

USI: OF SYMBOLIC AND NUMERIC METHODS IN AN ALGORITHM FOR THE APPROXIMATION OF MULTIVARIATE FUNCTIONS*
by
David K. Kahaner and Mark B. Wells

Abstract

The calculation of a polynomial interpolant over a simplex for a given function of n variables is discussed. Polynomial manipulation is required for constructing these interpolants and matrix manipulation is necessary for evaluating them. Use of an extensible language in which various manipulations could easily be expressed greatly facilitated development of the general approximation algorithm of which this calculation is a part.

[^0]
1. INTRODUCTION

The computer is a powerful tool for performing monotonous calculations correctly, be they numeric, symbolic, or other. Indsed, there are important problems that quite naturally require manipulations of various kinds of data during calculation of their solution. Tius, an imporfant goal of computer science research today is the development and understanding of complex and useful algorithms that involve assorted manipulations. This work has historically been hampered by lack of appropriate programming languages for expression of such general algorithms. Fortran (say) is unsuited for most symbolic manipulation, while Reduce (say) is not designed for efficient nunerical manipulation. An approach to language extensibility recently pursued by various language designers [1, 3, 6] shows considerable promise in resolving this dilemma.

In this paper, we discuss aspects of a particular algorithm, namely that of finding an approximation to a real function of n variables, that uses both symbolic and numeric manipulations. Development of this algorithm was motivated in part by an actual application; it is being used in a study of the optimal design of a geothermal energy extraction plant [4]. Our experience here with the extensible language Madcap [6], in which the approximation algorithm was developed, certainly corroborates the importance of very high level, general-purpose languages for the design of involved algorithms.

2. THE PROBLEM

One is given a function of n variables f (i.c., a procedure with n input parameters). liach function evaluation is the result
of a time-consuming and inexact salculation. The function values themsclves may be of interest, but more often they arc uscful for some other purpose such as locating local extrema, plotting projections to understand relations between variables, ctc. Consequently, the specific points at which f is to be evalunted are not known in advance, but are determined by ater usc. Very often a grid is placed on the doman of intercst. the function evaluated at each grid point, and some local approximation (ofien an interpolant and usually a polynomial) is used whencver function values are necded in order to save tine. If the input function is smooth and its loman small, a regular grid is usually sufficient. But if, as is normally the case, significant structure is present the grid spacing required for resolution is too small to be practical. The problem our algorithm solves is the automatic construction of an ad, quate continuous piscewise polynrmial interpolant given a requested absolute accuracy e. The \therefore : compesition of the domain fpenerally irregular) is done with the goal of using as fow expensive function evaluations as possible.

3. TIII: NI:7HOD

The approach taken follows closcje that of an alyorithm for adajtive numerical quadrature in n dimensions which has becn developed by the authors [2]. The idea is progressively to subdivide n-space into smaller and smaller pieces until the approximation over each picce is sufficiently accurate. The strategy of subdivision adapts itself to the bchavior of the function in that fine subdirision will occur only in regions of space where the function f s difficult to approximate.

The basic unit of subdivision is the $n-s i m p l e x, ~ a ~ t r i a n g l e ~$ for $n=2$, a tetrahedron for $n=3$, etc. This cell ras chosen for two basic reasons: (1) Simplexes use function eviluations cfficiently, since if n-space is tessellated into n-simplexes then a mesh point is a vertex of ($n+1$)! simplexes whereas for n-cubes the corresponding number is only $2^{\text {n }}$. (2) lloubling the degree of polynomial approximation can make use of the sime function evaluations as subdividing the simplex, since when a simplex is subdivided into $2^{\boldsymbol{n}}$ sub:imale:cs, these subsirflexcs into 2^{n} sub-subsimplexes, ctc. to m levele, the total nuraber of mesh points is $\binom{n+2^{m}}{n}$ and this is precisely che numilec of terms in a polynorial of degrac 2^{m} in n variables.

Ke cannot delve deeply into the alporithm licre, we only discuss the construction and use of the polyonial interpolant over a simplex, simee there both symblic and numerical tools come into play.

We assume f is defined over an $n-s i m p l e x$ and wish to construct a dth degrece polynomial interpolant. for purposes of illustration, we consider $n=2$ and $d=2$. The simplex is then a triangle and six $\left[=\binom{n+d}{n}\right]$ points are required to determine the polynomial since that is lice number of monomials of degree <2 in tho independent physisal rarialiles. An efficient method of constructing this approxitation is based on a scheme of Silvester [5] whicli uses a barycentric coordinate system over the simplex and produces a polynonial in threc $\{=n+1$ b barycentric variables. The method precomputes certain basic polynomials over n gencral simplex. The jth polynominl is constructed to evaluate to 1 at the j th of six selected points
and to 0 at :he others. A simple linear combination of these basic polynomials then yields the interpolant for a given specific simplex. The six points used are, in barycentric coordinates,

$$
\left\langle c_{0} / d, c_{1} / d, c_{2} / d\right\rangle
$$

where $c=\left\langle c_{0}, c_{1}, c_{2}\right\rangle$ is a "composition" of $2[\mathrm{a} d]$ into 3/= nil] parts allowing zero parts, that is, the c_{i} are integers such that

$$
0<c_{i}<2 \text { and } d: \sum_{0<j<2} c_{i}=2 \text {. }
$$

|As mentioned corgi,-, when $d=2^{m}$, these points are vertices of the suh…subcells to level m, hence Silvester's scheme merges nicely with our "adaptive" algorithm.] Figure 1 shows the triangle, its points of evaluation for a quadratic polynomial given in baryerniric coordinates and thc basic polynomials associated with those points given in barycentric variables.

Figure 1- Polynomial Bases for ne, da?

4. SYMBOLIC. COMPUTATION

leet $P=\left\langle c_{0} / d, c_{1} / d, \ldots, c_{n} / d\right\rangle$ be one of the points at which a basic polynomial is to be calculated, that is

$$
\sum_{0<i<n} c_{i}^{d}=1 \text { and } d=\sum_{n<i<n} c_{i}
$$

for integral c_{i}. The polynomial is

$$
Q=\prod_{0<i<n} R_{i}\left(z_{i}\right)
$$

where

$$
R_{i}\left(z_{i}\right)=\frac{1}{c_{i} T} \prod_{0<k<c_{i}} d \cdot z_{i}-k
$$

Each R_{i} is a polynomial in the single distinct variable z_{i} and Q is a polynomial in the $n+1$ variable: $z_{i}, 0<i<n$. It is straightforward to verify that Q squals 1 at the point p and equals 0 at all other evaluaticn poini.

Computer calculation of Q is also straightforward provided we can do polynomial arithmetic easily. The algorithm is expressed as a procedurc in the Madcap language in lig. 2. This program rakes use of a "space" of polynomials in which polynomials are represented by tup1es of coefficients and can be manipulated with various operators. This program uses the

```
\alpha
    f: composition
    D&#c-1: d& E osisnci
    2 + variablefFBLYMGIIAL
```


Figure 2: Calculation of Interpolating Polynomial
dot multiply (-) and estiract (-) to form the linear polynomials and for constant multiplication, the small product (π) to form the univariate R's (the innermost product), and the big product ($:$) to form the multivariate Q.

Now let $p_{0}, p_{1}, \ldots, p_{v}$ be the $\binom{n+d}{n}$ evaluation points and let $Q_{0}, Q_{1}, \ldots, Q_{v-1}$ be the corresponding basis polynomials
(independent of f). The linear combination

$$
A=Q_{0} \cdot f\left(p_{0}\right)+Q_{1} \cdot f\left(p_{1}\right)+\cdots+Q_{v-1} \cdot f\left(p_{v-1}\right)
$$

is then the polynomial approximation to f over a specific simplex in barycentric variables. [This formula shows the need for a plus (+) operator in oar polynomial space. Other useful operators include subscript for picking off cocfficients and juxtaposition for evaluating a pnlynomial at a point in n-space.] This polynomial cail now be evaluated without repeating the time-consuming conputation needed t o construct it.
5. NUMIRRIC COMPUTATION

Numeric computation in the form of matrix arithmetic arises naturally in the evaluation of the polynomial interpolant, essentially for the conversion between points given in physical coordinates to points given in barycentric coordinates. Let $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ be vertices of a triangle given in physical coordinates, and $p=(x, y)$ be an arbitrary point in 2-space. The barycentric coordinates $\left\langle b_{0}, b_{1}, b_{2}\right\rangle$ of p relative to the triangle may be calculated from the relations

$$
\begin{aligned}
& b_{0} x_{0}+b_{1} x_{1}+b_{2} x_{2}=x \\
& b_{0} y_{0}+b_{1} y_{1}+b_{2} y_{2}=y
\end{aligned}
$$

and

$$
t_{0}+b_{1}+b_{2}=1 .
$$

In matrix form, this is

$$
\left\langle b_{0}, b_{1}, b_{2}\right\rangle=\langle x, y, 1\rangle \cdot T^{-1}
$$

where

$$
T=\left(\begin{array}{lll}
x_{0} & y_{0} & 1 \\
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1
\end{array}\right)
$$

Thus, to ovaluate the polynomial A at one of many points p, one first calculates the barycentric coortinates of p using matrix operations, and then substitutes these as values of the barycentric variables of A.

A program for calculatiag the point $=\left\langle b_{0}, b_{1}, \ldots, b_{n}\right\rangle$ given a physical point $X=\left\langle x_{0}, x_{1}, \ldots, x_{n-1}\right\rangle$ and the precomputed inverse to T appears in Fif. 3. This and other matrix

```
*
X: point: I_inuerse: OHfRPRIX
v}&{(x,: 0\leqi<n: 1}\rangle (0) MATR!X
B+v - T.inuerse
```

*

Figure 3: Conversion Crom Physical to Barycentric Coordinates manipulation programs make use of a space of metrices (including: vectors) with representation via tuples of tuples and the operators of multiply (•) and invert (exponentiation to - b). Thus, numeric as well as symbolic manipulation is cxpressed with natural notation.

References

[1] Dah1, O. J., Myhrhaug, B., and Nygaard, K., The jIMULA 67 Common Base Language, Publication S-22, Norwegian Computing Conter, $0 \leq 10,1970$.
[2] Kähaner, D. K. and Wells, M. B., "An Algorithm for n-dimensional Adaptive Quadruture Using Advanced Programming Techniques" (submitted for publication).
[3] Liskov, B. and Zilles, S., "Programming With Abstract Datil Types," Proceedinge of ACM SIGPIAll Conference on Very lifih Level languagen, SIGPLAN notices, Vol. 9, no. 4 (April 1974), pp. 50-59.
[4] Milora, S. L. and Tester, J. W., Geothermai Ensrgy as a Source of Electric Power, MIT Press, 1976.
[5] Silvester, P., "Symmetric Quadrature Formulae for Simplexes," Mathematics of Computation, Vol. 24, no. 109, (January 1970), pp. 95-100.
$[6]$ Hiclls, M. B. and Cornwell, F. L., "A Data Type Encapsulation Scheme Utilizing Base Language Operators," Proccedir:ps of ACR Conference on Data: Alatraction, Definition, and Structure, Salt lake City, March, 1976.

[^0]: "University of Californin, Los Alamos Scientific laboratory, Los 11 amos, Now Mexico. Nork performed under the auspices of the livision of Physical Research/Molecular Sciences of the Energy Research and Development Administration.

