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ABSTRACT

In this paper we discuss the estimation of mean and standard

errors of the eigenvalues and category quantifications in gener-

alized nonlinear canonical correlation analysis (OVERALS). Starting

points are the delta method equations, but the jackknife and

bootstrap are used to provide finite difference approximations to

the derivatives.

Keywords.. canonical correlation analysis, delta method,

jackknife, bootstrap, confidence interval, nonlinear

transforriation.
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INTRODUCTION

Nonlinear canonical correlation analysis with k sets of vari-

ables, OVERALS, is a multivariate technique in the sense of Gifi

(1981, chap. 6). It is described by De Leeuw (1984a), Van der Burg,

De Leeuw and Verdegaal (1984, 1986) and Verdegaal (1985). The k

sets of variables are related in a linear way, as in ordinary

canonical correlation analysis, but at the same time the variables

are transformed nonlinearly. This can be formulated as a least

squares problem minimizing the sum of squared deviations between

unknown object scores and linear combinations of transformed vari-

ables, organized in sets (Van der Burg et al., 1984, 1986)

In current implementations of OVERALS the variables are categ-

orical, i.e. they assume only a small number of possible values.

The technique assigns a numerical score to each category, the so-

called category quantification. Scores are assigned in such a way

that the sum of the t largest eigenvalues (generalized canonical

correlations) is maximized, while at the same time the measurement

characteristics are respected. Thus for ordinal variables we impose

ordinal restrictions on the category quantifications, for numerical

variables the category quantifications must even be linear with the

original scores. For nominal variables there are no additional

restrictions.

The scoring system we just outlined gives a single quantifi-

cation for each variable. It is also possible to obtain multiple

quantifications for each variable by using copies. (De Leeuw,

5
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1984a; De Leeuw, 1985; Tijssen, 1985; Van der Burg et al., 1986).

This means that a variable occurs more than once in a set. When

only nominal characteristics are employed for all copies, the

measurement level is called multiple nominal. In case only one

quantification is dealt with the measurement level is called single

nominal, single ordinal, or numerical.

Because variables are categorical the profile for each individ-

ual only assumes a finite number of values. The quantities computed

in canonical correlation analysis (category quantifications, object

or profile scores, canonical correlations, correlations between

quantified variables and canonical variables, and so on) are func-

tions of the profile frequencies.

THE DELTA METHOD

We shall develop our statistical methods in a general multi-

nomial context, not necessarily in terms of profile frequencies or

proportions, and not directly applied to OVERALS output. The data

are a vector p of proportions, based on a simple random sample of

size n. Thus we suppose that p is a realization of the random vari-

able IL, where n2.has a multinomial distribution with parameters

(m,$). We imbed the variable kin a saquence per, there mga is also

multinomial with parameters (n,n). For the expected value and the

dispersion we have E(4)=It and C(en) =n- 1(n -nn'), where nadiag(s).

We also have convergence in law to a normal distribution, in the
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sense that z
n
mn

1/2
(e

n
-x) + N(0,V), with V short for 11-xx .

Now suppose 0 is a real valued function defined for all p (or

all p close to x), and twice continuously differentiable at x. Then

the delta method (Rao, 1965, section 6.a.2, contains a nice dis-

cussion) states that n
1/2

(0(4)-0(0) + N(0,g'Vg), where g is the

vector of partials of 0 at x. We can easily understand this result

by writing En as en=x+n
-1/2

zn and then developing a Taylor series

for s(en) in n-1/2141 around x. This gives:

(1) 0(en) = #(n) n-1/2gszn
(20-1zn'Hzn + op(n-1).

A sequence of random variables 141 is op(a-1) if nicri converges in

probability to zero. Matrix H contains the second order partials of

a at x. The variance of a(en) is given by

(2) Varn(0(4)) 2 Ex((0(4))2) - (En(0(pn)))2.

The second term of (2) is obtained by taking expectations of (1).

As the random variable 3.81 converges in law to N(0,V) (the necessary

conditions for E
n
(op(0)) a 0(n-1) (cf. Serfling, 1980, section

1.4) are satisfied) we get

(3) Ex(0(E9)) s 0(n) + (20-1trHV + 001-11.

The squared expectation is

7
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(4) (Es(4(4)))2 = (400)2 n-10(x)trHV + o(n-1).

The first term of (2) is obtained by squaring (1) and taking expec-

tations:

(5) Eit((s(en))
2

) (0(m))
2

+ n
-1

0(n)trHV + n-lg'Vg 4 o(n-
1
).

Subtraction of (5) and (4) gives

(6) Varnks(enl) = n 'g'Vg o(n
-1

).

which corresponds to the delta method variance. Result (6) makes it

possible to estimate the standard error of statistics of the form
,

4(41. The estimate is n-',9Vg where g estimates g end V estimates

V. Usually V=Vp=P-pp' with P=diag(p), and g=gp the partials of S at

p. If we have an estimate a of the standard e'ror, then we also

have an approximate confidence interval (95%) of the form

(04)-1.960, 0(en)+136o).

We can also evaluate the bias of s(en) as an estimate of On).

To do so, expression (3) is used:

(7) E
n
)-S(R)) 8 (20-1trHV + 0(n-1).

So that estimates of H and V (e.g. Hp and Vp) give an estimate of

.(m) with bias of order n-1

In many cases, and for instance in generalized canonical corre-

8
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lation analysis, the quantities of interest are defined by very

complicated implicit functions. This makes it extremely tedious to

compute first order derivatives, while second order derivatives are

usually well nigh impossible to obtain. In some special cases, such

as correspondence analysis (Gifi, 1961, chap. 12; De Leeuw, 19840;

Schriever, 1985) the delta method can be applied, but in other

cases it simply is not feasible. In such cases we can use a resam-

pling method such as bootstrap and jackknife (Efron (1982) gives an

overview), which we view here as methods to approximate the

relevant partials. Gifi (1981, crap. 13) concentrates on the

bootstrap. In this paper we use both jackknife and r'3otstrap and

compare the results.

THE MU'TINOMIAL JACKKNIFE

Suppose we drop one observation from the sample. If it has pro-

file number k, then the vector of profile proportions changes to

(8) p(k) a p (n-1)-1(p-ek).

with ek the kth unit vector. The jackknife value for the observa-

tion is 0(p(k)), and the pseudo value ok(p) is defined as

. (9) 0 (p) = no(p) - (n-1)0(p(k))

9
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The jackknife method uses the average pseudo value Ipok(p) as an

estimate of (x) (pk are the elements of vector p), and uses the

variance of the pseudo values as an estimate of g'Vg. We shall

explain why this is a reasonable procedure. Observe for the moment

that no derivatives need to be computed.

Write 41 for the average of the pseudo values, and a§ for their

variance. Then combination of (8) and (9) using a Taylor series

for 4(p(k)) in (p-ek) around p gives

(10) 41((p) = (p) - grol(p-ek) - (2f1-21-1(p-ed'Hp(p-ek)

+ 0((n)
-1

).

Thus

(11) 41(P) 32 (P) - (2c-2)-itrVpHp + o((n)-1).

If we combine this result with the bias estimate provided by the

delta method, given in (7), we see that

(12) (n-1)(En(Os(4)) - (n)) 0.

Thus, the average pseudo value corrects for bias, in the same way

as the delta method adjustment requiring second order derivatives.

2
To compute

as
we Observe that

(13)
k
(P) -

S
(P) -81(p-e

k
) + 0(1).

10
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From (13) it follows that

(14) as(p) 4 gpapgp.

Thus chin is asymptoticall, equal to the delta method variance
2

estimate. More precise expansions can be found in De Leeuw (1985).

The only computations that are required is that the analysis

technique is repeated for each observation that is successively

dropped. For each jackknife sample a pseudo value is computed. This

gives new estimates of the relevant quantities. Their mean is the

improved estimate, their variance is an estimate of the stability.

If the number of profiles is much smaller than the number of obser-

vations, then it is more efficient to organize the computations in

terms of profiles (as above), because repeating exactly the same

analysis for observations with the same profile is avoided.

THE RANDOM JACKKNIFE

Because generalized canonical correlation analysis with a large

number of observations (and/or profiles) can be very expensive, it

is often not feasible to compute all pseudo values. Instead we can

estimate the average pseudo value and the variance of the oceudo

values by Monte Carlo methods. This amounts to leaving out one

observation at random, and repeating this a number of times. If the

sampling is repeated this obviously converges to the theoretical

11



Jackknife and Bootstrap

9

jackknife.

It must be remarked that the delta method provides us with an

approximation to the standard error. The jackknife in our inter-

pretation, gives an approximation to the delta method approximation

of the standard error. And the Monte Carlo method approximates the

jackknife approximations. Thus there are three levels of approxima-

tion involved. It does not follow, of course, that approximation of

the true standard error becomes progressively worse, because there

can be complicated interactions between the three approximation

processes.

We also emphasize that it is not necessary to present the jack-

knife as an approximation of the delta method. It can also be

interpreted in its own right as a method to study stability, indeed

the idea of investigating the effect of 'leaving- one -out' also

makes sense in a nonstochastic context.

THE MULTINOMIAL BOOTSTRAP

If we look at the basic properties of the jackknife, as we have

presented it, we see that the vector of profile proportions is

perturbed by leaving out single observations. We apply our tech-

nique to all these perturbed vectors, which are located reguarly

around the observed vector, and we use this grid of perturbed

values to estimate the relevant derivatives in a clever way.

12
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Because observations are assumed to be equally important, each

perturbation of the sample gets the same weight, i.e. occurs once

in the distribution of all possible jackknife sample f we use

the corresponding perturbations a the profile proportions we need

weights pl,..,pm for the different profiles.

The bootstrap is based on a different set of perturbations. In

fact bootstrapping means resampling with replacement from the orig-

inal sample, taking n observations (Efron, 1982). It means that we

look at all vectors of profile frequencies adding up to n. It also

means that the perturbations of the profile frequencies are

centered around the sample value p, and that t, have weights

according to tneir similarity with the sample value. Suppose

(15) q = (n1 /n, nm/n)

is a bootstrap perturbation of the profile proportions. Then tie

probability to occur in the distribution of all possible bootstrap

samples as

n!
n
1

n
m

(.6) w (p) a Pmn n
m

P1

The bootstrap pseudo values are defined as

(17) 4 (P) m 24(P) - 0(q).

The average bootstrap pseudo value is

13
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(18) 4s(p) a iciwq(P)0q(P),

and the bootstrap variance is

(19) 0§(n) n LIN(P)(4q(P) - Os(p112.

Substitute vn-1/2z+p in the pseudo values (17) and develop a

Taylor series in n-1/2z around p. This gives

(20) (P) = 0(p) - n
-1/2

g 'z - (2n)
-1
z'H z + o(n

-1
).

Thus the average pseudo value is

(21) 0s(P) iwq(P)061(P) = s(p) - (2n)-ItrHpyp + o(n-1).

as lwq(p)z=0 and lwq(p)ze.Vp. Combining (21) with (7) shows that

the expected value of 0s(en) is

(22) Eno s(en) = EnCt(En) - (2n)-ItrHV + o (n-
1
)).

Combining (22) with (3) gives

(23) n(Ex0i(en) - t(A)) + 0.

Thus the average pseudo value is an estimator of the population

mean $(R) with bias of order n-1 For the variance of the pseudo

values we subtract (21) from (20) which gives

14
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(24) 04(p) - as(p) -n
-1/2

gp'z - (2n) lz'Hpz

+ (20
-1

tril
P
V
P
+ o(n

-1
).

Then the pseudo value variance is

2
(25) as(p) = n-lg

P
'V
P
g
P

+ o(n-1).

2
The expected value of os(en) converges to the delta method variance

(26) n(Enoi(211)) + g'Vg.

Thus the bootstrap variance is an asymptotically unbiased estimator

of elg'Vg. This result means that the variance of the bootstrap

values (and the pseudo values) estimates the delta method variance.

The jackknife pseudo value variance estimates g'Vg, so that the

estimates of bootstrap and jackknife differ in a factor n.

For large n a random version of the iackknife is necessary. For

the bootstrap a random version is nearly always obligatory, as

there are nn bootstrap samples possible. If the number of bootstrap

samples is R, we need of course to take R large enough. Not very

much research is done on what is large enough. Only Borsboom & Van

Pelt (unpulAished) did some research on this subject with regard to

a comput'r program for nonlinear canonical correlation analysis

(CANALS, cf. Van der Burg & De Leeuw, 1983). They took bootstrap

samples (ot 4241 observations) adding one at a time and recomputing

standard errors of category quantifications. When the difference

5
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between previous and current standard errors was smaller than .01

they stopped taking bootstrap samples. Using the category with the

largest standard error as a criterion, they judged that about 40

samples is enough for CANALS in this example. Their method is im-

plemented in a computer program by Borsboom & Visser (1987). We

repeated the analysis of Borsboom & Van Pelt with the Whales data

(for a description see further on). We added 10 samples each time,

starting at 10 and ending with 120.

EXAMPLES

In this section the jackknife and bootstrap procedures -.re used

to compute pseudo value means and standard errors for four differ-

ent data sets. For the smaller data sets (i.e. Waales and Russett)

a complete Jackknife and a random bootstrap procedure were applied,

while in the case of the FYTY and SIMS data sets a Monte Carlo

version of jackknife and bootstrap were used. For all data sets the

generalized canonical correlations (i.e. eigenvalues) were em-

ployed. In addition or the Russett and FYTY data some category

quantifications were also considered. An overview of the results of

these analyses is presceed in tables found in the following sec-

tions of this paper. Many of these tables have a alumn for eigen-

values (respectivily category quantifications), computed from the

original data matrix (or sample), in single precision (SP) and

double precision (DP). For single precision the convergence of the
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OVERALS program is computed with accuracy to 10-5, while for double

precision it is computed with accuracy to 10-8. The OVERALS conver-

gence criterion is specified in terms of the difference between the

sum of eigenvalues for two consecutive iterations in the alterna-

ting least squares procedure. Many tables which follow have three

columns for estimated population means, of which there are two for

jackknife (single and double precision, JSP and JOP) and one for

bootstrap (single precision, BSP). In addition many tables also

contain estimated standard errors corresponding to the estimated

means.

The first example considered (the Whales data set, Vescia, 1985)

consists of fifteen variables decribing characteristics of 36

whales, porpoises and dolphins (e.g. form of the head, kind of

feeding, place of blow hole, colour, etc.). Using the twelve vari-

ables without missing scores we repeated an analysis described by

Van der Burg (1985). This means that the program OVERALS was used

for homogeneity analysis (multiple correspondence analysis): twelve

sets each consisting of one variable treated as multiple nominal.

The second example cu,isidered was based on the Russett data set

(Russett, 1964). These data contain three sets of va iables dealing

with attributes of 47 countries. The first set contains two vari-

ables concerning ownership of land, the second set contains the

variables gross national product and percentage of people working

in agriculture, while the third set includes the four variables

that are indicators of political instability. The multichotomized

scores originally established by Gifi (1981, chap. 7) were used in

17
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this study. The data were analyzed with numerical, single nominal,

and multiple nominal options.

The third example (designated FYTY for From Year to Year) is

based on a sample from a large school career survey (for'references

see De Leeuw & Stoop, 1979). In the example we consider, there are

520 school children and six variables divided into three subsets.

The variables are choice of school after primary education (set 1),

achievement test score and teacher's advancement recommendation

(set 2), educational level of father and mother, and profession of

father (set 3). The different sets were measured at different

points in time period, the order considered was: subset 3, subset

2, subset 1. The FYTY data were analysed in the same three ways

used with the Russett data.

The fourth example also comes from a school survey, in this case

the SIMS (Second International Mathematics Study) Project (Pelgium,

Eggen & Plomp, 1984 and 1986). For this example the complete data

base (4863 school children) as well as a sample from that base

(1000 school children) were considered. The eigenvalues correspond-

ing to the complete data base were treated as population par-

ameters, while the sample data were used to estimate these popu-

lation parameters. The variables considered in this example were

divided into three subsets. One subset contains the variables type

of school and father's education, another subset contains three

attitudes towards mathematics, while the remaining subset includes

a mathematics test score. Four measurement levels were considered

for the SIMS data example. Single nominal, ordinal and numerical,
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Table 1 contains bootstrap estimates for the Whales example. As

earlier specified, the bootstrap procedure was implemented with

various numbers of samples with increments of size 10. The number

of samples ranged from 10 to 120. Results for this example were

computed in both single and double precision. The estimated popu-

lation means and standard errors are presented in Table 1. It may

be noted that the bootstrap pseudo value means show only minor

differences, even for the extreme cases (i.e. number of samples of

10 and 120). However, the estimated standard error tended to in-

crease for number of samples 10 to 40, while remaining rather

stable for number of samples greater than 40. In addition, it was

found that differences were negligible between the two levels of

precision. For the remaining examples 40 samples were considered

when a random process was used in identifying samples. In addition,

only single precision computation was used with the bootstrap.

INSERT TABLE 1 ABOUT HERE

The eigenvalues computed from the Whales data are presented in

9
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Table 2. Four methods were considered: SP, DP, APL and CA. The

first two use the Fortran OVERALS program, and result in similar

eigenvalues. The third method is based on an APL version of the

OVERALS algorithm. Since APL is quite precise (16 digits accuracy)

the results obtained under this method may be consiuerably more

accurate than results from the Fortran program. The tourth method

considered was correspondence analysis (CA). In those cases in

which all variables are treated as multiple nominal, the OVERALS

problem may be reformulated in a format which is 'nsistent with

correspondence analysis. For this reason a correspondence analysis

program (ANACOR, Gifi, 1985) was used. The eigenvalues from ANACOR

INSERT TABLE 2 ABOUT HERE

are precisely the same as the OVERALS eigenvalues. However the

vAances do differ (see Table 3). Although the APL eigenvalues are

slightly different from those obtained under the above mentioned

approaches, those differences hardly seem worth mentioning. The

jackknife and bootstrap results are presented in column 4 to 11 of

Table 2. The bootstrap results are irsed on 120 samples, while the

JSP and JOP results are based on 36 samples (a complete jackknife).

The estimated means do not substantially differ from each other,

but the estimated standard errors do manifest sizable differences.

The three jackknife estima, are very similar, however the boot-

20
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strap estimates are considerably lower in magnitude than the jack-

knife estimates. It is clear from Table 1 that using more samples

will not change the estimated standard error. Thus in this case the

bootstrap results converge to values different from those of the

jackknife method. As the number of observations is very small in

this example (i.e. 36) this may be due to the fact that asymptotic

characteristics are not satisfied, and thus approximations may be

imprecise. We can compare the results obtained under OVERALS with

those obtained under CA. As it is possible to compute the first

order derivatives in case of correspondence analysis, the ANACOR

program delivers variances (Table 3). The first two bootstrap

estimates are sytematically lower than the CA values, while the

corresponding jackknife estimates are higher. Only the third

variance is similar for the bootstrap and jackknife (and lower than

INSERT TABLE 3 ABOUT HERE

for CA). Assuming that CA gives the more precise value (direct

computation instead of approximation), we find that the jackknife

overestimates and the bootstrap underestimates the standard error.

We do not make conclusions on the third variance es the smallest

eigenvalue normally is much less precise than the

21

larger ones.
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RESULTS FOR RUSSETT

A complete jackknife and a random bootstrap were applied to the

Russett data. As the number of observations (47) is still rather

small we may expect different results from the bootstrap and jack-

knife analyses. The results for the eigenvalues are presented in

Table 4. One of the most striking aspects of these results is that

the standard errors are considerably larger than those obtained

with the Whales data. It should be realized however, that hom-

ogeneity analysis is known to be a very stable technique, and most

likely an example with more variables in the sets will be less

stable. JSP means appear to be rather strange, especially if we

keep in mind that the data are not a sample but the population. JDP

estimates seem to be a little less unexpected. Estimation by boot-

strap is more like the eigenvalues based on the complete data set

than the estimation by jackknife. But in any case the results

appear discouraging. Bootstrap standard errors are smaller in gen-

eral than jackknife standard errors but they are too large for

reasonable confidence intervals.

INSERT TABLE 4 ABOUT HERE

A look at results for category quantifications of two variables

(LABO and DEMO) is even more perplexing (Table 5). The bootstrap

22
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estimates provide at least a rough approximation of the corre-

sponding population results. However the jackknife estimates are

quite different from the population values. In addition, the corre-

sponding standard errors seem extrordinarily large. A direct look

at the bootstrap and jackknife results (without computing pseudo

values) shows their values to be rather stable (Figures 1 and 2).

Every dash (-) corresponds to a category quantification resulting

from one bootstrap/jackknife sample (called bootstrap/jackknife

sample value), while the symbol 0 represents the original category

quantifications of the Russett data. On the horizontal axis the

original category scores are scaled, while on the vertical axis the

category quantifications are scaled. As the jackknife and bootstrap

INSERT FIGURES 1 AND 2 ABOUT HERE

sample value variances differ asymptotically by a factor n, we

divided the bootstrap sample values (in deviation from their mean)

by n
1/2

to make the results comparable for the two techniques. It

may be noted that DEMO is a much more stable variable than is LABO.

For the latter variable, cateories 1 & 2, and 4 & 5 respectivily

show considerable overlap. However, overall the results appear

rather stable.

Because the results for the Whales and the Russett examples

disappointing, additional examples involving larger data sets were

23
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The FYTY data were analyzed by the Monte Carlo version of jack-

knife and bootstrap. The resulting eigenvalue estimates are pre-

sented in Table 6. Considering the FYTY data as a sample from a

large data base, we can expect eigenvalues obtained from the orig-

inal sample to be larger than estimates obtained from bootstrap and

jackknife. This is because sample estimates tend to overestimate

the population parameters while the jackknife and bootstrap pseudo

value means are supposed to reduce the bias found if. sample esti-

mates. The actual estimation outcomes that were obtained for the

FYTY data are as follows. The jackknife estimates were rather simi-

lar to one other but do not seem to show any relation with the

sample eigenvalues. Here the JSP estimation seems to have outper-

formed the JDP estimation, but that is not really true. The JSP

values have been produced with three digits accuracy, which was not

sufficiently precise. For instance the second estimate of the popu-

lation mean (multiple nominal), seems very good for JSP, and some-

what worse for JDP. This difference is due to the number of digits

provided in the computer output. As all jackknife values differed

from the sample value in the fourth and higher digits, we obtain

the same values when we truncate at three digits. Consequently,

sample and jackknife estimates are the same. The JDP estimate, in
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which 6 digits accuracy is provided, Is much larger, but must be

more precise. Thus in this case the JSP results may be somewhat

Suspect. For this reason we look only at the JDP results. For the

following example we used output with 6 digits accuracy to avoid

this problem.

INSERT TABLE 6 ABOUT HERE

The bootstrap estimates of the population mean appear better

than the jackknife estimates. The bootstrap estimates are indeed

always smaller than the sample eigenvalues. For all measurement

levels the first value provided a closer approximation than the

second value. Many eigenvalue routines give more precise results

for the larger eigenvalues (supposing that the smaller ones are

also computed). This phenomenon may provide an explanation for the

difference in accuracy obtained for first and second eigenvalues.

Due to the large number of observations standard errors are

smaller than found for the Russett example. However especially in

the case of jackknife these standard errors are itill unacceptably

large.

Untill now it would seem that the bootstrap method is preferable

to the jackknife method, since it apprears to provide more precise

estimates with smaller variance. As the number of sample observa-

tions is still not large, an additional sample size which more
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closely approximates the asymptotic case seemed warrented. For this

reason the next example is based on 1000 observations.

INSERT TABLE 7 ABOUT HERE

However, before this next example is presented some category

quantifications of the FYTY data are considered. To do this, the

variables PRE and TON are used (Table 7). Looking at the standard

errors for these variables, it may be noted that TON is much more

stable than PRE. We also see that the standard errors of the cate-

gory qv.ntifications are larger than those for the eigenvalues

(Table 6). As category quantifications are proportional to the

square root of eigenvalues, their standard errors will increase at

a corresponding rate. In Table 7 we see that again the JSP and JOP

results agree rather well, but the correspondence between sample

eigenvalues and the estimated population means is almost nonexis-

tent for the jackknife. Bootstrap results are very similar tc the

sample values for TON, however results for show less similarity

(but not as bad as jackknife estimates). Looking at the category

quantifications o: the jackknife and bootstrap samples directly

(like we did for the Russet example), we find that those variables

behave very stably (Figures 3 and 4). In the case of TON all fourty

dashes (jackknife/bootstrap sample values) fall together both for
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INSERT FIGURES 3 AND 4 ABOUT HERE

jackknife and bootstrap, while for PRE we find some variability

amoung the category quantifications. Note that in case of JDP, most

of the variability that Is present is due to a single outlying

sample. This stability in the results is very striking.

RESULTS FOR SIMS

In Table 8 we find results for the eigenvalues of the SIMS data.

The data base itself consisted of 4863 observations and served as

the population of interest. For the purpose of estimating the popu-

lation eigenvalues a sample of 1000 observations was considered.

The bootstrap and jackknife approaches were used (on the sample)

for reestimation of the population values (with the computer re-

sults specified to 6 digits for both SP and DP). Note that boot-

strap estimates are always between the population and the sample

values. Theoretically this is to be expected The same outcome is

also expected when the jackknife is used. However, this did not

occur in half the cases of Table 8. Since standard errors appear to

be reasonably small, it is suggested that confidence intervals for

bootstrap results be computed.
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DISCUSSION

In comparing jackknife with bootstrap one is left with the im-

previon i` ' the jackknife method is far more imprecise than the

bootstrap method. Apparently jackknife approximations are less

stable for smaller samples. The use of double precision computa-

tions tends to improve the jackknife results, but does not elim-

inate the problem. For the bootstrap method it does not matter

whether computations are SP or DP.

For smaller samples the jackknife standard error is larger than

the bootstrap standard error. It is possible that approximations

are not precise enough because of the small sample size. It appears

that the jackknife and bootstrap method converge to different

values.

Jackknife results are sensitive to precision and thus to compu-

tational error. This can be concluded from the differences in SP

and DP results. This finding does not vary with sample size. It

conce'ns mainly the estimated population means of eiger,values and

not the corresponding standard errors. Estimation based on boot-

strap is more robust than estimation based on jackknife. Results

for category quantifications are discussed further on.

For smaller samples the estimated standard errors of eigenvalues

(both for jackknife and bootstrap) are unacceptably large (varying

from .025 to 1.05). Such error variation would result in huge con-

fidence intervals (with substantial overlap among intervals).

In all cases considered, the estimated population means for
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eigenvalues appear to be worse for Jackknife than for bootstrap, as

bootstrap estimates are nearer to the population or sample value,

than jackknife estimates are. Even for the largest sample con-

sidered, more deviations (i.e. population mean not in 95% confi-

dence interval) were found with Jackknife than with bootstrap.

Deviations occur for 5econd eigenvalues (ordinal and numerical) of

JDP and for all second eigenvalues of JSP (Table 8). Many eigen-

value routines are less precise for the smallest computed eigen-

value. As jackknife is sensitive to precision this may be the

cause.

Estimates for category quantifications seem rather strange.

Category quantifications correspond to the square root of eigen-

values, and thus will be less precise. However the estimates are

sometimes highly inaccurate, even for very stable Jackknife or

bootstrap sample values. Again in this case the bootstrap seems to

perform much better than the Jackknife ( Table 7). In several plots

stability of results is illustrated (Figures 1 to 4). Only in the

case of LABO are the results unstable. This variable has a much

smaller weight than the other va;'. ables used for illustration. It

may be that this smaller weight results in a lower level of stab-

ility.

In the case of the example based on the largest sample, the

bootstrap means computed directly from bootstrap samples provided a

less accurate estimate of the population value than was provided by

pseudo value means which are presented in Table 8. A similar out-

come was found (although the differences were less) for Jackknife.
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Using pseudo values tends to provide a better approximation than

obtained ly averaging bootstrap and jackknife results directly.

If we compare other studies using jackknife and bootstrap, we

find that Boomsma (1986) concludes that both methods give very

similar results for a sample size of 100. He estimates parameters

for Covariance Structure Analysis. We cannot confirm his findings

in the case of OVERAL5 parameters.

In conclusion we can say that the bootstrap method performed

better than the jackknife method. For larger samples the bootstrap

procedure works quite well for computing confidence intervals. The

use of 40 samples seems to be sufficient for estimation, but was

not thoroughly investigated in our study. For larger samples eigen-

values computed from OVERALS seem quite stable. However, category

quantifications seem to result in much wider confidence intervals.

Studying results for category quantifications directly (i.e. jack-

knife and bootstrap sample values) leads to more positive con-

clusions which are more in agreement with other's earlier experi-

ence with the examples here considered (et De Leeuw & Stoop, 1979;

Gifi, 1981, chap.7).
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TABLE 1

WHALES, multiple nominal. Estimated population means and es-
timated standard errors for bootstraps with different sample
sizes. SPusingle precision, DP=double precision.

Whales pop.mean
Bootstr SP DP

st.error
SP OP

pop.mean
Bootstr SP DP

st.error
SP DP

10 .601 .601 .031 .031 70 .608 ,608 .042 .042
.397 .398 .058 .058 .395 .396 .041 .041
.306 .305 .022 .017 .298 .299 .026 .025

20 .602 .602 .029 .029 80 .608 .607 .043 .043
.393 .393 .049 .049 .394 .394 .044 .044
.308 .308 .020 .018 .297 .298 .025 .025

30 .605 .605 .032 .032 90 .610 .045
.395 .396 .046 .046 .394 .046
.302 .303 .024 .023 .297 .025

40 .606 .606 .041 .041 100 .612 .047
.391 .392 .043 .043 .394 .044
.298 .299 .027 .026 .296 .025

50 .609 .609 .040 .040 110 .612 .046
.391 .392 .042 .042 .393 .043
.299 .300 .027 .026 .295 .025

60 .610 .610 .039 .039 120 .613 .045
.394 .395 .041 .041 .393 .042
.298 .299 .027 .026 .295 .026
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TABLE 2

WHALES, multiple nominal. Eigenvalues, estimated population
means and estimated standard errors for jackknife (J) (36
samples), bootstrap (8) (120 samples) and OVERALS-APL. SP=
single precision, DP=double precision.

Whales eigenvalue population mean standard error
DPI APL JSP JDP JAPL BSP JSP JDP JAPL BSP

MULT .635 .637 .618 .611 .614 .613 .056 .056 .056 .045
NOM .413 .415 .385 .398 .400 .393 .060 .060 .061 .042

.317 .320 .279 .282 .285 .295 .028 .028 .026 .026

I Eigenvalues SP-DP=CA (Correspondence Analysis)



TABLE 3

WHALES, estimated variances for Jackknife

(36 samples), bootstraps (120 samples),
and correspondence analysis. SP.single
precision, 0Padouble precision.

Whales JSP J0P BSP CA

estimated .0032 .0031 .0020 .0025

variances .0037 .0036 .0018 .0031

.0008 .0008 .0007 .0012
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TABLE 4

RUSSETT, three measurement levels. Eigenvalues, estimated
population means and estimated standard errors. SPosingle
precision, DPadouble precision, J jackknife (47 samples),
Bbootstrap (40 samples).

Russett eigenvalue
SP OP

population mean
JSP JDP BSP

stand. error
JSP JDP BSP

single .765 .770 .420 .703 .673 .065 .058 .032
nominal .710 .706 .924 .616 .638 .105 .089 .034

numerical .687 .687 .674 .556 .660 .057 .057 .048
.461 .463 .479 .412 .400 .095 .076 .047

multiple .815 .815 .710 .690 .732 .049 .049 .029
nominal .736 .734 .450 .443 .625 .053 .054 .025
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TABLE 5

RUSSETT, single nominal. Frequencies, category quantifications,
estimated population means and estimated standard errors for two
variables. SPssingle precision, DPadouble precision, J jackknife
(47 samples), Bbootstrap (40 samples).

Russett cat.quant.
freq. SP DP

population mean
JSP JOP BSP

standard error
JSP JDP BSP

LABO

10 -1.21:1 -1.157 -3.226 -.556 -1.240 .969 .835 .699
11 -.970 -1.019 .229 -1.969 -1.191 .931 .805 .476
14 .622 .606 1.120 .465 .662 .493 .445 .455
11 1.176 1.200 1.028 1.831 1.410 .706 .587 .392

DEMO

1 1.147 1.106 1.4341 0.5551 1.0822 1.3591 .9941 .6772
19 -1.090 -1.085 -.674 -.480 -1.049 .322 .294 .30
12 -.400 -.410 -1.272 -1.610 -.553 .614 .529 .544
19 1.171 1.173 1.406 1.448 1.284 .215 .207 .261

I 519 observed values
2 511 observed values



TABLE 6

FYTY, three measurement levels. Eigenvalues, estimated popu-
lation means and estimated standard errors. SPssingle preci-
sion, DPadouble precision, Jajackknife, Babootstrap (both 40

samples).

FYTY eigenvalue
SP DP

population mean
JSP JDP BSP

stand. error
JSP JDP BSP

single .735 .734 1.202 1.060 .731 .061 .056 .021

nominal .399 .400 .269 .167 .367 .034 .025 .017

numerical .695 .695 .851 .679 .692 .016 .014 .017

.341 .341 .639 .567 .326 .057 .054 .013

multiple .742 .742 .690 .695 .729 .014 .012 .018

nominal .555 .555 .555 .626 .535 .019 .026 .016
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TABLE 7

FYTY, single nominal. Frequencies, category quantifications,
estimated population means and estimated standard errors for
two variables. SPosingle precision, DP=double precision,
Jalackknife, 8bootstrap (both 40 samples).

FYTY
freq.

cat.quant
SP DP

population mean
JSP JDP BSP

standard error
JSP JDP BSP

TON

42 -.586 -.586 -2.052 -2.065 -.584 .175 .173 .128
208 -.853 -.853 -1.774 -1.748 -.851 .077 .075 .087

165 .056 .056 2.119 2.132 .080 .125 .122 .146

105 1.853 1.853 .317 .291 1.867 .125 .124 .125

PRE

49 -.622 -.622 -43.102 -40.287 -.617 6.574 5.641 .581
147 -.592 -.592 -23.000 -20.275 -.694 4.157 3.696 .457

181 -.184 -.184 8.98y 7.886 -.126 k.587 2.143 .295
111 .298 .298 33.994 32.606 .200 4.147 3.598 .676
32 3.680 i.680 5,795 -.212 4.275 3.022 2.350 .811
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TABLE 8

SIMS, four measurement levels. Eigenvalues of popula-
tion (POP) and sample (SAM), estimated population
means and estimated standard errors. SP=single preci-
sion, DP=double precision, J=jackknife, B=bootstrap
(both 40 samples).

SIMS eigenvalue
POP1 SAM'

population mean
JSP JDP BSP2

stand. error
JDP BSP

multiple .615 .625 .615 .620 .619 .011 .011 .011

nominal .450 .463 .566 .463 .454 .013 .013 .012

single .613 .622 .621 .622 .616 .014 .013 .012

nominal .352 .377 .171 .377 .371 .015 .013 .010

single .613 .622 .728 .628 .619 .014 .014 .012

ordinal .352 .377 .602 .697 .3:5 .094 .092 .012

numerical .$06 .615 .609 .608 .613 .012 .012 .012

.350 .363 .277 .321 .359 .010 .009 .011

No difference between eigenvalues SP and DP, except
for the first eigenvalue of single nominal (SP,SAM):

.621.

2 BOP with convergence to 10-5 gives the same results.
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FIGURE CAPTIONS

Figure 1. RUSSETT. Category quantifications for LABO based on three

methods: JSP, JDP and BSP (0 orginal sample value, - jackknife/

bootstrap sample value).

Figure 2. RUSSETT. Category quantifications for DEMO based on three

methods: JSP, JDP and BSP (0 original sample value, - jackknife/

bootstrap sample value).

Figure 3. FYTY. Category quantifications for TON based on three

methods: JSP, JDP and BSP (0 original sample value, - jackknife/

bootstrap sample value).

Figure 4. FYTY. Category quantifications for TON based on three

methods: JSP, JDP and BSP (0 original sample value, - jackknife/

bootstrap sample value).
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