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Abstract -- We propose using spectral analysis to identify nor-

mal TCP traffic so that it will not be dropped or rate-limited in

defense against denial of service (DoS) attacks. The approach can

reduce false positives of attacker identification schemes and thus

decrease the associated unnecessary slowdown or stoppage of

legitimate traffic. For the spectral analysis, we use the number of

packet arrivals of a flow in fixed-length time intervals as the sig-

nal. We then estimate the power spectral density of the signal, in

which information of periodicity, or lack thereof, in the signal

reveals itself. A normal TCP flow should exhibit strong periodic-

ity around its round-trip time in both flow directions, whereas an

attack flow usually does not. We validate the effectiveness of the

approach with simulation and trace analysis. We argue that the

approach complements existing DoS defense mechanisms that

focus on identifying attack traffic.

I.  INTRODUCTION

In recent years DoS attacks have become one of the most

serious security threats to the Internet. This is because they

may result in massive service disruptions and also because

they have proven to be difficult to defend against [6]. These

attacks are attempts by attackers to deny access of legitimate

users to network services. Though it is possible to exploit soft-

ware vulnerabilities such as buffer overflow, DoS attacks are

usually achieved by continually and excessively consuming

finite resources that are necessary to provide the services, such

as link bandwidth, server CPU processing power, or memory

storage [5].

A general networking approach to mitigate DoS attacks is to

identify and rate-limit attack traffic, preferably at points as

close to sources as possible, in order to reduce the collateral

damage. However, the problem of identifying attack traffic is

generally difficult because attackers can manipulate their traf-

fic and packets to defeat detection. 

In this paper we describe a novel use of spectral analysis in

identifying normal TCP traffic and show how this new method

can complement existing DoS defense mechanisms that focus

on identifying attack traffic. More specifically, the method

exploits the fact that normal TCP flows must exhibit periodic-

ity in packet transport associated with round-trip times. Based

on this fact it is possible for the method to identify normal TCP

traffic reliably. After other DoS defense methods such as those

in [8] have identified certain traffic aggregates as candidates

for attack traffic, our new spectral analysis based method can

rule out those candidates which are deemed to be normal TCP

traffic. Thus our method can help reduce the impact of false

positives of these other methods.

The rest of this paper is organized as follows. In Section II,

we empirically establish the relationships between various

packet processes and the corresponding power spectral densi-

ties. We go on to validate our concept of spectral analysis

based identification of TCP traffic, using simulation and traces

in Section III and IV. We describe a possible way to integrate

our method into existing DoS defense mechanisms in Section

V. In Section VI, we discuss limitations and potential issues of

our method, based on our findings and the experience obtained

from simulations and trace analysis. We compare our work

with those of other researchers in Section VII and conclude

this work in Section VIII.

II.  POWER SPECTRAL DENSITY OF PACKET PROCESS

We first review basic properties of TCP and Power Spectral

Density (PSD) and then give several examples illustrating how

PSD can be used to discover periodicity in a packet process.

A.  Background

TCP [12], the underlying protocol used by the majority of

the traffic on today’s Internet, is a sliding-window based,

acknowledgement (ACK) driven transport protocol. The win-

dow size of a TCP flow limits the number of in-flight packets

it can have in the network. The window size is determined by

the advertised window size of the receiver and the estimated

congestion level of the network. Packet transmission of TCP

can be characterized by the packet conservation principle [9].

According to this principle, every arriving data packet at the

receiver allows the departure of an ACK packet, and every

arriving ACK packet at the sender enables the injection of a

new data packet into the network. Consecutive packets within

a window are sent out in a bursty manner, constrained only by

the transmission time of the bottleneck link.

A consequence of the packet conservation principle is that

TCP flows exhibit periodicity. By periodicity, we mean that, if

we see a TCP packet at any point in the network, then chances

are that after one round-trip time (RTT), we will see another

packet belonging to the same TCP flow passing through the

same point.

We consider a random process , where

 is a constant time interval, N is the set of positive integers,

and for each t, X(t) is a random variable. Here X(t) represents

the number of packet arrivals for a TCP flow in (t - , t]. We

refer to this random process as the packet process in the rest of

this paper. 

To study the periodicity embedded in the packet process

, we use its autocorrelation function:

X t( ) t, n∆ n N∈,={ }
∆

∆

X t( ) t, n∆ n N∈,={ }

Rxx τ t,( ) E X t( )X t τ+( )[ ]=
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where  captures the correlation of the packet process

and itself at lag . We assume that the packet process is (wide-

sense) stationary. Thus we can drop the dependence of  on

t. 

To compute the periodicity embedded in the packet process

amounts is equal to finding the maxima of . In practice, it is

often computationally more efficient to find periodicity in the

frequency domain using the Power Spectral Density (PSD).

The PSD function of the packet process is the Discrete Fourier

Transform of its autocorrelation function:

In the absence of a complete mathematical description of the

random process, one often resorts to PSD estimators, instead

of the true PSD, to discover periodicity from realizations

(measured signals) of the process. Periodogram is a commonly

used PSD estimate technique [1], which captures the “power”

that a signal contains at a particular frequency. Here power

means the strength of periodicity at the corresponding period.

Traffic signals are noisy due to randomness introduced by

factors such as queueing delay, user think time, etc. Raw peri-

odogram in itself is an inconsistent estimator of PSD: if we

compute periodogram of several realizations of a same random

process, we will often end up with very different spectrum esti-

mates. To reduce the estimate fluctuation, we use Welch’s

averaged, modified periodogram method to compute PSD esti-

mates [13].

B.  Illustrative Examples

We present some simple examples to illustrate the informa-

tion one can obtain from PSD. We first consider Poisson pro-

cesses and processes with heavy tail distributions. Poisson

processes are commonly used to model packet arrival time in

traditional queueing theory, whereas heavy-tailed processes

are believed to be a more accurate model for Internet traffic in

recent literature. Then we introduce periodicity into packet

processes and show how periodicity reveals itself in the result-

ing PSD estimates. Furthermore, the corresponding frequency

domain feature is salient in the face of limited superposition of

similar processes.

We first look at a Poisson packet process formed by count-

ing the number of arrivals in each of the 10 ms bins, with the

inter-arrival times independently drawn from an exponential

distribution, and with mean arrival rate equal to 200 arrivals

per second. By applying Welch’s method to obtain a PSD esti-

mate, we can show both a realization of the packet process and

its PSD estimate in Fig. 1. The resulting PSD estimate has a

rather flat power distribution over all frequencies, which corre-

sponds to that of a white noise process.

In the second example, we use a similar packet process, but

this time the inter-arrival times are drawn from a Pareto distri-

bution. Recall that the probability density function of a Pareto

distribution is:

where  controls the tail behavior of the distribution. For

 the distribution has a finite mean but infinite vari-

ance, resulting in a slowly decaying autocorrelation function

and thus long-range dependence [10]. In the example we use

. Fig. 2 shows that the resulting PSD esti-

mate has more power at low frequencies than in Fig. 1.

We introduce periodicity into the packet process in the fol-

lowing examples by generating deterministic arrivals inter-

leaved with probabilistic arrivals. In the third example,

probabilistic arrivals have exponentially distributed inter-

arrival times and each of them further triggers a deterministic

arrival after 130 ms. In Fig. 3 we see how the resulting PSD

estimate reveals this periodicity: it has peaks at the integral

multiples of a fundamental frequency approximately at 7.7 Hz,

which converts to 130 ms and agrees with what we have set

forth. The harmonics do not exhibit a decaying envelope as

seen in most band-limited signals, because the probabilistic

arrivals form a Gaussian-like process and thus have a flat PSD.

In the last example, we show periodicity is preserved under

small degrees of spatial superposition and small perturbations

in temporal displacement. More specifically, instead of trigger-

ing a new arrival exactly 130 ms later, now the periods are

drawn from a uniform distribution in  ms. Fig. 4

shows that the resulting PSD estimate of superposition of 16

processes still exhibits periodicity, though the peaks are lower

compared with that of one single process in Fig. 3, due to small

Rxx τ t,( )
τ
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Fig. 1.  A realization (left) of a Poisson packet process with exponential

inter-arrival times and its associated PSD estimate (right), in which power is

evenly spread across all frequencies due to lack of periodicity
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Fig. 2. A realization (left) of a heavy-tailed packet process with Pareto inter-

arrival times and its associated PSD estimate (right): the PSD contains more

power at low frequencies, compared with Fig. 1
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variations in periodicity.

III.  NETWORK SIMULATIONS OF THE SPECTRAL ANALYSIS 

BASED APPROACH

In this section, we use simulation to validate our idea of

using spectral analysis to identify TCP traffic. We use a net-

work whose topology is a binary tree. The binary tree topology

is deliberately chosen to help gain insights into the frequency

domain behavior of aggregates of TCP flows, as well as to find

limitations of this spectral analysis based technique.

As depicted in Figure 5, the simulated network is structured

as a binary tree of depth d, which makes it easy to investigate

how different levels of aggregation affect periodicity. For illus-

trative purposes, we set d = 10 in the following description.

Node S0 is the traffic sink, which sits behind a 100 Mbps link.

All other links are 1 Gbps. All internal links L1 through L511

have a propagation delay of 10 ms, whereas leaf links L512

through L1023 have propagation delays uniformly distributed

in the range between 10 ms and 20 ms.   This makes the RTTs

between the sink node and leaf nodes uniformly distributed in

the range between 200 ms and 220 ms. At each link there is a

750-packet Random Early Detection (RED) queue [3]. RED

parameters are set as follows: minimum threshold set to 125

packets, maximum threshold set to 375 packets, gentle_ bit set.

The attack traffic, from node S513 to node S0, is modeled

using a constant bit rate UDP packet process with randomized

inter-packet times and an average bit rate of 10 Mbps. There

are long FTP sessions between all other leaf nodes, S513

through S1023, and the sink node. All packets contain 1000

bytes. The configuration allows the pipes, along with the

queue in front of the bottleneck link, to hold approximately

five to six packets for each TCP flow. In the simulation, we

aim to validate that large-volume TCP flows exhibit periodic-

ity around RTT. Thus, we deliberately make TCP flows operat-

ing in congestion avoidance phase without experiencing many

retransmission timeouts (RTO). In real traffic, however, some

of the TCP flows could experience quite a number of RTOs

from time to time, but such flows are unlikely to pose serious

threats in terms of bandwidth usage. We further discuss the

issues on timeouts in Section VI.

Fig. 6 shows two typical PSD estimates of TCP packet

arrival processes. TCP flows show strong periodicity, for the

same reasons as we have seen in the examples in Section II.

The PSD estimate has peaks at the integral multiples of a fun-

damental frequency around 4.7 Hz, which corresponds to a

period of 210 ms in time domain, since the time resolution is

also 10 ms. Also note that periodicity is preserved after aggre-

gating 256 similar flows, though the power gets spread out as

the degree of statistical multiplexing increases.

Fig. 7 shows the power at the first peak in the PSD estimates

of TCP aggregates measured along the S2, S4, S8,...,S256 path.

As we have pointed out, the height of the first peak decreases

as level of statistical multiplexing in an aggregate of TCP

flows increases. Another factor that affects the height of the

first peak is whether the aggregate has been contaminated by

attack flows. At places near the source of the attack, there is

little power under the fundamental frequency, because the ape-

riodic attack flows have stronger signal strength than legiti-

Fig. 3. A realization (left) of a packet process with exponential inter-arrival

times mixed with deterministic arrivals and its associated PSD estimate

(right): the first peak is located at the frequency corressponding to the time

lag of probabilistic arrivals and the triggered deterministic arrivals
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Fig. 4. The superposition of 16 realizations (left) of a packet process with

Pareto inter-arrival times mixed with slightly perturbed deterministic arrivals

and its associated PSD estimate (right): note that the PSD has lower peaks

due to superposition and RTT variation, as well as a decaying envelope, com-

pared with that in Fig. 3, due to long-range dependence
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Fig. 5. The topology of the simulation, in which the attack flow is from the

leftmost leaf node, whereas legitimate traffic comes from the rest of the leaf

nodes

Fig. 6. The PSD estimates for aggregates consisting of a single TCP flow at

S513 (left) and 128 TCP flows at S5 (right): the height of the peak at funda-

mental frequency decrease as the level of aggregation increases

0 5 10 15 20 25
−50

−40

−30

−20

−10

0

Frequency (Hz)

P
o
w

e
r 

d
e
n
s
it
y
 (

d
B

)

0 5 10 15 20 25
−50

−40

−30

−20

−10

0

Frequency (Hz)

P
o
w

e
r 

d
e
n
s
it
y
 (

d
B

)



mate TCP flows. As we move closer to the victim, the signal

strength of TCP flows gets stronger, and hence the increasing

trend. At the node where there are 127 TCP flows, the effect of

statistical multiplexing starts to dominate, so we see a decreas-

ing trend after we have more than 127 flows. This imposes

limitations on the level of aggregation, which is an important

implementation consideration because we need to keep per-

aggregate states, as will be addressed in Section VI.

IV.  VALIDATION USING TRACES

We further validated our method with traffic traces. The

trace files were obtained on May 6 and 7, 1999, at a 100Mbps

link that connected the Harvard Faculty of Arts and Sciences

to the rest of the campus.

We extract connection information for TCP flows from trace

files using tcptrace [11]. The traces show that more than 66%

of the packets are carried by flows that last longer than 40 sec-

onds. This length of time appears to be sufficient for spectral

analysis to identify TCP traffic. Furthermore, the variation in

RTTs from one trip to another is quite small: 88% of the flows

have relative standard deviation of less than 50%, as shown in

the cumulative probability function of relative standard devia-

tion in Fig. 9. Note that the tcptrace uses the time difference

between a TCP data segment and its corresponding ACK to

calculate RTT, so that the RTTs reported include delay at end-

hosts. Thus, the measured variation in RTTs is often an overes-

timate.

We use simple heuristics to find the power at fundamental

frequency: out of the highest five peaks from the PSD esti-

mate, we select the one with the lowest frequency and use it to

estimate RTT. The result and a typical PSD estimate are plot-

ted in Fig. 8, in which we can see that for most of the TCP

flows, the relative power at the fundamental frequency is

above . We use such heuristics to determine whether a

flow is TCP. The results on the Harvard trace are summarized

in Table 1.

Though the ratio of false positives and false negatives is

small, we did discover a few flows, often between sites that are

connected with high-speed short-RTT links, to have white

noise like PSD. Furthermore, though 96% of the flows have

RTT estimates smaller than 500 ms, there are cases in which

we observe stronger periodicity at time scales larger than one

second. These are usually contributed by on-off type of TCP

flows, such as web sessions with persistent TCP. Fig. 10 shows

an example of this type of flow.

V.  USAGE EXAMPLES

Our method complements the defense mechanisms proposed

in [2] and [8]. We first consider the case where attack packets

reveal true source IP addresses. This may result from wide

deployment of ingress filters, which mitigates IP spoofing. In

this case, for example, the spectral analysis techniques of this

paper can complement the Aggregate Congestion Control

(ACC) and Pushback mechanism at routers [8] in the follow-

ing way. The ACC mechanism will mark any aggregate with

high traffic volume as suspects for causing the congestion and

rate-limit them accordingly. With the aid of spectral analysis
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techniques, we can lower the volume threshold to flag flows as

suspicious more aggressively and then examine them more

closely. Once a high-volume traffic aggregate has been identi-

fied as a legitimate TCP traffic, it no longer needs to be rate-

limited, thereby reducing the impact of the false positives

caused by a more aggressive threshold.

A similar approach can work even when attack packets may

use spoofed source IP addresses. In this case, the pushback

requests will back-propagate to the points where the routers

can classify normal and attack traffic in terms of other types of

traffic sources, such as the network interfaces they come from.

As illustrated in Fig. 11, if the attacker were to randomize

source IP addresses, legitimate long traffic flows would be

contaminated only slightly, so spectral analysis techniques

would still be able to pick up these flows. The routers can clas-

sify flows according to which network interfaces they come in

and then label interfaces that do not contain enough legitimate

traffic as suspicious. Pushback requests can back-propagate to

the routers that are able to accurately differentiate attack flows

with minimum collateral damage, where preferential drops are

performed to mitigate the attacks.

VI.  DISCUSSIONS

One might argue that attackers can have attack flows to

mimic the periodicity of normal TCP flows by sending out

packets periodically. A countermeasure is to consider return

paths along with forward paths. Since TCP flows are two-way

traffic, the reverse flows must also exhibit similar periodicity.

It would be difficult for attackers to trigger flows in the reverse

direction to have the desired periodicity, unless they actually

use closed-loop protocols to launch attacks. In this case the

difficulty of launching DoS attacks has been significantly

raised, that is, attackers have to consume an amount of

resources comparable to that of a normal TCP sender.

Our spectral analysis method best deals with long TCP

flows. For short TCP flows, the effect of their statistical multi-

plexing may outweigh their intrinsic periodicity, and as a

result, our method will not be able to identify them as normal

TCP flows. Fortunately, as we have seen earlier in our traces,

short TCP flows usually represent a small percentage of the

total TCP load to a network in terms of packet counts. This

means that when there are a high percentage of packets

belonging to short TCP flows, these packets most likely

belong to attack traffic. 

For our method, short flows may also be created by TCP

timeouts which segment flows into shorter ones. Again, these

short flows resulting from TCP timeouts are not expected to

constitute a large percentage of the total TCP load.

The RTT of a TCP flow may vary slightly from trip to trip,

due to queueing delay variations. The sampling period has to

be large enough to tolerate RTT fluctuation, while small

enough to make the periodicity to be observed distinguishable.

Thus, a limitation of our method is that it can not identify TCP

flows with very small RTTs. These flows generally do not pose

severe security threats because they are mostly local traffic, or

traffic between two administratively close networks. Neverthe-

less, one possible remedy on this shortcoming of our method is

to set up a list of neighboring sites and treat the traffic related

to these sites separately. Another possible remedy is to add

artificial delay at the router where we take measurements, so

that the range within which RTTs vary is relatively small.

When estimating PSD, it is possible to aggregate flows of

the same RTT, as demonstrated in Section II and III. Because

TCP flows between two networks should have the same RTTs,

it is natural to aggregate flows according to subnet prefixes,

using a similar mechanism as MULTOPS [4].

VII.  RELATED WORK

It was proposed in [7] the use of spectral analysis techniques

to study network performance, in particular, the use of wave-

lets to infer and detect the qualitative aspects of various net-

work performance problems. However the wavelet technique

is not suitable for identifying normal or attack traffic in

defense against DoS attacks because it does not have enough

resolution at the time scale of interest. Rather, the scale-local-

ization ability of wavelets is more useful for finding the quali-

tative properties of packet processes.

It was proposed in [14] a simple statistics-based mechanism

to detect TCP SYN flood attacks. The idea is to detect devia-
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Fig. 10. The arrival packet count (left) and the corresponding PSD estimate

(right) of an on-off type of TCP flow, in which stronger periodicity is found at

time scales larger than seconds
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tion from an expected balanced SYN/FIN packet ratio using a

non-parametric, cumulative sum method. However, such sim-

ple heuristics are unlikely to sustain, since the attackers can try

to fool the system by mixing their SYN and FIN packets.

VIII.  CONCLUDING REMARKS

We propose using spectral analysis techniques to identify

normal TCP flows, in order to avoid dropping packets from

legitimate TCP traffic in defense against DoS attacks. We

investigate the feasibility of the proposed method and find that

the periodicity of normal TCP traffic is preserved under rea-

sonable levels of aggregation. Combined with other volume-

based attack identification mechanisms, the result of this paper

offers an approach that can mitigate DoS attacks without hurt-

ing normal TCP traffic.
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