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mediator of expression of Bcl-2 in vitro and
in vivo.

CREB appears to mediate NGF-depen-
dent neuronal survival and expression of Bcl-
2. We tested whether Bcl-2 would overcome
the proapoptotic effects of inhibition of
CREB-dependent gene expression in sympa-
thetic neurons. We introduced the A-CREB
expression construct into sympathetic neu-
rons by microinjection in the presence of
either an expression vector encoding Bcl-2 or
an empty expression vector. Expression of
A-CREB led to apoptotic death of sympathet-
ic neurons that was prevented by overexpres-
sion of Bcl-2 (Fig. 5). Taken together, our
results support a model in which NGF pro-
motes transcription of antiapoptotic factors,
such as Bcl-2, and promotes sympathetic
neuron survival through a mechanism requir-
ing CREB family transcription factors.

Note added in proof: It was recently re-
ported that CREB mediates survival of gran-
ulosa cells and cerebellar granule neurons
(17 ) and that NGF regulates Bcl-2 expression
through a p42/p44 MAPK cascade in PC12
cells (18).
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Use of the Cell Wall Precursor
Lipid II by a Pore-Forming

Peptide Antibiotic
E. Breukink,1* I. Wiedemann,2 C. van Kraaij,3 O. P. Kuipers,4

H.-G. Sahl,2 B. de Kruijff1

Resistance to antibiotics is increasing in some groups of clinically important
pathogens. For instance, high vancomycin resistance has emerged in entero-
cocci. Promising alternative antibiotics are the peptide antibiotics, abundant in
host defense systems, which kill their targets by permeabilizing the plasma
membrane. These peptides generally do not act via specific receptors and are
active in the micromolar range. Here it is shown that vancomycin and the
antibacterial peptide nisin Z use the same target: the membrane-anchored cell
wall precursor Lipid II. Nisin combines high affinity for Lipid II with its pore-
forming ability, thus causing the peptide to be highly active (in the nanomolar
range).

Nisin Z is a member of the lantibiotic family
(lanthionine-containing antibiotics) and is
produced by certain strains of Lactococcus
lactis. Because of its nontoxicity for humans
and its high bactericidal activity, it is used as

a food preservative. Nisin is posttranslation-
ally modified (Fig. 1A). Characteristic fea-
tures of nisin are the ring systems formed by
thioether bonds and the dehydrated amino
acids. Nisin shares some properties with oth-
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er pore-forming antibacterial peptides, such
as an overall positive charge and amphipath-
icity. However, the high bactericidal activity
of nisin against Gram-positive bacteria, rela-
tive to the lower activity of the antibacterial
peptides of animal origin (such as magainin),
has not been accounted for in the literature.
Elucidation of the cause of the activity dif-
ference may lead to the development of new
classes of antibiotics with high activities.

The difference in bactericidal activity be-
tween nisin and magainin is illustrated for the
Gram-positive bacterium Micrococcus flavus
in Fig. 1B. The M. flavus cells were killed by
nanomolar concentrations of nisin [minimal
inhibitory concentration (MIC) 5 3.3 nM]
(1). In contrast, magainin (2) was at least two
orders of magnitude less active than nisin,
because even at the highest peptide concen-
tration tested (0.4 mM) not all M. flavus cells
were killed.

The results of the viability assay correlate
with the ability of the peptides to permeabil-
ize the membrane of M. flavus cells (Fig. 1C).
This permeabilization caused the dissipation
of vital ion gradients such as potassium, re-
sulting in dissipation of the proton-motive
force and eventually cell death. Nisin effi-
ciently permeabilizes M. flavus membranes:
At 5 nM nisin a permeabilization effect was
detected, whereas magainin was active only
at 3 mM. However, when the two peptides
were tested with membranes composed of a
lipid extract of M. flavus, the membrane-
permeabilizing activity of nisin dropped
markedly (now active in the micromolar
range), and magainin was the more active
peptide (Fig. 1D). Similar results were ob-
tained when potassium leakage from vesicles
was measured (3), indicating that these large
differences are not a reflection of the nature
of the indicator molecule. In pure phospho-
lipid systems both peptides form short-lived
transmembrane pores, and it has been shown
using synthetic phospholipids that negatively
charged lipids play an active role in this
process (4–7 ). Thus, a membrane composed
of an isolate from a chloroform/methanol ex-
tract (containing mostly lipids and hardly any
protein), or pure synthetic phospholipids,
may lack one or more specific molecules
needed for high nisin activity.

Next we examined the effect of nisin on M.
flavus cells in the presence of vancomycin (Fig.
2). Vancomycin inhibited the membrane leak-
age activity of nisin against intact cells but did
not affect the activity of magainin. Vancomycin
kills bacteria by blocking the cell wall biosyn-
thesis by binding to the Lys-D-Ala-D-Ala motif
of the pentapeptide of the membrane-anchored
cell wall precursor Lipid II (8, 9) (inset, Fig. 2).
This suggests that Lipid II is used by nisin to

permeabilize the membrane (10). If this is the
case, then the cells should become more sensi-
tive to nisin upon increasing the Lipid II content
of their membranes. This is true for isolated
cytoplasmic membranes of both M. flavus and
Escherichia coli (Fig. 3A). Fusing Lipid II–
containing model membranes with the bacterial
membranes increased the sensitivity of both
membrane types for nisin but not for magainin.
The effect was the highest for the E. coli mem-
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Fig. 1. Activity of nisin Z and magainin toward
intact M. flavus cells and model membrane
vesicles. (A) Primary structure of nisin Z. Dha,
dehydroalanine; Dhb, dehydrobutyrine; Ala-S-
Ala, lanthionine; Abu-S-Ala, b-methyllanthi-
onine; S, the sulfur atom of the thioether bond.
(B) Activity of nisin and magainin in a cell
viability assay. Nisin (closed squares) and ma-
gainin (open squares) were added at the spe-
cific concentrations to M. flavus cells in com-
plex growth medium (18), and viability was
determined by measuring the absorbance at
600 nm as described (19). (C) Activity of nisin
and magainin toward intact M. flavus cells. The
peptide activity was measured by monitoring
the effect on the membrane potential with the
fluorescent membrane potential–sensitive probe
3,39-diethylthiodicarbocyanine iodide [DiS-C2(5)]
(20). Cells were grown until mid-log phase, har-
vested, and washed once with a buffer solution of
250 mM sucrose, 5 mM MgSO4, and 10 mM
potassium phosphate (pH 7.0), then resuspended
in the same buffer. Cells were added to the fluo-
rescence cuvette at an optical density at 600 nm
of 0.075 together with DiS-C2(5) at 1 mM. (D)
Activity of nisin and magainin toward model
membranes composed of a lipid extract from M.
flavus. The peptide activity was measured by
monitoring the leakage of carboxyfluorescein
from vesicles made from a lipid extract of M.
flavus by measuring the increase in fluorescence
due to dilution of the dye from self-quenching
concentrations as described (20). The concentra-
tion of both nisin and magainin was 2.5 mM. The
arrows in (C) and (D) mark the time point of
peptide addition.

Fig. 2. Vancomycin blocks the activity
of nisin against M. flavus cells. The ac-
tivity of the peptides was monitored as
described for Fig. 1. When present, van-
comycin was added 2 min before the
addition of nisin or magainin. Washing
the cells after treatment with vancomy-
cin gave similar results. The arrow
marks the time point of peptide addi-
tion. Inset: Schematic structure of Lipid
II with vancomycin bound to the
COOH-terminal Lys-D-Ala-D-Ala se-
quence. The structure consists of a
membrane-incorporated undecaprenyl
moiety to which the amino sugar Mur-
NAc is attached via a pyrophosphate.
To the MurNAc (M) a pentapeptide is
attached, of which the composition may slightly differ within different bacterial genera. The final
subunit of Lipid II is GlcNAc (G). Pi, phosphate.
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branes. One explanation for this effect lies in
the intrinsic low Lipid II content of E. coli,
which contains about 2000 molecules per cell
(11), whereas M. flavus contains about 105

Lipid II molecules (12).
We observed that the M. flavus membranes

were less sensitive toward nisin (by a factor 3 to
6) relative to the intact cells (13). This can be
explained by a loss of part of the Lipid II pool
during the isolation of the membrane vesicles,
which is due to the high turnover rate of Lipid
II. Because the Lipid II biosynthesis machinery
is still active, this allowed us to regenerate Lipid
II in the presence of biosynthetic precursors.
Upon regeneration of the Lipid II pool by sup-
plying the complete set of precursors, the sen-
sitivity of the isolated M. flavus membranes to
nisin increased, whereas the sensitivity for ma-
gainin was unaffected (Fig. 3B). When only
one of the uridine 59-diphosphate (UDP)–acti-
vated sugars was present, the vesicles did not
become sensitive to nisin. This can be ex-
plained from current knowledge of the Lipid II
biosynthesis pathway. Lipid II is synthesized at
the cytosolic side of the plasma membrane.
First, the UDP-activated amino sugar N-acetyl
muramic acid (MurNAc), containing a pen-
tapeptide, is attached to the undecaprenol car-
rier; then, Lipid II synthesis is completed upon
attachment of the second UDP-activated amino
sugar N-acetyl-D-glucosamine (GlcNAc). Lipid
II is transported to the exterior side of the
membrane and becomes available for binding
by nisin only when the synthesis is completed.
An additional finding was that the freeze-
thawed membranes had to be incubated at 20°C
for 1 hour to obtain the effect of the UDP-
activated sugars (3). Apparently, this is one way
to control the onset of the Lipid II synthesis.
Thus, this experimental setup could be used in
the investigation of the transport process of

Lipid II, an important step in the cell wall
biosynthesis.

These results show not only that Lipid II
functions in the activity of nisin, but also that
it appears to be the sole target of nisin (Fig.
4A). Incorporation of purified Lipid II in
small amounts (one Lipid II molecule per
1500 phospholipid molecules) to model
membrane systems composed of pure lipids
markedly increased the nisin activity, where-
as the magainin activity remained unchanged.
In the absence of Lipid II, nisin induced
leakage from this system only at concentra-
tions above 1 mM. In the presence of Lipid II,
leakage was detected at 1 nM nisin, which
suggests that nisin has high affinity for Lipid
II (14 ). The same effects of Lipid II were
present when membranes containing nega-
tively charged lipids were used (3). Because
the activity of nisin in these model systems is
in the range of the activity against intact cells,
nisin appears to use Lipid II as its sole target.
Nisin is dependent on Lipid II concentrations
in the range of 0.001 to 0.1 mol % (Fig. 4B).
This suggests that the diverse sensitivities to
nisin displayed by different bacteria are
caused by different concentrations of Lipid II
in the membrane, although, in the case of
intact cells, differences in the accessibility of
Lipid II for nisin should also be considered.

The effect of Lipid II in all tested systems
was specific for nisin, which suggests a spe-
cific interaction of Lipid II with one or more
of the structural elements of nisin. Moreover,
mutagenesis experiments with nisin showed
that relatively subtle variations in the three
NH2-terminal rings had strong influences on
the bactericidal activity of these mutants as
well as on the interaction with Lipid II–
containing membranes. For instance, a Ser3

3 Thr (S3T) mutation (actually, changing

the first lanthionine residue into a b-methyl
lanthionine) made the peptide less active by
an order of magnitude (MIC for S3T 5 39
nM, versus 3.3 nM for the wild type). Chang-
ing the thioether bond of the third ring into a
disulfide bond had even larger effects
(MIC . 60 nM). These findings suggest that
at least the NH2-terminal rings of nisin are
involved in the interaction with Lipid II (15).

The high activity of nisin (in the nanomolar
range) compared to magainin is the result of a
combination of high-affinity binding to Lipid II
and permeabilization of the plasma membrane,
resulting in cell death. In contrast to recent
reports on resistance or tolerance to vancomy-
cin (16), no resistance to nisin has been report-
ed, despite its prolonged use as a preservative
for almost 50 years. This combination of factors
makes nisin an attractive antimicrobial agent.
The insights into its mode of action uncovered
in this study can now be used as a blueprint for
the development of a new class of highly effi-
cient antibiotics.
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