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ABSTRACT--The same shot-peening treatment was applied 
to five steels with different mechanical properties. The in- 
duced residual stress profiles were analyzed using X-ray 
diffraction and incremental hole drilling (IHD). The results of 
both techniques showed that IHD can still be successfully 
used for measuring shot-peening residual stresses, even if 
these exceed the yield strength of the bulk material. Expected 
errors due to the plasticity effect are reduced by the strain 
hardening of the surface. For an assessment of the reliability 
of IHD data, strain-hardening variation was quantified by mi- 
crohardness measurements to estimate the yield strength of 
the plastified layer. All the main calculation methods for IHD 
were applied. The results were compared and discussed with 
respect to the characteristics of each method. 
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Residual stresses are present in most mechanical com- 

ponents due to production processes or service loading. Be- 

cause residual stresses can have either beneficial or detrimen- 

tal effects, the exact knowledge and control of residual stress 

state and in-depth distribution are of high practical relevance. 

The incremental hole-drilling (IHD) technique and the X- 

ray diffraction (XRD) sin2O method find broad acceptance 

among the quantitative in-depth residual stress measurement 

methods. A comparison of studies that apply both methods 

simultaneously, however, leads to quite inconsistent find- 

ings. In some cases, a relatively good agreement between 

the results of both measurement techniques is reported. L2 

On the other hand, comparable results are often found only in 

the interior of the samples; 3-6 the near-surface regions and 

strong stress gradients seem to be problematic for the hole- 

drilling method. For that reason, residual stress distributions 

obtained by the IHD method are frequently completed by ad- 

ditional XRD measurements on the surface. 7-1~ In Ref. 11, 

however, the IHD method was found to be unsuitable for ac- 

cessing residual stress gradients in the case of a deep-rolled 

aluminum alloy. 
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A systematic comparison of both methods was carried 

out in a recent survey. ]2 Observed discrepancies are often at- 

tributed to the basic shortcoming of the hole-drilling method, 

which is its limitation to residual stresses up to 60 percent 

of the material's yield strength. ~ 2- ~5 Higher residual stresses 

lead to local plastic deformations caused by the stress concen- 

tration of the drilled hole itself, which depends on the stress 

state. For the equibiaxial stress state, the stress concentra- 

tion factor of a through hole is 2, compared with even higher 

values of other stress states. As with drilling-induced plas- 

tic deformations, this so-called plasticity effect can strongly 

affect the residual stress evaluation, which assumes linear- 

elastic material behavior. An estimation of the related error 

(overestimation of residual stresses) is difficult, since the lo- 

cal yield strength of the interesting near-surface layers can 

differ significantly from the bulk material's value due to the 

prior surface treatment and the strain-hardening capacity of 

the respective material. Hardness measurements can, how- 

ever, be used to estimate the strain-hardening effect. 

In this context, the aim of the present work is to show, 

for the example of shot-peening residual stresses, in which 

cases the results of the IHD and XRD methods can be com- 

pared directly and when discrepancies may be expected. A 

uniform shot-peening treatment was applied to five steels 

with differing mechanical properties. The obtained residual 

stress gradients were systematically analyzed by both meth- 

ods. Results will be discussed with respect to their measure- 

ment principles and limitations. Concerning the hole-drilling 

results, the influence of both the plasticity effect and the resid- 

ual stress evaluation procedure will be especially considered. 

Residual stress in-depth evaluation was carried out using dif- 

ferent software: the differential method (MPA Stuttgart), t6 

the average stress method (ReStress), 15'17 the power series 

method and the integral method (H-DRILL). TM 

Estimate of the Yield Strength from Hardness Data 

Any criterion to assess the relevance of the plasticity effect 
on IHD results should take the material's strain-hardening ca- 
pacity into account to estimate the local yield strength. Ac- 
cording to Tabor, 19 "A convenient method of measuring the 

elastic limit of a material is to determine its hardness using 
a pyramidal indenter possessing a large apex angle, as in the 

Vicker's test" His theory on the hardness of metals is founded 

on experimental evidence. Tabor observed that when a metal 
is submitted to high cold working, that is, without capacity 
for subsequent work hardening, plastic flow begins when the 

mean contact pressure is given by pra =- CGr,  where c is a con- 
stant about 3 and err is a representative yield stress. 19 Based 
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on this theory, Tabor formulated an equation to estimate the 

ultimate strength of a material. Several attempts have been 

made to estimate the 0.2 percent offset yield strength. George 

et al. 20 proposed a method using the Rockwell hardness data. 

Using Vicker's and Meyer's hardness, Cahoon et aL 21 found 

an empirical equation that allows the calculation of the yield 

strength without needing to know its stress-strain curve, given 
by Cry m _  (H/3)  �9 (0.1) rn-2. In this equation, Cry is the yield 

strength, H is the Vicker's hardness and m is the Meyer's 

exponent (the strain-hardening coefficient can be related to 
this exponent by n = m - 2). 19 Cahoon et al. 21 showed 

the equation's validity in a 65S aluminum alloy and 1040 

steel subjected to various amounts of cold working. This 

empirical equation clearly shows proportionality between Oy 

and H. Consequently, if hardness varies to a certain degree, 

the yield strength should vary correspondingly. 

Residual Stress Analysis Methods 

Incrementa/ Ho/e-dri//ing Method: Princip/e, P/asticity 
Effect and Comparison of Ca/cu/ation Procedures 

The hole-drilling method 22 basically consists of machin- 

ing a small hole in the surface of the test material and mea- 

suring the surface strain relaxation due to the presence of 

the hole. 23 The theory of elasticity is used to correlate the 

strain relaxation and the residual stresses existing prior to 

hole drilling. For that reason, local yielding caused by the 

stress concentration around the hole can affect the resid- 

ual stress calculation. This effect becomes significant when 

residual stresses reach about 60 percent of the material's yield 

strength. 12-15 According to Ref. 14, for example, for resid- 

ual stresses of 70 percent yield strength, an error of 15 per- 

cent can be expected in stress calculation. An overestimation 

of 20 percent for residual stresses reaching 90 percent yield 

strength is given in Ref. 24. In Ref. 25, an error of 35 percent 

was calculated for a stress level of 95 percent yield strength. 

The measurement of in-depth nonuniform residual 

stresses requires incremental drilling. Currently, four ba- 

sically different methods are used to calculate nonuniform 

residual stresses: the integral method, 2'18,26.27 the incremen- 

tal strain method, 28 the power series method 9-9 and the aver- 

age stress method. 17 

Others 16,3~ have proposed calculation procedures that can 

mainly be considered as modifications to the methods re- 

ferred to above. In the 1950s, Kelsey 28 proposed the in- 

cremental strain method (differential method 16) to evaluate 

in-depth nonuniform residual stresses. The method is based 

on the relationship between surface strain relaxation and 

hole depth for a known uniform stress field and the corre- 
lation of these data with those obtained by drilling a hole in 

an unknown nonuniform stress field. In the 1970s, Bijak- 

Zochowski 26 pointed out that the incremental strain method 

neglects the additional strain relaxation of the stresses exist- 

ing in the previous increments, caused only by the increase in 

hole depth, and proposed the integral method. This method 
assumes that the strain relief at the material's surface is the 

accumulated result of the residual stresses originally existing 
in the zone of each successive increment along the total hole 
depth. In 1981, Schajer 29 introduced an alternative proce- 

dure called the power series method. The method assumes 

that the residual stress field can be divided into power series 

components. In general, only two power series terms can be 

used, which implies an in-depth linear stress field.18 In 1986, 

Nickola t7 introduced the average stress method, defining an 

equivalent uniform stress to take the influence of the residual 

stresses in previous increments into account. This concept is 

based on the average stress within the total hole depth, which 

produces the same total strain relief as the actual nonuniform 
stress field. 

The influence of calculation procedures on residual stress 
results has been analyzed by several authors 18,31-33 using 

the finite element method. Schajer 18 concluded that the inte- 

gral method is a good stress evaluation method when strong 

stress gradients are present. However, this method implies 

very precise measurements of relieved strains and depthsfor 

each incremental step. Calculation results are very sensitive 

to measurement errors because of propagation effects. Error 

sensitivity is proportional to the number of hole depth in- 

crements (the inverse is true for the power series method). 34 

For this reason, the integral method should be used with a 

few large depth increments. In a comparison of residual cal- 
culation procedures, Kockelmann and Schwarz 31 concluded 

that the differential method (MPA II) and the integral method 

(Ontario-Hydro 27) are the most suitable methods for the anal- 

ysis of complex residual stress states. 

The limitations of the incremental strain method and the 

average stress method have also been discussed in detail by 
Flaman et al. 33 The incremental strain method assumes that 

100 percent of each measured strain increment is caused by 

the stress in the actual drilling step. Assuming a uniform 

residual stress field, a hole diameter of D = 1.6 mm and 

seven equal drilling step sizes of Az = 0.25 mm, up to a depth 

of z / D  = 1, Flaman et al. showed that for the increment at 

z / D  = 0.625, only about 13 percent of the strain relief i s  
caused by the stress in that depth increment. In the average 

stress method, the concept of an equivalent uniform stress that 

produces the same strain increment as the real nonuniform 

stress field implies that stresses at all given depth increments 

contribute equally to the strain relief measured at the surface. 

However, residual stresses existing in the increments close 

to the surface contribute much more to the strain relaxation 
than those in deeper increments. 32,33 

All methods are limited by the decreasing sensitivity to 

stress relief at deeper increments (maximum depths up to 

about 0.35 times as deep as the mean strain gage rosette radius 
used). 18,32 

Principle of the X-ray Diffraction Method 

Residual stresses can be analyzed nondestructively by the 

XRD method, which measures lattice deformations of crys- 
talline materials, with the lattice distance of specific {hkl} 

planes as gage lengths. For a material without any residual 

stress, the lattice deformations are independent of the orien- 

tation of the diffracting {hkl} planes relative to the sample's 

surface. If the material is submitted to a stress, the lattice 

deformation becomes a function of the orientation according 

to linear elasticity. It is possible to relate the orientation- 
dependent variation of the lattice deformation to the underly- 

ing stress state. Because lattice deformations are determined, 
plane-specific X-ray elastic constants have to be used. As- 

suming the plane stress condition (due to the shallow pene- 

tration depth of X-rays in metallic materials), the so-called 

sin2~ method 35 can be used to determine the corresponding 

residual stresses of the surface of crystalline materials. 
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Materials and Experimental Procedure 

Five steels with different mechanical properties (see Ta- 

ble 1) were machined in flat plates of 12 mm thickness. The 

dimensions chosen for the samples were sufficiently large to 

avoid edge effects. 23 After grinding, all specimens were sub- 

jected to an identical shot-peening treatment. Table 2 shows 

the shot-peening parameters used. 

IHD and XRD techniques were used to characterize the 

residual stress depth distribution in the center of each sam- 

ple. For the IHD technique, high-speed drilling equipment 

(milling guide RS-200 with air turbine, Measurements Group 

Inc.) was used to create a cylindrical blind hole. This tech- 

nique is recommended because only minor drilling-induced 

plastic deformations occur and a satisfying hole shape can 

be achieved. 36 Surface strain relief was measured by a three- 

element strain gage rosette (CEA-06-062UM-120, Measure- 

ments Group Inc.), the gages being radially oriented around 

the hole at different angular positions. In depth increments 

of 0.02 mm to 0.08 mm, strain relief was measured after each 

depth increment to about 1 mm below the surface. Smaller 

steps were carried out close to the surface to access stress gra- 

dients more precisely. The typical hole diameter was about 

1.8 mm. For the residual stress evaluation, the elastic con- 

stants E -- 210000 MPa and v = 0.3 were used .  

XRD residual stress analysis was combined with the elec- 

trolytic layer removal technique to achieve residual stress 

depth profiles. Stress relaxation due to layer removal was 

not taken into account, since the affected region was small 

and no significant relaxation effects could be expected. Lat- 

tice deformations of the Fe { 211 } planes were determined 

on a conventional f2-diffractometer for 11 V-angles between 

- 4 5  deg and 45 deg using CrKct radiation. Residual stresses 

were calculated for the plain stress condition using X-ray 

elastic constants of 1/2 s2 = 5.832 x 10 -6 MPa -1 and 

Sl = -1 .272 x 10 -6 MPa -1 

Experimental Results 

The left-hand side of Fig. 1 shows typical strain relax- 

ation curves as a function of the drilling depth. The relieved 

strains are independent of the measurement direction, indicat- 

ing an equibiaxial stress state typical of shot-peening residual 

stresses. This was confirmed by the residual stress results ob- 

tained for all samples. Hence, in the following graphs, only 

one stress component will be presented, corresponding to the 

maximum principal stress value. The right-hand side of Fig. 1 

shows the respective in-depth profiles of the microhardness 

and the integral diffraction peak width. Both profiles show 

the influence of strain hardening in the near-surface layers. 

Microhardness and peak width profiles indicate maximum 

values at the surface and decrease continuously toward the 

interior of the specimen. A similar behavior can be observed 
for both profiles, each one allowing the approximate deter- 
mination of the dimension of the plastified depth where the 

bulk material's values are achieved. In this way, the strain- 

hardening effect can be estimated. 
Four calculation procedures were used to determine in- 

depth residual stress distribution by IHD. Because a strong 
residual stress gradient could be expected close to the surface, 
measurements were carded out with small depth increments 
(0.02 mm) for the first drilling steps, below those recom- 

mended by, for example, TN-503 (> 0.13 mm). 15 The MPA 

differential method provides spline functions to smooth the 

initial strain data to reduce statistical errors. The MPA data 

evaluation, merely performing a slight smoothing of the orig- 

inal strain data, led to consistent results. Respective resid- 

ual stresses were assigned to the beginning of each drilling 

step. For evaluations with the average stress and the integral 

method, however, a larger step size had to be used to over- 

come the higher error sensitivity 18 and the related scattering 

of residual stress results. For these methods, respective resid- 

ual stress values were assigned as average values to the center 

of each step. The power series method, only calculating lin- 

ear distributions, correspondingly allows the approximation 

of the residual stress distributions as straight lines. 

Figures 2-6 show the in-depth residual stress and micro- 

hardness profiles obtained in the experiments. The figures are 

presented in the order of increasing 0.2 percent offset yield 

strength of the bulk material. To discuss the influence of the 

plasticity effect on the residual stress values obtained by IHD, 

in each figure the yield strength of the bulk material and 60 

percent of this value are included as horizontal lines and the 

plastified depth due to the shot-peening treatment is included 

as a vertical line. The extent of the plastified depth was deter- 

mined according to the peak width variation. Residual stress 

values obtained by XRD were used as a reference value for 

results obtained by IHD. 

Maximum compressive residual stresses obtained using 

XRD vary between -5 0 0  MPa and - 6 0 0  MPa for all speci- 

mens. For specimens 1, 4 and 5, the maximum values appear 

at the surface (Figs. 2, 5 and 6). For specimens 2 and 3 (Figs. 3 

and 4), XRD shows maximum compressive residual stresses 
( -550  and -5 0 0  MPa, respectively) just below the surface, 

at about 0.020 mm and 0.040 mm, respectively, representing 

a strong residual stress gradient within the first two drilling 

steps. IHD, however, always led to compressive maximum 

residual stresses at the surface. The evaluation of IHD strain 

data with the differential method, allowing a better depth 

resolution compared with the average stress and the integral 

method, is still not able to detect the residual stress varia- 

tions obtained by XRD just below the surface. With regard 

to the fact that the residual stresses obtained by IHD repre- 

sent a mean value over each depth increment, this method is 

evidently not able to detect such rapid residual stress varia- 

tion correctly. Furthermore, the first increment size is always 

associated with less accuracy (roughness, zero depth), thus 

increasing the uncertainty in the residual stress determination 

of surface values by IHD. 

As shown in Figs. 2-6, except for specimen 3 (Fig. 4), 

quite good correlation between the XRD and IHD results was 

obtained near the material's surface (less than 0.3-0.4 mm 

depth). In this region, the IHD results obtained by the differ- 

ential method always show the best fit to XRD results whereas 

the integral and the average stress methods lead to a slight 
overestimation of residual stresses. In deeper layers (greater 

than 0.3-0.4 mm depth), however, the differential method 
and the average stress method show a distinct overrating of 

residual stress values. These two methods still indicate resid- 
ual stresses of about - 1 0 0  MPa where XRD already detects 
only negligible values. Here, the integral method is in much 
better agreement with the XRD results than the other IHD 

calculation procedures, which was theoretically expected. 18 
Finally, the linear residual stress distributions given by the 
power series method can be considered a relatively good 
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TABLE 1--MATERIALS: MECHANICAL PROPERTIES AND CHEMICAL COMPOSITION 

Steel Gyo.2 a (~r, a Hardness Chemical Composition (% weight) b 

(AISI) (MPa) (MPa) n a (HV) C Si Mn Cr Mo Ni V 

1 - 1045 415 700 0.27 240 0.45 <0.4 0.65 
2 - (420) 425 680 0.21 220 0.38 0.9 0.5 13.6 
3 - 3415 445 670 0.17 230 0.14 <0.4 0.55 0.75 3.25 
4 - 9255 520 850 0.25 260 0.55 1.65 0.85 
5 - 4337 1120 1220 0.07 380 0.34 <0.4 0.65 1.50 0.22 1.50 

0 .3  

a. Uniaxial tensile tests (ASTM E 8) - strain hardening exponent obtained according to ASTM E 646 
b. Producer data 

TABLE 2--SHOT-PEENING PARAMETERS IACCORDING TO MIL-S-13165 C I 
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Fig. 1--Measured relieved strains in AISI 1045 shot-peened steel specimen (left). Corresponding profiles of microhardness 
and diffraction peak width (right) 
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Fig. 2--Residual stresses, microhardness profile and plasti- 
fled depth in specimen 1 (AISI 1045): comparison between 
incremental hole-drilling (IHD) and X-ray diffraction (XRD) 
results 
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Fig. 3--Residual stresses, microhardness profile and plasti- 
fled depth in specimen 2 (AISI 420): comparison between 
incremental hole-drilling (IHD) and X-ray diffraction (XRD) 
results 
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Fig. 4---Residual stresses, microhardness profile and plasti- 
fled depth in specimen 3 (AISI 3415): comparison between 
incremental hole-drilling (IHD) and X-ray diffraction (XRD) 
results 
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Fig. 5--Residual stresses, microhardness profile and plasti- 
fled depth in specimen 4 (AIS1 9255): comparison between 
incremental hole-drilling (IHD) and X-ray diffraction (XRD) 
results 

approximation of the shot-peening residual stresses analyzed 
in this work. 

Table 3 summarizes the general observations of Figs. 2-6. 
The second column shows the plastified depth induced by 
the shot-peening treatment. For all specimens, it varies in 
the range of 0.26 mm to 0.44 mm. The plastified depth tends 

to decrease with the increase of the elastic limit of the bulk 
material. The third column shows the maximum variation of 

the material's hardness from the interior to the surface, rang- 

ing from 3 percent for specimen 5 to 45 percent for specimen 

2. These variations quantify the work hardening attained by 

the shot-peened material and will be used to estimate the 
near-surface yield strength. The last column of Table 3 

presents the ratio between the maximum compressive resid- 

ual stress measured by XRD and the yield strength of the 
respective bulk material. Theoretically, ignoring the strain- 
hardening effect, IHD could be correctly applied only in the 

case of specimen 5. In all other cases, an overestimation of 
the real residual stresses as a consequence of the plasticity ef- 
fect had to be expected, since the respective residual stresses 

exceed 60 percent of the bulk material's yield strength. 

The results obtained in this work, however, indicate 

that the hole-drilling method can still be used to evaluate 

shot-peening residual stresses, even in cases where residual 

stresses are above the yield strength of the respective bulk 
material. In these cases, the strain hardening due to the sur- 
face treatment has to be taken into consideration. The results 

obtained for specimens 1, 2 and 4 (Figs. 2, 3 and 5) clearly 
confirm this point of view when the XRD results are com- 
pared with those obtained by IHD. Clear differences between 

both measurement methods are found in the entire analyzed 

depth only for specimen 3 (Fig. 4). In this case, the com- 
pressive residual stresses obtained by all the IHD methods 
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Fig. 6~Residual stresses, microhardness profile and plasti- 
fled depth in specimen 5 (AISI 4337): comparison between 
incremental hole-drilling (iHD) and X-ray diffraction (XRD) 
results 
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TABLE 3~PLASTIFIED DEPTH, MAXIMUM MICROHARDNESS VARIATION AND RATIO BETWEEN MAXIMUM RESIDUAL 
STRESS/X-RAY DIFFRACTION [XRD]I AND YIELD STRENGTH OF THE BULK MATERIAL 

Steel (AISI) Plastified Depth (ram) A H/H (%) ffXFtO/ffyO,2 (%) 
1 - 1045 0.34 29 126 
2 - (420) 0.44 45 128 
3 - 3415 0.42 19 115 
4 - 9255 0.38 38 103 
5 - 4337 0.26 3 54 

have values that are distinctively higher than those obtained 

by XRD. 

Discussion 

Analysis of the Plasticity Effect on IHD Results 

For a systematic analysis of the differences between IHD 

and XRD residual stress results and the expected occurrence 

of the plasticity effect, which leads to the overestimated IHD 

results, a mean value of the residual stresses obtained in the 

range of 0 mm to 0.1 mm will be considered. In Table 4, 

respective mean values for each IHD calculation method are 
given as a percentage of the corresponding XRD mean values. 

The attainable precision of the IHD method in determin- 

ing near-surface residual stresses can be estimated by looking 

first at the results of specimen 5. In this case, any influ- 

ence of the plasticity effect can be excluded due to the al- 

ready very high yield strength of the bulk material. Whereas 

the integral and the average stress methods overestimate the 

XRD residual stresses by around 10 percent, the differential 

method determines a value 6 percent lower. This tendency to 

have nearly identical mean values for the average stress and 

the integral methods, and smaller values for the differential 

method, can also be observed for the other specimens. The 

results of the power series method appear to be close to those 

of the differential method. 

The greatest discrepancies between the IHD and XRD 

results occurred in the case of specimen 3, where the mean 

residual stress values determined by IHD are between 27 per- 

cent (differential method) and 55 percent (integral method) 

higher than the XRD value. Considering merely the ratio of 

the maximum residual stress determined by XRD to the bulk 

material's yield strength, the strongest influence of the plas- 

ticity effect was expected for specimens 1 or 2 (cf. Table 3). 

Instead, it seems that the very low strain-hardening capacity 

of specimen 3 is decisive for the plasticity effect to occur. 

Microhardness variation amounts to only 19 percent (cf. Ta- 

ble 3) compared with 29 percent and 45 percent for speci- 

mens 1 and 2, respectively. Tensile tests also showed a lower 

strain-hardening coefficient (0.17) compared with specimens 

1 (0.27) and 2 (0.21) (see Table 1). For specimen 3, the com- 

bination of a low yield strength and the small strain-hardening 

capacity of the material obviously enabled local yielding due 

to local stress concentration, resulting in the expected over- 

estimation of residual stresses by IHD. On the other hand, 
for specimen 2 (Fig. 3), showing similar yield strength and 

high XRD residual stress values below the surface, the max- 

imum hardness variation is 45 percent, which is more than 
twice as much as for specimen 3 (19 percent). In this case, 
IHD residual stress overestimation amounts to only 8 per- 

cent (differential method) and 32 percent (integral method), 
respectively. Here, the effect of plastic yielding around the 
hole has obviously been weakened due to the strong increase 

of the yield strength of the material layers close to the sur- 

face. Similarly, the good agreement of XRD and IHD results 

for specimens 1 and 4 can be explained. Additionally, in the 

case of specimen 1 (cf. Fig. 2), residual stresses determined 

by XRD drop immediately below the surface to a level close 

to the bulk material's yield strength, thus also rendering the 

plasticity effect less likely than if only the XRD maximum 

surface value were considered. Obviously, after shot peen- 

ing, the yield strength of the bulk material does not itself give 

sufficient information on possible plastic yielding around the 

hole. The material's strain-hardening behavior should be 

known and taken into account. 

Estimating the Strain-hardening Influence 

To confirm and anticipate whether the plasticity effect can 

influence the results of IHD, Cahoon's 21 equation was ap- 

plied to estimate the yield strength of the shot-peened mate- 

rial close to the surface using microhardness measurements. 

A minimum depth of 501xm to 70p~m was imposed to avoid 

edge effects on hardness tests, which were carded out on the 

cross section of all shot-peened samples. In a first step, the va- 

lidity of Cahoon's equation was verified. Therefore, the yield 

strength was calculated directly from the measured hardness 

values of the bulk material and compared with the 0.2 per- 

cent offset yield strength obtained from the tensile tests (see 
Table 5). The fourth column of Table 5 shows the respective 

discrepancies. A maximum error of 14 percent was observed 

in the case of specimen 3. These differences may be partly 

due to a small variation of the constant c, which was used to 

relate the mean contact pressure of Vicker's hardness inden- 

tations to the representative yield strength. For most metallic 

materials, c = 2.8 is considered to be valid and was therefore 

used here. In all other cases, the observed errors were even 

below 8 percent, showing the validity of the applied equation 

and allowing a satisfactory estimation of the strain-hardening 

effect. 

Thus, based on the proportionality between hardness and 

yield strength stated in Cahoon s 21 equation, the increased lo- 

cal yield strength o~ can be easily determined using the yield 

strength of the bulk material try0.2 and the relative variation 

of the microhardness A H / H ,  writing the equivalent formu- 

* = (1 + A H / H ) .  Respective results obtained lation Oy fly0.2" 

for the maximum hardness variation of each specimen are 

shown in the last column of Table 5. 

Using the empirical procedure presented above, it is pos- 
sible to estimate the ratio between XRD residual stress and 

the local yield strength of the shot-peened material as a func- 
tion of the distance to the surface. This was carried out for 
each maximum hardness value using a corresponding average 

XRD residual stress value that was determined by interpola- 

tion over the depth range of the hardness indentation (see 
Table 6). The second column of Table 6 shows the respective 
interpolated residual stress values for all specimens. In the 
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TABLE 4--COMPARISON BETWEEN INCREMENTAL HOLE-DRILLING (IHD) AND X-RAY DIFFRACTION (XRD) MEAN 
RESIDUAL STRESS RESULTS/EVALUATION DEPTH 0-0.1 mm / 

~IHD/~XRO (%) 
Steel alHD/SXRD (%) CrlHD/~XR D (%) ~IHDffrXRD (%) Average Stress 
(AISI) Integral Method Differential Method Power Series Method Method 

1 - 1045 109 91 92 109 
2 - (420) 132 108 112 127 
3 - 3415 155 127 128 149 
4 - 9255 124 103 107 123 
5 - 4337 112 94 101 107 

TABLE S--ESTIMATE OF THE MATERIAUS YIELD STRENGTH FROM HARDNESS DATA 

cry = (H/3) 

�9 (0.1) m-2 (MPa) 

Steel Cry0.2 (MPa) Direct Estimate Error 
(AISI) Tensile Tests from Hardness (%) 

O'y = (~y0.2 

�9 (1 + AH/H) 
(MPa) Estimate 

Based on (fro.2 

1 - 1045 415 413 -0 .5  535 
2 - (420) 425 444 +4.5 616 
3 - 3415 445 508 +14 530 
4 - 9255 520 478 - 8  718 
5 - 4337 1120 1058 -5 .5  1154 

TABLE 6--ESTIMATE OF THE RATIO BETWEEN X-RAY DIFFRACTION (XRD) RESIDUAL 

OF A SHOT-PEENED MATERIAL 

Steel "~XRD (MPa) 
(AISI) Interpolated for HV Maximum 

STRESS AND YIELD STRENGTH 

"O XRD/(r~ (%) 
Estimate 

1 - 1045 418 78 
2 - ( 420 )  504 82 
3 - 3415 471 89 
4 - 9255 523 73 
5 - 4337 542 47 

final column, the percentage values of the ratio between the 

XRD residual stresses and the estimated local yield strength 

are given, making it possible to assess the applicability of the 

IHD method. These values were determined for an average 

depth of 601xm and can be used to explain the discrepancies 

verified between the XRD and IHD results shown in Table 4. 
Now, the highest discrepancies are observed for the highest 

ratios of residual stress to local yield strength. 
Our results indicate that microhardness indentations can 

be used to predict material strain-hardening behavior, allow- 

ing a criterion for the reliability of IHD values to be estab- 

lished. With regard to the results presented in Table 6, the 

plasticity effect clearly becomes relevant when the existing 

maximum residual stresses are higher than about 80 percent 

of the corresponding local yield strength of the shot-peened 

material. A simple criterion for the validity of obtained resid- 

ual stress values can be written as follows, using only the 

yield strength of the bulk material and the relative maximum 

variation of the microhardness: 

c r R S < k . c r y ( l + - ~  -H-) w i t h 0 . 6 < k < 0 . 8 ,  (1) 

where k depends on the residual stress state and distribution 

and on the calculation method applied. 

Comparison between IHD Calculation Procedures 

In deeper layers, a good agreement between the results 

of IHD, using the integral method,18'26 and XRD results can 

be observed in all cases. On the other hand, the differential 
method 16 and the average stress method 15'17 present large 

differences compared with the XRD results in those layers. 

These differences cannot be explained by the plasticity ef- 

fect, since they also occur in the case of specimen 5 (Fig. 6), 

where no influence of the plasticity effect on IHD results 

can be expected (see Tables 3 and 6). At the depth where 

the XRD results reach zero, the differential and the aver- 

age stress methods still show compressive residual stresses 
of about - 2 0 0  MPa. These discrepancies can be related 

to the theoretical shortcomings of these evaluation methods, 

which become more relevant at greater depths. The differ- 
ential method assumes the strain relaxation caused by the 

stresses existing in the previous increments to be the con- 

sequence of the already stress-free increments. The average 
stress method disregards the fact that the stresses in the mate- 

rial closer to the surface contribute much more to the relieved 

surface strain than do the stresses farther from the surface. 

These theoretical simplifications obviously lead to increasing 

errors at greater distances from the surface. The experimental 

results obtained for shot-peened specimens indicate that the 
differential method and the average stress method can only 

be used correctly up to a depth of about 0.3 mm. It should be 

noted, however, that the IHD is generally limited to a depth 

equal to the hole radius. 16,18.28,32 The decreasing sensitivity 

of surface strain relief to the stress relaxation farther from the 
surface leads to a stronger influence of measurement errors. 

For the chosen measurement conditions, this limit is close to 

0.9 mm. 
Considering the results obtained close to the surface, the 

integral method and the average stress method values al- 

ways present an overestimation compared with the differen- 
tial method, which shows the best agreement with the XRD 

values. This difference becomes more pronounced when 
the plasticity effect influences IHD results, as verified in 
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specimens 2 and 3 (Figs. 3 and 4). The lower accuracy in de- 

termining the first increment size combined with the higher 

error sensitivity of these methods compared with the differ- 

ential method can explain this effect. Besides, the differen- 

tial method can be used with a better depth resolution. The 

power series method 18'29 is best applied in cases where in- 

depth nonuniform residual stresses can be approached by a 
linear distribution. 

Comparison of XRD and IHD results is problematic when 
very strong residual stress gradients are present at the mate- 

rial's surface. This is due to the minimum increment size 
required for the hole-drilling method, allowing a reasonably 

accurate measurement of increment size and respective strain 
relaxation. Strong residual stress variation obviously cannot 

be detected when occurring within one increment. In these 
cases, the XRD method should be used. The IHD method, 

however, appears to be a suitable technique for characterizing 
in-depth shot-peening residual stresses. 

Conclusions 

Comparing results of the IHD method and the XRD tech- 
nique, we have shown that the incremental hole-drilling 
method can be correctly used to measure residual stresses 

in shot-peened components, even if residual stresses exceed 

the yield strength of the bulk material. The strain hardening 
in the surface can obviously prevent plastic yielding to a great 

extent, normally already affecting hole-drilling results when 
residual stresses exceed 60 percent of the bulk material's yield 
strength. Nevertheless, even residual stresses amounting to 

almost 130 percent of the bulk material's yield strength could 
be determined in good agreement with XRD values. In this 
case, however, a high strain hardening was observed in the 

near-surface material layers. Consequently, for an assess- 
ment of the reliability of incremental hole-drilling results, 
the strain hardening caused by the shot-peening treatment 
has to be taken into account. 

The microhardness variation between the bulk mate- 

rial and the surface was used to quantify the respective 

strain hardening and to calculate a corresponding local yield 

strength close to the surface where maximum residual stress 

values had been detected. Then, determining a local ratio of 
the residual stress to the corresponding local yield strength, 
an empirical criterion could be set up to predict the occur- 
rence of the plasticity effect. A distinct overestimation of 
residual stresses evaluated by incremental hole drilling is ob- 

served when the residual stresses exceed 80 percent of the 
yield strength of the shot-peened layer. For smaller ratios, 
tolerable errors were obtained, although the error size also 

depends on the evaluation method applied. These findings 

were obtained for shot-peening residual stresses, but they can 
certainly be transferred to similar residual stress states, when 

maximum residual stress values and respective relative hard- 

ness variations are considered. 
Furthermore, the main IHD calculation procedures can be 

evaluated by comparing the experimental results. The av- 

erage stress method is only an approximate method. When 
residual stresses have almost linear distributions, the power 
series method can be used. The differential method showed 
best agreement with XRD values close to the surface. In ad- 
dition, it appears to be less sensitive to the plasticity effect. In 
deeper layers, the integral method is definitely the most ap- 
propriate calculation procedure, especially when strong stress 
gradients exist. 
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