied to find the Fe-oxidations,
because it is usually associated with hydrothermal alteration. In
this case, since the ferrous Fe oxides show an absorption
feature across band 3, this band was therefore used as a
model band to map iron oxides (Haroni and Lavafan
2007).

In this part, we mapped hematite, clay and goethite by
using residual band 3, residual band 7 and residual band 1
(Fig. 3). The dark pixels indicate abovementioned minerals
in these images (Yetkin et al. 2004).

Here, it is important to use visible and IR bands to
calculate the residuals of these bands.

Crosta method

The PCA is a multivariate statistical technique that selects
uncorrelated linear combinations (eigenvector loadings) of
variables in such a way that each successively extracted linear
combination or principal component (PC) has a smaller
variance (Singh and Harrison 1985). The main aim of PC
analysis is to remove redundancy in multispectral data.
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Fig. 1 Ls-Fit image of Behabad area (SWIR-b7 as the modelled
band) showing clay alterations as dark pixels
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PCA is widely used for mapping of alteration in metal-
logenic provinces (Abrams et al. 1997; Kaufman 1988;
Loughlin 1991; Bennett et al. 1993; Tangestani and Moore
2001).
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Fig. 2 Ls-Fit image of Behabad area (SWIR-b3 as the modelled
band) showing hematite alterations as dark pixels
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Fig. 3 Ls-Fit image of Behabad area (SWIR-bl as the modelled
band) showing Goethite alterations as dark pixels

Q
— —

Crosta technique is also known as feature oriented principal
component selection. Through the analysis of the eigenvector
values it allows identification of the principal components that
contain spectral information about specific minerals, as well as
the contribution of each of the original bands to the components
in relation to the spectral response of the materials of interest
(Figs. 2 and 3). This technique indicates whether the materials
are represented a bright or dark pixels in the principal
components according to the magnitude and sign of the
eigenvector loadings. This technique can be applied on four
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Fig. 4 Reflectance spectra of some common clay
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Fig. 5 Spectral reflectance curves for jarosite, hematite and goetite
showing sharp fall off in reflectance in the UV-blue region due to the
charge-transfer effect

bands of ETM+ data (Crosta and Moore 1989; R-Armenta
and Prol-Ledesma 1998).

Hydroxyl-bearing minerals form the most widespread
product of alteration. An abundance of clays and sheet
silicates, which contain Al-OH and Mg—OH bearing
minerals and hydroxides in the alteration zones, implies
that absorption bands in the 2.1-2.4 um range (Band7) due
to molecular vibration processes becoming very prominent
(Fig. 4). At the same time they have a very high reflectance
in Band 5; therefore, a ratio of Band5/Band7 would yield
very high values for altered zones comprising dominantly
hydroxyl-bearing minerals. This characteristic of phyllosi-
licates has been used in numerous mineral exploration
investigations (Ranjbaran et al. 2004).

Iron oxide is quite a common constituent of alteration
zones associated with hydrothermal sulphide deposits. The
presence of iron oxide, due to the charge-transfer effect
(Fig. 5), leads to strong absorption in the UV-blue region.
According to Fig. 5, iron oxide-bearing minerals can be
detected by the Band3/Band1 ratio. This ratio would yield
very high values for iron oxide-bearing areas. Surface
weathering on most of hydrothermal sulphide deposits
causes the formation of iron oxide-bearing minerals.

Therefore, this spectral characteristic has been exten-
sively applied in exploration of hydrothermal alterations
(Ranjbaran et al. 2004).

Table 1 Eigenvalues calculated for principal components of data for
OH minerals
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Fig. 6 This image is obtained by using the eigenvector loadings of
PC4. The hydroxyl image shows the altered areas in bright pixels

The principal component transformation (eigenvectors
and eigenvalues) described in Table 1, is performed by
using four ETM+ bands as input bands (bands 1, 4, 5 and
7). The image of PC4 (Fig. 6), indicates that the clay minerals
have absorption in band 7 and Reflection in band 5.
Therefore, it is expected that these bands have higher
loadings of through PC analysis, but with opposite sign.
PC4 has, then, a negative contribution of band 5 and positive
contribution of band 7. Therefore, pixels that have hydroxyl
minerals will be darker in the final hydroxyl image. But in
order to show the areas with hydroxyl minerals in bright
pixels an inverse of this PC is obtained by using PC4.

The same technique is used on 4 Bands (Bands 1, 3, 4
and 5) to enhance iron oxides.

According to reflectance of iron oxides in Fig. 5, these
minerals have absorption feature in band 3 and strong
reflection in bandl. These two bands have, therefore,
higher loadings through PC analysis, but again with
opposite sign, and the pixels with more abundances of iron
oxides minerals will be darker in the final image. In order to

Table 2 Eigenvalues calculated for principal components of data for
Fe oxides minerals

Eigenvector ~ Bandl Band4 Band5 Band7 Eigenvector ~ Bandl Band3 Band4 Band5

Pcl 0.470182 0.314566 0.585715 0.580444 pel 0.51048 0.503134 0.338327 0.609754
pc2 0.837168 0.120692  —0.44441 —0.29511 pc2 0.649948 0.231668  —0.02125 —0.7235
pc3 0.174953  —0.79529 —-0.23796 0.529407 pe3 0.505303  —0.46789 —0.64908 0.323184
pc4 0.217877  —0.50397 0.634678  —0.54381 pc4 0.248287  —0.68867 0.681013  -0.01748
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Fig. 7 This image is obtained by using the eigenvector loadings of PC3
to enhance iron oxide. The bright pixels are the areas with iron oxide

show the areas with Iron oxides minerals in bright pixels,
an inverse of this PC is obtained by using PC3. The results
of principal component analysis are illustrated in Table 2
and Fig. 7 is the image of PC3.

Minimum noise fraction

MNF rotation is used to show the variation between bands
in an image. This is a statistical method which works out
differences in an image based on pixel DNs in various
bands (Kalinowski and Oliver 2004). This is to recognize
the differences rather than the similarities between bands.
The MNF rotation transforms is used to determine the
inherent dimensionality of image to segregate noise in the
data as well as to reduce the computational requirements for
subsequent processing. The data space can be divided into
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Fig. 8 Noise segregation plot

56°30'E

Fig. 9 MNF band 1

two parts: one part associates with large eigenvalues and
coherent eigen images, and a complementary part with
near-unity eigenvalues and noise-dominated images. By
using only the coherent portions, the noise is separated
from the data, thus improving spectral processing results.

The MNF eigenvalues decrease sequentially by band as
shown in Fig. 8. It illustrates how noise is segregated in the
last MNF bands. The decrease in spatial coherency by band
in the resultant MNF image is shown in Figs. 9 and 10.

Pixel purity index

The pixel purity index (PPI) function finds the most
spectrally pure or “extreme” pixels in multispectral and
hyperspectral data.The extreme pixels correspond to the
materials with spectra that combine linearly to produce all
of the spectra in the image. The PPI was computed by using

Fig. 10 MNF band 6
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Fig. 11 PPI index

projections of n-dimensional scatter plots to 2-D space and
marking the extreme pixels in each projection. The extreme
pixels in each projection were recorded and the total
number of times each pixel was marked as extreme was
noted. The output is an image (the PPI image) in which the
DN of each pixel in the image corresponds to the number of
times that pixel was recorded as extreme(Altinbas et al.
2005). Bright pixels in the image, therefore, show the
spatial location of spectral endmembers. A threshold is used

Fig. 12 Classes of the selected a

to select several thousands of pure pixels for further analysis, and
then, the number of pixels to be examined decreases significantly
(Fig. 11). According to the diagram resulted by the PPI analysis
in Fig. 11, the total extreme pixels indicated in the image is
equal to 9,553 by 4,000 iterations and threshold of 2.5.

N-Dimensional visualization and endmember extraction

The n-D visualization was used in conjunction with the
MNF and PPI tools to locate, identify, and cluster the
purest pixels and the most extreme spectral responses in
the data set. If spectral signatures are recorded properly
and the curve shape is accurate, they could be used for
remote sensing applications(Altinbas et al. 2005). The
coordination of the points in n-d space consists of
“n”values that are simply the spectral radiance or
reflectance values in each band for a given pixel. The
distributions of these points in n-d space were used to
estimate the number of spectral endmembers. Five pure
spectral signatures are then extracted and plotted in an n-D
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Table 3 Weighting methods and mineral type/score of the extracted
spectra

Weighting method (Score 0-1.0)

Spectra  SAM SFF BE
classes

Mineral Score  Mineral Score  Mineral Score
1 - 0 hematite 0.997  hematit 0.899
2 - 0 Allanite 0.937  Allanite 0.617
3 - 0 Jarosite 1 Jarosite 0.997
4 — 0 muscovite 1 muscovit  0.999
5 — 0 Goethite 0.993  Goethit 0.714

visualizer. The spectral profiles of the selected endmem-
bers are shown in Fig. 12.

Determination of unknown spectra

Spectral analyses and consequently mineral identification
could be obtained by matching the unknown spectra to
pre-defined (library) spectra. We used the USGS mineral
spectral library as the reference spectra and spectral
angle mapper, SFF and binary encoding as matching
methods for this comparison. The minerals with highest
spectral fitting to the unknown profiles are illustrated in
Table 3 along with fitting score (0.0 to 1.0) for each
method.

Mapping of endmembers

Determination of abundances of detected minerals in the
study scene was performed using matched filtering (MF)
unmixing method.

Matched Filtering maximizes the spectral response of a
known endmember and suppresses the response of the
composite unknown background, and then computes
distribution of each endmember separately. This method
does not, therefore, require knowledge of all the endmem-
bers within the image. MF results are grey scale images
with values from O tol, where 1 means perfect match(Adeli
et al. 2008). The dataset has been unmixed by MF to
produce abundances images of detected alteration minerals.

Data integration

GIS can easily produce Mineral Potential Maps and integrates
the results of different investigations such as geological,
geophysical, and geochemical studies. Using a powerful
method for weighting of the information, GIS can provide a
better prediction on the potential of mineralization under the
ground (Hosseinali and Alesheikh 2008).

In this section we integrated all data layer resulted by
remote sensing processes in ArcGIS Software in order to
determin most possible alteration zones in the study area.

The basic pre-requisite for Mineral Potential Maps
generation is the determination of weights and rating values
representing the relative importance of factors and their
categories (Haroni and Hale 2001).

Determining the relative importance of information is
called map layer weighting. In general, each layer of
information includes some sub-classes. The importance of
sub-classes has to be determined before assigning weights
to the layers. This procedure is called calibration and the
weights are assigned to the classes are called rating. There
are two main methods for weighting the information layers;
data-driven and knowledge-driven. In data-driven methods
(e.g. Weight of Evidence (WOE)), the importance of data is
determined by using data itself while in knowledge-driven
methods, an expert or a group of experts perform this task
(Hosseinali and Alesheikh 2008).

A set of processes is needed to integrate the input layers
properly. The layers were therefore reclassified in the same
range (gray scale) and WOE method was used here for
weighing each layer and its sub-classes according to their
credibility. The factor of Iron oxides is computed by
overlaying of PC3 of the Crosta method and residual band3
and bandl of the LS-Fit method and MFband5 and
MFbandl of the rule image of spectral analysis. The OH
bearing minerals were indicated by overlaying of residual

S56°00°E 56" 100°E

36°200°E

31°50°0"N-

31°400"N+

31°300'N

0 S 0w 0 30 40

=l — ———  Kdamesers

Fig. 13 Results of data integration in a GIS environment, showing the
alteration zones and Pb-Zn index in Behabad zone
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band7 of LS-Fit and PC4 of the Crosta method and
MFband4 of the rule image. MFband2 (epidote) and
MFband3 (jarosite) were considered as two other indicative
factor, and a potential map was then produced by
integration of this four layers. As shown in Fig. 13 the
white zones are most possible alterations that coincide to
the Zn-Pb mineralization recognized previously in the study
area. This area, therefore, has suitable potential for new
explorationary targets.

Conclusion

The use of ETM+ in the early stages of mineral exploration
was very successful for recognition of the hydrothermal
alterations. Detection of hydroxyl and iron oxide minerals
implied satisfactory results in the Behabad zone, Iran. In
this reaserch, the performance of spectral analysis was
investigated for multispectral datasets. According to the
results of this study, this method has reliable functionality
in the case of ETM data. Additional information, such as
Crosta or LS-Fit methods, however, can help better
recognition of alterations. In the term of spectral matching
methods, SFF has the best accuracy and reliable results.
Integrating data layers in ArcGIS improves the accuracy of
results by the use of all evidences. In this paper, we applied
weight of evidence as a data-driven method, for this
prominence is given to each layer, regarding its importance
and relation to the study area. The WOE was suitable
method for overlaying because the resultant alteration map
has a good correlation with the location of the mineraliza-
tions in Behabad area according to geological map prepared
by Geological Survey of Iran (GSI) (Mahdavi et al. 1996).
The locations of three known concentrations are marked on
the Fig. 13. These are Kuh-e-Mousa in the northwest,
Zaghou in the central part, and Kuh-e-Kamar-e-Saylou in
the southeast of the study area that all of them are occurred
along the behabad fault that has been identified before
(Mahdavi et al. 1996).

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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