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US1; OF SYhl130LIC AND NUMERIC MET}IODS IN AN ALGORITHM

FOR T1lI+ APPROXIMATION OF MULTIVARIATU FUNCTIONS*

by
.

David K. Kahaner and hiark B. Wells

Abstrnrt: The calculation of a polynomial interpoliint over—— ..-

u simplex for a given function of n variables is discussed.

Polynomial manipulation is required for constructing these

interpolants and matrix manipulation is necessary for evalu-

ating thcm. Usc of an extensible language in which various

manipulations could easily be expressed greatly facilitated

clcvclopmcnt of the general approximation algorithm of which

this calculation is a part.
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1. INTRODUCTION

The computer is a powerful tool for performing monotonous

calculations correctly, be they numeric, symbolic, or ot.hcr.

Ind~ed, there are important problems that quite naturally

require manipulations of various kinds of data during calcula-

tion of their solution. Tilus , an important goal of computer

science research today is the development and understanding

of complex and useful algorithms that involve assorted manip-

ulations. This work has historically been hampered by lFIck of

appropriate programming lan~uagcs for expression of such general

algorithms. Fortran (say) is unsuited for most symbolic manip-

ulation, while Reduce (say) is not designed for efficient numer-

ical manipulation. An approach to language extensibility

recently pursued by various language clesigncrs [1., 3, 6] shows

considerable promise in, resolving this dilemma.

In this paper, we discuss aspects of a particular algorithm,

namely that of finding an approximation to a real function of n

variables, that uses both symbolic and numeric manipulations.

l~evelopment of this algorithm was motivated in part hy fln nctu:ll

application; it is being ~]scd in a study of the optimal design

of a geothermal energy extraction plant [4]. Our exprrlcncc

here with the extensible language Madcap [G], in which the

approximation algorithm was developed, certainly corrohorntcs

the importance of very high level, general-purpose languascs for

the desifin of involved a]gcrithms.

2. THE PROBLEM

Onc is given a function of n wnriablcs f (i.e., a proccdurc

with n input parnmctcrs). I;ach function cv~luation is the result



of a time-consuming and inexact Calculation. The function

values thcmsclvcs may bc of inte:~cst, but more often they arc

useful for some other purpose such aS locating local extrcma,

plotting projections to understand relations hctween variables,

Ctc. Consequently, the specific points at which f is to hc

evaluated arc not known in advance, hut arc determined by later

USC, Very often a grid is placed on the domain of interest,

the function evaluated at cnch grid point, and some 10CU1 ap-

proximation (often [In intcrpolant and usually ii polynom~iil) is

usccl whcncvcr function values are needed in order to save time.

If the input function is smooth and its domain smll, a

rcgulnr gr?d is usually sufficient. But if, as is normally the

cnsc, sij:nificant structure is prcsrnt the grid spacin~ rrquircd

for rcso]ution is too small to he practical. The problcm our

algorithm SOIVCS is the autornntic construction of an ad~quatc

continuous pieccwisc polynomial intcrpolant given a rcqucstcd

ahsolutc accuracy c. The C;ompesition of the domain ([:cncrally

irrcgu]nr) is done with the goiIl of llsin~ as few expensive

function evaluations as possihlc.

3. Till! NI:TIIOII

The approach taken follows clo;rly that or an al~orithrn

for ildaptivr numerical qundraturc in n dimensions which has

been dcvclopcd by the authors [2] . The idea is progrcssjvcly

to subdivide n-spncc into smaller and smaller pirces until the

approximi~tion over each piccc is sufficiently accurate. I’hc

strategy of subdivision adapts itself to the bchnvior of the

function in that fine subdi.-ision will occur only in regions

of space where the function j.s difficult to approximntc.
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The basic unit of subdivision is the n-simplex, a trim~lr

for n = 2, a tctrnhcdron for n = 3, etc. This L-cll was chosun

for two tbnsic rcnsons: (1) Sinplcxcs use function cvnluations

efficiently, sincezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAif n-spcc 5s tcsscllatcd into n-simplrxcs

then a mesh point is a vertex of (m+l)! simplcxcs whcrcns

far n-cubes the corrcs~onclin~ number is only 2n. (2) IMIII 1i ng

the dcgrcc of polynomial approximation can IIUAtir usc or the s;tmc

function cvnluations as subdividing the simplex, since when n

simplex is suhdlvidcd into 2n suh”inplc:!cs, tho:;c subsi~plcx(’s

into 2n sub-subsimplcxcs, etc. to m levels, the total numbrr of

smsh points js
()

n+2m
n and this is prrciscly the numhrr of

terms in a polyno~ial of dcgrsi” 2m in n variahlcs.

We cannot delve deeply into the nl~orithm hrrc, Mr only

discuss t!~c const;-~lction nnd usc of the polyilo;)~inl intcrpolnnt

over a :,implcx, Sfiicc there both symbolic and nuncrica] tmols

come into play.

Wc assume f is defined nvcr an n-simplex nnd wish to con-

struct a dth dcgvcc polynomiu] intcrl:ol:nt. For purposes of

jl]ustrntion, wr consider n ● 2 and J ■ 2. lhc Simplex is thrn

Silvestt,r [!i] whicli uses :1 baryccntric coordinate systrm over

the sim~)lcx nnd produrcs a polynoa’inl in thrrc [= n+l] bary-

ccntric vari.lblcs. The mcthocl prccomputes ccrtnin bnsic

polynomials over n general simplex. The jth polynomial is
.

constructed to evaluate to 1 at the jth of six sclcctcd points

●
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and to O at the others. A simple linear :orohination of these

basic polymninls then yields the intcrpolant for a given specific

Sjmplcx. The six points used arc, in baryccntric coordinates,

( )co/d , Cl/d , C2M

w licrc c = (co, cl, C2) is a “composition” of 2[= d] into

3[= n+]] parts allowing zero parts, that is, the Ci arc

intc~:crs such that

IAs mentioned cnylil ‘, when d = 2m, these points arc vcrtircs of

the suh..-subcclls to level m, hmcc Silvcstcr’s scheme merges

tri;lnfilc, its points of cv;lluotion fur a qtladratic polynomial

givcll in l~;uyc~-lltric coordinates und the bnsic polynomials

associ:~rcd with those points given in baryccntric variahlcs.

{0,
o

t!,obo)
= Zpo-l)

a
(O,l.O) = 71(2Z1-’)

(o,l~2,1/2) (1/2,0,1/2) 0{0,0,,, = ?J?yf)

O(ws.laq = ‘*O?!
o{W#.o.if?) 8 ‘zQza

(0, !,0) (1/2,1/2,/0) (l,O.O) 0(0.s/?.!4) = 4*/?

!wa!!!sLm Polynomial Rnscs for n=?, d=2

4. SYMBOL]C COM’WTATION

I.ct P = ( Co/d , C1/d , s.., en/d )
‘ br onc of the points at

which a hnsic polynomial is to hc cnlculntcdo that is
.

z Ci
= 1 rind d -

O<iCn T ,E O<i<n Ci
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for integral ci . The polynomial is

QrI
m R#zi]

OCiCn

where

Ri(zil = ~
n

d“zi - k ,
i <k<c .

1

Each Ri is a polynomial in the single distinct variable Zi and

Q is a polynomial in the n + 1 variable: Zi, O < i d n . It is

straightforward to verify that Q squals 1 at the point p and

equals O at all other evaluatic:n poin-; ,

Computer calculation of Q is also straightforward provicicd

wc can do polynomial arithmetic easily. The algol”i,t]lm iS

expressed as a procedure in the }ladcap l~lnguage ill Fig, 2. This

program rakes use of ii “space” of polynomials in which polyno-

mials are represented by tuples of coefficient.fi and can b;!

man~.pulatcd with various operators. This program uscs the

a

g: COmpOSit iOn

Figure 2: Calculat.iun of lnterpolatinfi Polynomial

dot multiply (s) and sl:h!ract (-) to form the lincnr polynomials

and for constant multiplication, the small product (n] to form

the univariatc R’s (the innermost product), and the big product

[llj to form the multivuriate Q.

NOW lCt PO, PIs ..m# pv,l be the (“V) .evaluation points

and let Qos Qls .... Qv-l be the corresponding basis polynomials

.

.. ,., ,?
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(indcpcndcnt of f). The linear combination

A - Q. “f(po) + Ql ● f(pl) + ““”+ Qv-l’ f[pv-l)

is then the polynomial approximation to f over a specific

simplex in baryccntric variables. [This formula shows the need

for a plus (+) operator in o:lr polynomial space. Other useful

operators include subscript for picking off coefficients and

juxtaposition for evaluating a polynomial at a point in

n-space.] This polynomial can now hc evaluated uithout repeat-

ing the time-consuming computation needed to col]struct it.

5. NIJNKRIC COMPUTATION

Numc.ric computation in the form of matrix arithmetic

arises naturally in the evaluation of the polynomitil interpo-

lant, essentially for the conversion b~twccn points given in

physical coordinntcs to points given in barycvntric coordinates.

l~ct qpY())) (X1, Y1) , (X.2, Y2) bc vcrticcs of a triangle given

in physical coordinates, and p = (xry) be an arbitrary point

in 2-spat.c. The barycentric coordinates(b ~,1)1, h2)or p

relative to the trianglo may be calculated from the relations

bOxO
+ ‘Ixl + ‘2X2 - x

bo)’(J + blYl + ~z)’z - Y

and
‘o+ bl+b2 -1”

In matrix form, this is

(bo’bp b2)+, y, 1). T-1
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where

()
X(J Y() 1

T.
xl Y1 1

x2y21,

Thus, to ovaluatc the polynomial A at onc of many points p, onc

first calculates the baryccntric coorjinatrs of p usinp matrix

operations, and then substitutes these as va]ucs of the bary-

centric variahlcs of A.

A program for cnlcu]ating the point
(= “o’ “l’ ..0, bn

( )

)

given a physical po$nt X = XO, xl, . . . . x
n-1

:Ind Ihr prc-

computd inverse to T appears in Fic. 3. TJlis illld other matrjx

manipulation programs mnkc usc of :1 space of mrtriccs (incllldin~!

Vectors) with rcprcscntntion via tuplrs or’ ttlp]cs ilnd the oprl”-

ators of multiply (=) and invert (cxponentiation to -1). Thus ,

numeric as WCII as symbolic n:anipulation is csprcsscd wifh

natural notation.

.
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