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ABSTRACT 

Many different methods for the estimation of critical gaps at unsignalized intersections have 
been published in the international literature. This paper gives an overview of some of the 
more important methods. These methods are described by their characteristic properties.  For 
comparison purposes a set of quality criteria has been formulated by which the usefulness of 
the different methods can be assessed. Among these one aspect seems to be of primary 
importance.  This is the objective, that the results of the estimation process should not depend 
on the traffic volume on the major street during the time of observation. Only if this condition 
is fulfilled, the estimation can be applied under all undersaturated traffic conditions at 
unsignalized intersections. To test the qualification of some of the estimation methods under 
this aspect a series of comprehensive simulations has been performed. As a result the 
maximum likelihood procedure, as it has been described by Troutbeck, and the method 
developed by Hewitt can be recommended for practical application.  
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1. INTRODUCTION 

The estimation of critical gaps from observed traffic flow pattern is one of the most difficult 
tasks in empirical traffic engineering science. Miller (1), in his classical paper, could refer to 
nine different estimation methods, which also in his time did not cover the whole range of 
possible procedures to be obtained from international literature. Today it would be easy to 
find more than 20 or 30 methods for the estimation of critical gaps which are published 
around the world. All these methods produce different results. Therefore, the important 
question is: which of these procedures being recommended by different authors reveals a 
correct estimation? And the other question is: How can we find out if an estimation is valid or 
not? 

Before we can answer these questions we should first of all discuss the fundamental 
definitions. Here we concentrate on the most simple case of an unsignalized intersection. This 
is a crossroad of two one-way streets (fig. 1). Here two movements are allowed: 

• one major stream (= priority movement) of volume  pq
• one minor stream of volume  nq

According to traffic rules each major stream vehicle can pass the intersection without any 
delay. A minor street vehicle, however, can only enter the conflict area, if the next major 
vehicle is far enough away to allow the minor vehicle for a safe passage of the whole conflict 
area. "Far enough" is defined as: The next major street vehicle is arriving at the intersection at 
an instant which will happen  seconds after the previous major stream vehicle or 
seconds after the minor vehicle's arrival. This value  is called the critical gap. In other 
words: 

ct ct  

ct

ct  = critical gap = minimum time gap in the priority stream which a minor street driver is 
ready to accept for crossing or entering the major stream conflict zone. 

Another limiting factor for the minor street vehicles is the fact that they can not enter the 
conflict area during a short while after the previous minor street vehicle has entered. This is 
due to the physical length of the vehicles and the necessary headways. Thus, as the second 
variable for the characterization of minor street driver's behaviour we use the move-up time 

. ft

ft  = move-up time = time gap between 2 successive vehicles from the minor street while 
entering the conflict area of the intersection during the same major street gap. 

It is obvious that  and  differ from driver to driver, from time to time and between 
intersections, types of movements and traffic situations. Due to this variability there is no 
doubt that the gap acceptance process is of a stochastic nature. Thus the  and  can be 
regarded as random variables. Moreover, the parameters of the distribution functions for these 
variables may be subject to different external influences. It is, therefore, necessary to define 
some type of representative characteristics to model the usual behaviour of drivers. Therefore, 
the estimation of critical gaps and move-up times tries to find out values for the variables 
and  as well as for the parameters of their distributions, which represent typical driver 
behaviour at the investigated intersection during the period of observation.   

ct ft

ct ft

ct  

ft

For this paper we concentrate our derivations on the critical gap  ct .
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In unsignalized intersection theory it is generally assumed that drivers are both consistent and 
homogeneous.  

• Consistent drivers are expected to behave the same way every time in all similar 
situations. This means: A driver with a specific -value will never accept a gap less than  

 and he will accept each major stream gap larger than . However, within a population 
of several drivers, each of which behaves consistent, different drivers could have their 
own -values. These -values are then treated as a random variable with a special 
statistical density function  and  cumulative distribution function .  

ct

ct ct

ct ct
( )tFc a ( )tFc

• The population of drivers is homogeneous if each sub-group of drivers out of the 
population has the same functions  ( )tfc  and ( )tFc  .  

It is clear that in reality drivers are neither completely consistent nor homogenous. A 
completely inconsistent driver would apply a new -value for each gap. This would also 
include that the applied -value which is compared with one major street gap is completely 
independent from the  used for the previous major stream gap by the same driver some 
seconds before in the same queuing situation. This is, however, not expected to be the case in 
reality. Instead it is assumed that a rather careful driver will always demand a rather large gap 
or that a risky driver will always be prepared to accept of rather narrow gaps. Therefore, we 
assume that real driver behavior is closer to consistency than to completely inconsistent 
behavior. 

ct

ct

ct

For the estimation of critical gaps  from observations, a long series of methods has been 
proposed. An overview on the status of English literature at the late 60ies was given by Miller 
(1). Meanwhile many more proposals have been made. For the preparation of this paper a 
selection of candidate procedures has been made which by far does not represent everything 
what is published. The selection has been made on the background that these procedures have 
been used or been recommended also by other authors than the original sources. In the first 
part of this paper these methods are described. 

ct

 

2. ESTIMATION TECHNIQUE FOR SATURATED CONDITIONS:  
SIEGLOCH'S METHOD 

Siegloch (2) proposed a consistent framework for the theory of capacities of unsignalized 
intersections. This should be mentioned here to emphasized how the critical gaps are used 
within subsequent mathematical modeling. Let ( )tg  be the number of minor street vehicles 
which can enter the conflict area during one minor stream gap of size t. The expected number 
of t-gaps within the major stream is ( )thqp ⋅  where ( )th  is the statistical density function of 
all gaps (or headways) in the major stream. Thus, the amount of capacity which is provided 
by t-gaps per hour is . To get the total capacity c we have to integrate over the 
whole range of possible major stream gaps t. Thus we get 

( ) ( )tgthqp ⋅⋅

∫
∞

=
⋅⋅=

0t
dt)t(g)t(hqc p   (1) 
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This is the equation for the capacity of unsignalized intersections which is the fundament for 
the whole gap-acceptance theory. Almost each of the different analytical capacity estimation 
formulas which is known from international literature is based on this concept, also in cases 
where the original authors where not aware of this fact.  

The consequence of this equation is, that for capacity calculations we need to know the major 
stream headway distribution  and the function ( )th ( )tg . Siegloch, as a consequence of this 
theory proposes a regression technique for the derivation of ( )tg  from field observations. For 
this estimation technique we need to observe saturated conditions, i.e. continuous queuing on 
the minor street. Only under these conditions we can observe realizations g for the function  

 by counting the number of minor street vehicles which enter major street gaps of size t.  
Of course, the realizations g are always integer numbers. The observation results can be 
plotted into a graph of the style of fig. 2. In almost all cases investigated by the authors (and 
that is quite a large number) the observation points are arranged such that a linear 
approximation for the representation of measurement points is justified. Therefore, a linear 
regression function is used to represent the observation data where t is the dependent variable 
and g is the independent variable: 

( )tg

gbat ⋅+=  (s) (2) 

where the parameters a and b are the outcome of the regression analysis. It is useful to 
calculate the average  (from the observed t-values) for each observed g-value before 
starting the regression. Thus, for every g-value within the sample, only one t-value (= ) is 
used. Otherwise the more numerous observations for smaller g would govern the whole result. 
Experience shows that in almost every case the average -values show only small deviations 
from a straight line.  

gt

gt

gt

The straight line for t = function (g) would be exactly correct, if  and  were constant 
values. In that case eq. 2 could be written as 

ct ft

⎪⎩

⎪
⎨
⎧

≥
−

<
=

0
f

0

0

ttfor
t

tt
ttfor0

)t(g   (3) 

where 
2
ttt f

c0 −=  (s) 

Therefore,  and  can be evaluated from the regression technique directly. Some authors 
(e.g. (9)) have classified this technique for critical gap estimation as deterministic, which is 
not correct. Instead this technique fully considers the stochastic nature of gap acceptance. 

ct ft

The combination of eq. 1 and 3 together with the assumption that ( )th  can be described by 
the exponential distribution leads to the well-known Siegloch-formula for the capacity of an 
unsignalized intersection of the simple type as shown in fig. 1: 

otp
e

ft
3600c

⋅−
⋅=  (s) (4) 

The advantage of Siegloch's procedure for the estimation of  and  is its close relation to 
the subsequent capacity theory. The drawback for practical application is the fact that this 

ct ft
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method can only be applied for saturated conditions which are difficult to find in many 
practical cases.  

 

3. ESTIMATION TECHNIQUES FOR UNDERSATURATED CONDITIONS 

3.1 The lag method 

It is more complicated to estimate the critical gap  from traffic observations with 
undersaturated conditions. One simple method could be based on lags. A lag is the time from 
the arrival of the minor vehicle until the arrival of the next major vehicle. We now assume 

ct

• consistent drivers  
• independence of the minor street vehicle arrival time and the traffic situation on the major 

street. 

Then the proportion  of drivers which accept a lag of size t is identical with the 
probability that a driver has a -value smaller than t. Thus we can state 

( )tp lag,a

ct

( )tFP clag,a =      .  (5) 

From this consideration we could derive the first method of critical gap estimation for 
undersaturated conditions. 

From traffic observations at an unsignalized intersection all lags should be measured. Also the 
fact if this lag has been accepted or rejected has to be noted. Then the time scale is divided 
into W segments of size , e.g. t∆ s1t =∆ . For each interval i we look at  

iN   = number of all observed lags within interval  i  

iA   = number of accepted lags within interval  i  

ia   = /   iA iN

If  is the time at the center of interval i then it

iic a)t(F =      .  (6) 

which is an approximation of the cumulative distribution function of critical gaps. The mean 
critical gap then is 

[ ]∑
=

−−⋅=
W

1i
1icicic )t(F)t(Ftt      .  (7) 

where 
W =  number of intervals of size t∆  

Similarily also the standard deviation for the distribution ( )tFc  could be estimated.  

For practical application this method has some drawbacks.  For the method, in each interval  i  
a sufficiently large sample should be available. This demands for very long observation 
periods since 

• with low major street traffic flow it takes a while to observe enough smaller lags, 
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• with large major street volumes most minor street vehicles have to queue before they can 
enter the conflict zone. Thus, although a large number of driver's decisions has been 
observed, there will only be very few lags which can be used for this estimation 
procedure. 

Therefore, an estimation procedure is needed which makes use of observed rejected and 
accepted gaps (i.e.: not only lags) since they also contain information about the size of the 
critical gap for the drivers who have been observed. 

Another disadvantage of this method is, that it only regards rather relaxed situations where no 
queuing occurs. An additional problem could be, that the critical value for the lags might be 
systematically different from that for the gaps. Due to all of these problematic aspects the lag 
method is not used in practice. It provides us only some insight from a theoretical point of 
view. 

 

3.2 Fundamental considerations for further methods 

Due to the reasons mentioned before, what is really needed for critical gap evaluations under 
undersaturated conditions is a procedure which also extracts information from those drivers 
who accept a gap after queuing. The proportion  ap , ( )tgaplag +  of accepted lags and gaps is 
no longer the distribution of the . The reason is that a driver who accepts a gap has selected 
among several gaps which were provided to him. In this case the distribution of all major 
stream gaps affects the distribution of accepted gaps. Moreover, among the rejected gaps 
those drivers with large  are overrepresented since they experience much more rejections 
compared with drivers who apply small -values. Therefore, some more considerations are 
necessary. 

ct

ct

ct

If we observe a driver on the minor street and his gap acceptance / rejection decisions, we can 
state: his  is greater than the maximum rejected gap and  is smaller than the gap he 
accepts. This is true if the driver behaves consistently (see above). If we observe a series of 
accepted gaps , then these accepted gaps can be described by an empirical statistical 
distribution function   (cf. fig. 3).   

ct ct

at

( )taF

On the other hand we can observe the distribution ( )( )tFr  of rejected gaps. Here it is, 
however, a question which types of rejected gaps are included into this distribution. Three 
different definitions are in use: 

a) Only the largest rejected gap for each driver is taken into account. 

 If a minor street driver was able to accept the first lag, he has not rejected any gap. In 
this case it could be defined to withdraw this driver out of the sample (= case a1); 
i.e.: also his accepted lag is not evaluated for the estimation procedure.  

 Or it could be defined to use 0 as the size of the rejected gap for this driver (= case 
a2). 

b) All observed rejected gaps are taken into account. This includes that for one 
individual minor street driver, who was waiting for a while, a longer series of 
rejected gaps is included. Also here the distinction of case a) has to be made: 

 case b1:  drivers accepting a lag are omitted 
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 case b2:  for drivers accepting a lag the largest rejected gap is defined as  0  

Regardless of the definition a) or b) being used, we know that this distribution , in a plot 
like fig. 3, must be left of the desired distribution  

( )tFr

( )tFc . On the other hand the function  ( )tFa   
of accepted gaps must be on the right of the ( )tFc  distribution. This is due to the fact that for 
each individual consistent driver      acr ttt <<    . 

Since the distribution function  can not be observed directly, it is the purpose of all of 
the following procedures to estimate the function 

( )tFc

( )tFc  as valid as possible or to estimate at 
least its typical parameters like the expectation or the median or - in addition - the variance. 

 

3.3 Raff's method 

The earliest method for estimating critical gaps seems to be that by Raff (3). His definition 
translated to our terminology - means:  is that value of t at which the functions  ct

( )tF1 r−   and       ( )tFa  

intercept. Miller (1) gave some additional mathematical interpretations for this method. He 
also points out that the results of this -estimation are sensitive to the traffic volumes under 
which they have been evaluated.  Raff's method has been used in many countries in earlier 
times, e.g. Retzko's work (4) introduced this procedure to Germany. 

ct

 

3.4 Ashworth's method 

Under the assumption of 

a)  exponentially distributed major stream gaps with statistical independency between 
consecutive gaps 

b)  normal distributions for  and  at ct ,

Ashworth (5, 6, 7) found that the average critical gap  can be estimated from  (= mean of 
the accepted gaps ; in s) and  (= standard deviation of accepted gaps)  by 

ct aµ

at aσ

2
aac pt σ⋅−µ=  (s) (8) 

with p = major stream traffic volume (veh/s). If  is not normal distributed the solution 
might become more complicated. However, also for a gamma distribution or a log-normal 
distribution of  and  eq. 4 is still a very close approximation. Miller (1) provides another 
correction method for the special case that the  are gamma distributed. Then the two 
equations apply 

at

at ct

ct

a

c
ac

2
cac

t
pt

µ
⋅σ=σ

σ⋅−µ=  
(s) (9) 

from which  and  are to be obtained by substitution. ct cσ
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For our evaluations we used eq. 8. 

 

3.5 Harders' method 

Harders (8) has developed a method for -estimation which since has become rather popular 
in Germany. The whole practice for unsignalized intersection in Germany is still based on  
and -values which were evaluated using this technique. The method makes only use of gaps 
(i.e. case b1 mentioned above). The method is very similar to the lag method mentioned as 
paragraph 3.1. However, for Harders' procedure, as it is described in (8) lags should not be 
used in the sample. The time scale is divided into intervals of constant duration, e.g.  

. The center of each interval i is denoted by . For each vehicle queuing on the 
minor street we have to observe all major stream gaps which are presented to the driver and, 
in addition, the accepted gap. From these observations we have to calculate the following 
frequencies and relative values: 

ct

ct -

ft

s5.0t =∆ it

iN   = number of all gaps of size  i, which are provided to minor vehicles 

iA  = number of accepted gaps of size  i  

ia  = /   (10) iA iN

Now these -values can be plotted over the . The curve generated thus has the form of a 
cumulative distribution function. It is treated as the function 

ia it
( )tFc . However, nobody has 

provided any conclusive mathematical concept that this function   = function  has real 
properties of . Instead the approach might be a misunderstanding of the lag method.  

ia ( )it
( )tFc

Part of the method is, that each gap s1t <  is assumed to be rejected and that each gap  
 is assumed to be accepted. For practical application it is not guaranteed that   

ai = function ( )is steadily increasing over the , which should be the case for 
s21t >

it it ( )tFc . 
Therefore, the -values are corrected by a floating average procedure, where each  is also 
weighted with  the -values. Finally, the estimation of  is given by the expectation of the 
thus formed -distribution function. From the descriptions it can be obtained that this 
method is a more pragmatic solution without a strong mathematical background. 

ia ia

iA ct
( )tFc

 

3.6 Logit procedures 

A couple of methods have been proposed (e.g. (9)) which can be summarized as logit models, 
since they provide similarities to the classical logit models of transportation planning (cf. 
(10)). In each case the models lead to a function of the logit type. One typical formulation for 
this family of models is like the following. 

Each minor street driver waiting for a sufficient gap has to judge between the two alternatives 
 i = accept the gap for the crossing or merging maneuvers 
 j = reject the gap. 

A driver in his decision situation d will expect a specific utility from his decision. This utility 
can be regarded as a combination of safety on one side and low delays on the other side. We 
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regard the total utility  as an additive combination of a deterministic term  and a 
random term : 

idU idV

idε

jdjdjd

ididid

VU
VU

ε+=
ε+=

  (11) 

We assume that the deterministic component  can be computed from attributes which can 
be evaluated by objective measurement techniques. Here we use as one possible solution a 
linear utility function. 

idV

KjdtK2dj21jdt1dj

KdiK2di21di1di

x...xxV

x...xxV

⋅β++⋅β+⋅β+α=

⋅β++⋅β+⋅β+α=
  (12) 

where 
   = parameters K21 ,,, βββα K

    = value of the k - th attribute in situation d in case of acceptance idkx
  jdkx   = value of the k - th attribute in situation d in case of rejection 
  K  = number of attributes 

The random component includes all influencing factors which can not be evaluated 
precisely or which are due to really random elements of the decision process. 

idε

We do, however, assume that the drivers, on average, make rational decisions, i.e.: they make 
those decisions which provide the highest utility for them. Thus the probability ( )tpi  of 
acceptance of a gap by a driver is 

( )
( jdididdji

djdii

VVp)t(p

UUp)t(p

−≤ε−ε=

>=

)  (13) 

For the random component we assume a Gumbel-distribution (cf. (10)). Then the 
difference  

  has a logistic distribution; i.e.: 

idε

idjdd ε−ε=ε

xe1

1)x(F
d ⋅µ−+

=ε   (14) 

( )2x

x

e1

e)x(f
d ⋅µ−ε

+

⋅µ
=   (15) 

where 
 µ = parameter of the distribution 

Therefore, eq. 13 and 14 can be written as 

⎟
⎠
⎞⎜

⎝
⎛ε −⋅µ−

+

=−=
jdid

jdidi VV
e1

1)VV(F)t(p
d

  (16) 
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Within the product ( )jdid VV −⋅µ  the factor µ  can be included into the parameters α  and iβ  
(cf. eq. 12).  For the special case that only one attribute is observed (K = 1) we get 

( )djdi xxi
e1

1)t(p −⋅β−+
=   (17) 

As attributes we can use e.g.: size of the presented gap, time which the minor street driver has 
spent in the queue, speed of the major street vehicle, driving direction of the next arriving 
major vehicle in case of a two-way street, etc. 

So far the model formulation is much the same as within the classical logit models of 
transportation planning. If we, however, analyse eq. 16 we see that, of course, the  and  
(which could e.g. be the gap until the next arriving major street vehicle) are the same either if 
the gap is accepted (i) or rejected (j). 

idx jdx

Therefore, not the difference of attributes is used within the equation. Instead the attribute 
itself is introduced into eq. 14 or 16. Thus eq. 16 becomes     

KdK2d21d1 x...xxi e1
1)t(p ⋅β++⋅β+⋅β+α+

=   (18) 

and eq. 17 (for  and attribut  =  major stream gap t) gets the form 1k = dx

ti e1
1)t(p ⋅β+α+

= ( )tFr   (19) 

Now, to derive the critical gap , we understand ct ( )tpi  = function (gap size t) (= probability 
that a driver in situation d accepts a gap of size t) as a statistical density function for a random 
variable T. Then the critical gap is defined as the median of this random variable T; i.e. 

ct  = value of  T, for which    (20) ∫ =
ct

0
i 5.0dt)t(p

Finally the parameters k11,, ββββ K  are estimated by a maximum likelihood technique. As an 
example Pant, Balakishan (11) have used this kind of logit model with  and 0=α 11K =  
different attributes. 

To solve this model we have to determine the log-likelihood function. This, for the model 
formulation of eq. 19, is given by 

∑
=

⋅β+α ⎥
⎦

⎤
⎢
⎣

⎡
⋅⋅β−⋅β+⋅α+α+⎟

⎠
⎞

⎜
⎝
⎛
+

=βα
n

1d
ddddt tyty

e1
1ln),(L

d

  (21) 

where 
   = 1 if a driver in situation d accepted a gap dy
   = 0 if a driver in situation d rejected a gap 
  n = no. of observed decisions 
   = gap size offered to a minor street driver in situation d       (s) dt
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The maximum of  can be determined by forming the derivatives and setting both as 
sero: 

( βα,L )

0y1
e1

elnL n

1t
dt

t

d

d

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+
=

δα
δ ∑

=
⋅β+α

⋅β+α

  (22) 

0ytt
e1

elnL n

1t
dddt

t

d

d

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+
=

δβ
δ ∑

=
⋅β+α

⋅β+α

  (23) 

These two equations could be solved iteratively. Instead, also eq. 21 could be maximized 
using a spreadsheet maximizing technique. This (using Quattro Pro, version 5) is the method 
which has been employed for the following analyses. 

The maximization of  reveals values for α and β in eq. 19. Since this is the 
distribution function of a logistic distribution, eq. 20 can be solved for  as the mean of this 
distribution, which is 

( βα,L )
ct

β
α

=ct  (24) 

The variance of the critical gap thus can be estimated as 

2

2
2

t 3c β
π

=σ  (25) 

Finally it should once again be noted that this family of models allows also the evaluation of 
other external effects on the critical gap by using eq. 18 instead of eq. 19. Then the log-
likelihood function (cf. eq. 21) must be formed for this more complex model. As attributes we 
then have to include other external influencing parameters in addition to the major stream gap 
(see text below eq. 17). 

As an example for this type of logit estimation fig. 4 should be regarded. It has been evaluated 
from the simulations mentioned below for case b1 (see above), i.e. situations when the driver 
could accept the first lag were omitted. 

 

3.7 Probit procedures 

Probit techniques for the estimation of critical gaps have been used since the 60ies (e.g. (12); 
cf. also references given by (1)). The formulation for this type of models is quite similar to the 
logit concept. In their original form these models do, however, not use the utility term. Instead 
the size of the critical gap  is directly randomized by an additive term ε . Thus we 
formulate for a consistent driver d: 

ct

dcd,c tt ε+=  (26) 

where 
ct , d = critical gap for driver d (s) 
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ct  = average critical gap for the  
whole population of drivers (s) 

dε  = deviation of the critical gap for driver d from  ct  (s) 

The probability that a driver will accept a major street gap of size t is  

( ) ( )dcd,ca ttpttp)t(p ε+≥=≥=       . (27) 

For the probit model it is assumed that the random component dε  is normal distributed with 
mean 0 and standard deviation . Then eq. 27 can be further developed into εσ

( )εσ= ,ttN)t(p ca  (28) 

where    

 ( )εσ,ttN c  = cumulative distribution function of a normal distribution with  

mean  = ct  and standard deviation =  εσ    
Using the standardized form for the normal distribution this equation can be written as 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ
−

Φ=
ε

c
a

tt)t(p  (29) 

where 
( )zΦ  = value for the standarized  

cumulative normal distribution function at point z 

The terms ct  and  are parameters of the model. They can be evaluated by regression 
techniques (1) for the probit if the proportion of accepted lags is used as an estimate for 

εσ
( )tpa .  

With this technique the method is nearly identical with the lag method.  If also gaps were 
included the technique has all the problems mentioned above (see paragraph 3.2). Therefore, 
Hewitt (13, 14) proposed a correction strategy to the basic probit method to account for the 
bias caused by multiple rejection of gaps by drivers applying a large - value.  This 
technique here is mentioned as a separate paragraph 3.8. 

ct

Another important contribution to probit estimation techniques has been given by Daganzo 
(19). Here a theory has been proposed which estimates  based on the whole history of 
rejected gaps and the accepted gap for each individual minor street driver. A normal 
distribution is applied for the  and its variance over the whole population of drivers as well 
as for the random term  (cf. eq. 26). The model can only be solved by special software for 
multinominal probit estimation techniques. However, it may not be certain that a solution for 
the parameters will be found. Therefore, this approach seems to be too complicated for 
practical application. 

ct

ct

dε

Mahmassani, Sheffi (20) propose a probit model which allows to account for the influence of 
waiting time at the stop line on the gap acceptance behavior of drivers. The number of gaps 
which a driver has rejected before he accepts a gap is one parameter of the model. Here also a 
log-likelihood function is given which allows a maximum-likelihood estimation based on 
probit theory. The estimation leads to a solution in which the critical gap depends on the 
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number of rejected gaps. This type of solution could be useful as input for simulation models 
if the concept has proven to be realistic, based on ample empirical research. The solution 
containing the number of rejected gaps is, however, not useful for application in guidelines 
(e.g. chapter 10 of the HCM) or other analytical capacity calculations. Here the theories allow 
only for one typical fixed value of  to be introduced into further calculations. ct

One problem with all probit approaches is that the normal distribution seems not to be 
adequate to be applied for critical gaps since a significant skewness of the -distribution 
must be expected. The concept of probit estimations has been included into our analyses via 
Hewitt's solution. 

ct

 

3.9. Hewitt's method 

Hewitt (13, 14, 15, 16) has published a series of papers on the estimation of critical gaps. For 
full explanation of the details of the different procedures the reader is refered to the original 
sources.  However, a short characterization of the method should be given here.   

Again the time scale is divided into intervals of constant duration, e.g. . The center of 
each interval i is denoted as . The method is using an iterative procedure. As a first 
approach for the gap acceptance function 

1t =∆

it
( )tFc  the lag method as it is described under 

paragraph 3.1 is used. However, for the purpose of analytical tractability   in the first 
step is estimated according to the probit method (cf. above). This leads to values for the 
probability that  is inside the interval i, which is denoted as , where the index 0 stands 
for the 0th step of iteration. 

( )tFc

ct 0,ic

Subsequent theoretical derivations lead to formulas for the expected number of accepted and 
rejected lags and gaps which are given in the following table (corresponds to eq. 30). 

Expected no. of gaps or lags of duration  , 
which are used as following by drivers  d   
with a critical gap of size    

it

itd,c ≅

   

 
used : 

as lags as gaps for 

Accepted ji fcN ⋅⋅⋅β  
( )i

ij
i F1

Ff
cN

−

⋅
⋅⋅⋅β  

j  ≥  i 

Rejected ji fcN ⋅⋅⋅β  
( )i

ij
i F1

Ff
cN

−

⋅
⋅⋅⋅β  

j  ≤  i 

where           (30) 
ic  = probability that the critical gap is inside interval  i 

if  = probability that a major stream gap is inside interval  i 
(Distributions of lags and gaps are assumed to be identical as it is the 
case for the exponential distribution.) 
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iF  = value of the cumulative distribution function for major stream gaps at 
the center of interval  i   

β  = 1 for      ij ≠
 =  0.5 for    1j =  

Applying this set of formulas we can compute the number of accepted an rejected gaps and 
lags from a given set of { }0,ic . From these putative values a new estimation of the { }1,ic  can 
be computed, e.g by using a probit estimation technique. This set of { }1,ic  is imbedding a new 
estimation for . Again from these new ct { }1,ic  (applying eq. 30) new numbers of accepted and 
rejected lags are calculated, which again are the basis for the { }2,ic  and so on.  This iteration 
is repeated, until the values of subsequent  become nearly unchanged by the next iteration. ct

The only information to be extracted from observations for each time interval i of duration t∆  
are: 

• total number of gaps • number of rejected gaps 

• total number of lags • number of rejected lags 

For practical application some additional aspects have to be observed, if some of the time 
intervals are not filled up with sufficient empirical values. Then adjacent intervals have to 
amalgamated. Instead of a probit estimation procedure for the { }ic , which assumes a normal 
distribution for , also a log-normal distribution could be applied. The whole estimation 
procedure is included into a set of computer programs called GAPTIM and PROBIT (Hewitt, 
1995). These programs have been used for our investigations to analyse the Hewitt method. 

( )tFc

 

3.9 Maximum likelihood procedures 

Maximum likelihood techniques for the estimation of critical gaps seem to go back to Miller, 
Pretty (18) (for more detail cf. (1)). The method has been described in a more precise form 
also by Troutbeck (21). To understand the fundaments of this method let us assume that for 
one individual minor street driver d we have observed: 
  = largest rejected gap (s) dr
   = accepted gap (s) da

The maximum likelihood method then calculates the probability of the critical gap  being 
between  and . To estimate this probability, the user must specify the general form of the 
distribution  of the critical gaps for the population of drivers and then assume that all 
drivers are consistent. The likelihood that the driver's critical gap will be between  and 

is given by 

ct

dr da
( )tFc

dr da  

( ) ( )drda rFaF − . The likelihood  that within a sample of n observed minor street 
drivers the two vectors of the {  and 

∗L
}dr { }da  have been obtained is given by the product: 

( ) ( )(∏
=

−=
n

1d
drda

* rFaFL )  (s) (31) 

The logarithm L of the likelihood  is given by ∗L
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( ) ( )(∑
=

−=
n

1d
drda rFaFlnL )  (s) (32) 

In practice, the log-normal distribution is often used as the distribution of the critical gaps  
The mean critical gap within this distribution has been found to be an acceptable quantity for 
the representation of average driver behavior (1, 21).  

ct .

The likelihood  is also maximized when the logarithm L of the likelihood is maximized. 
Appropriate values for the critical gap distribution parameters (the mean and the variance) are 
found by setting the partial derivatives of L with respect to these parameters, to zero. This 
leads to a set of two equations depending on the vectors of the observed {  and { . These 
two equations have to be solved by iterative numerical solution techniques. Troutbeck (21) 
describes a procedure for estimating the critical gap parameters using this maximum 
likelihood technique in more detail. This numerical method has been used to estimate 
values for the investigations described in this paper. 

∗L

}dr }da

ct -

 

4. CRITERIA FOR THE CLASSIFICATION OF ESTIMATION METHODS 

Before we can compare the different estimation procedures we have to define the 
requirements for a useful procedure to estimate critical gaps. These requirements can not be 
derived by mathematics. Instead we propose the following set of criteria.  

1. Distribution 

The critical gap  is not a constant value. Instead it is a variable term where a variation has 
to be expected between different drivers and - for each individual driver - over time. 
Therefore, the critical gaps which drivers apply for their decision making process at 
unsignalized intersections are distributed like a random variable. The distribution is 
characterized by 

ct

- a minimum value as the lower threshold, which is  , 0≥
- an expectation  (average critical gap  or  mean critical gap; which often is also 

denoted as "the critical gap") ,  
cµ

- a standard deviation  σ  , 
- a skewness factor, which has to be expected as positive, i.e. a longer tail on the right 

side. 

This distribution or its parameters can not be directly estimated because the critical gap can 
not be observed in an individual driving situation. What can only be measured are the rejected 
and accepted gaps. Therefore, procedures have to be established which try to estimate the 
distribution or their parameters as close as possible. Normally the accepted and/or rejected 
gaps are used as a basis for this estimation.  

2. Consistency 

Such an estimation procedure should be consistent. This means: If the minor street drivers 
within a specific composition of traffic streams have a given distribution of critical gaps then 
the procedure should be able to reproduce this distribution rather closely. The procedure 
should at least reproduce the average critical gap quite reliably.  
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These reproduction qualities should not depend on other parameters like 

- traffic volumes on the major street nor on the minor street 
- delay experienced by the drivers 
- other external influences. 

Only if this consistency has been proven for a special procedure, then the method can be used 
to study influences of the external parameters on the critical gap. Otherwise the influences 
being found by empirical studies might be due to the inconsistency of the estimation 
procedure and those influences may not really be related to the external parameters being 
investigated.  

For most of the well known estimation procedures for critical gaps this consistency has not 
been proven (as far as it is known to the authors). Therefore, there is a strong feeling that a 
great deal (if not the majority) of all relationships between critical gaps and other parameters 
(like traffic volumes, time in queue, delays at the stop line as service times of the imbedded 
queuing system, and also geometric characteristics of intersections which normally are 
studied at different sites under different traffic volumes) which can be found in the literature 
might be not existing in reality since the differences being found may just be due to this 
inconsistency. 

3. Robustness of the method 

This aspect, as it is already mentioned by Miller (1), has been emphasized by Hewitt (17) 
discussing the experiences described in this paper. It means that the results of estimation 
procedures should not be too sensitive to the assumptions being made, e.g. assumptions about 
the distributions of critical gaps or of major stream headways.   

Another factor which deserves mention is the size of the standard error of the mean critical 
gap. It is possible that a method which produces a slight bias, but a small standard error might 
be preferable to an unbiased method with a large standard error (17). 

4. Capacity model compatibility 

The estimation of critical gaps is not an end in itself. Critical gaps are used in models for 
capacity computation at unsignalized intersections. Critical gaps estimated by different 
procedures could have different influences on the model's capacity output. It should be 
guaranteed that the estimated critical gap in conjunction with the move-up times  (and their 
estimation procedure) gives a reliable and realistic estimate of the capacity independent of the 
external parameters (mentioned above below 2.), especially the major street volume.  

ft

In no case, it is sensible to use a capacity computation model with critical gaps estimated in a 
way which is not related to the model. In other words: The estimation procedure for critical 
gaps and the capacity model (as well as the consecutive delay model) must form one entire 
integrated unity. 

It has to be stated that this capacity model compatibility is only given for the Siegloch 
method, as shown above. For each of the other estimation procedures the method of critical 
gap estimation and the capacity (as well as delay) calculation methods have no theoretical 
connections. Some methods, however, produce results which can not be handled by the usual 
theoretical concepts for capacity calculations, e.g. some of the probit results (cf. above). 
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5. SIMULATION STUDIES 

5.1 Description of the simulation concept 

These qualities of an estimation procedure - especially criterion 2 - can only be checked for 
by a simulation model since an analytical approach is not available. Therefore an extended 
simulation study for testing different -estimation procedures according to requirement 2 has 
been performed. The two traffic streams - like illustrated in fig. 1 - have been generated by 
randomized procedures.  For each simulation run a combination of constant traffic volumes 

 and  has been given.  was varied between 100 and 900 veh/h.  has been varied 
between 0 and the capacity c, which depends on . Each such simulation run has been 
performed for constant traffic volumes over 10 hours. Thus, 46 different combinations of  
and  (where  < capacity) have been performed for two different cases, which are 
combinations of - and -values. The first case may represent minor street right turner 
behavior whereas the second case could stand for driver behavior of left turners from the 
minor street. 

ct

pq nq pq nq

pq

pq

nq nq
ct ft

 case  "5.8" case  "7.2"  
critical gap   tc 5.8 7.2 s 

minimum   -value ct 2.0 2.2 s 
k-value for the Erlang-distribution 5 5 - 

maximum   -value ct 12.5 15.5 s 
    

move-up time tf 2.6 3.6 s 

minimum    -value ft 1.2 1.6 s 
k-value for the Erlang-distribution 2 2 - 

maximum    -value ft 7.2 10 s 

The critical gaps  and the move-up times  for each simulated driver have been generated 
according to a shifted Erlang-distribution using the parameters mentioned before. Each driver 
is assumed to be consistent; i.e. he maintains his generated -value until his departure. 
Generated -values and -values outside the margins of minimum and maximum values 
indicated above have been replaced by these given extreme values. 

ct ft

ct

ct ft

Moreover, to achieve a rather realistic pattern of headways the so-called Hyperlang-
distribution (according to (22), in the version of (23)) has been applied for the major stream 
traffic flow generation where traffic on one single lane has been assumed. Also the arrivals of 
minor stream vehicles have been generated according to this type of distribution. These 
complicated distributions generate traffic situations of great variability which are rather 
similar to realistic conditions. 

Within each simulation run the critical gaps  have been estimated out of the simulated flow 
patterns according to the above mentioned estimation methods. Thus, a series of 46 
estimations for  has been obtained for each method.  

ct

ct
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5.2 Results for the critical gap 

To illustrate the type of results, fig. 5 is used. It presents all the  estimated by Hewitt's 
method for different -values. Here they are plotted over the major stream traffic volume 

 which was generated by the simulation. This type of relation, after some comparisons, 
turned out to be the most sensible since results in relation to minor street flows  showed 
much less variation. Each cross represents one -value. The crosses plotted one above the 
other were produced for different . For both traffic flows the simulated volumes (not the 
predetermined values for the generation of headways) were used in the following graphs.   

ct

pq

pq

nq
ct

nq

We see that the outcome of the Hewitt estimation process reveals -values between 5.63 and 
5.98 s for a correct value of 5.8 s and between 7.08 and 7.52 s for a correct value of 7.2 s. 
Thus a rather large variation of the results must be stated. For the -values a regression 
analysis regarding their relation to  has been performed. In this case the regression line 
was rather horizontal and it was close to the correct -value in both cases. That means: The 
Hewitt-method on average reproduces the correct -value very well and its results do not 
depend on major street volumes. Thus, this method fulfills our most important quality 
criterion 2) with a rather high performance. We shall see that this is not the case with most of 
the other methods.  

ct

ct

pq

ct

ct

From all the other methods studied, only the maximum likelihood method (fig. 6; denoted as 
Troutbeck method) comes up to the same performance as the Hewitt method. Here again the 
regression line shows no relation to major street volumes and the correct -values are on 
average close to the estimation results. Again a rather large variation of the results obtained 
for different minor street volumes can be recognized from the plots. 

ct

Nevertheless, these two methods fulfill the requirements formulated above, especially the 
most important criterion 2. 

Similar plots for the illustration of simulation results have also been produced for the other 
methods studied.  For the logit method (fig. 7) we see that the results become very different if 
we either use gaps and lags or only gaps. In our example (only s8.5tc =  has been evaluated) 
only the exclusive use of gaps (no lags have been used in the second sample) reproduces on 
average the correct . The inclusion of lags into the estimation process leads to a remarkable 
underestimation of the critical gap. However, in each of the approaches the results show a 
significant dependency on the major street traffic volume. Thus the logit procedure fails the 
important criterion 2). Therefore, it can not be recommended as useful estimation procedure 
(in the form as it is described above; it could be that a correction to the procedure might 
become available). 

ct

For the Ashworth method (fig. 7) we see that most of the estimation results are smaller than 
the correct values. Since, thus, the results seem not to be correct, this procedure - at least in its 
uncorrected version (eq. 5) - are not to be recommended for application. 

A rather disastrous result has evolved from the simulations both for the Raff and the Harders’ 
procedures. The Raff method meets the correct values only for median major street traffic 
volumes whereas Harders' method leads to a tremendous overestimation of critical gaps. Only 
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if Harders' method included the lags into the evaluation process, some improvements for the 
average size of the resulting -values are obtained. The even more important problem is, 
however, that the results coming out of both types of procedures have a strong relationship to 
the major street traffic volumes - a feature which should be avoided as our set of criteria 
indicates. Therefore, both methods should not be used for reliable critical gap estimations. 

ct

Finally, for the estimation method according to Siegloch we find again better performance. 
We see - similar as for the Hewitt and Troutbeck methods - that for both example values of  

 we get on average a correct replication of the true -values. In addition, the regression 
lines are not too much related to major street traffic volumes; i.e. the major street flow does 
not systematically influence the estimation results. Thus the Siegloch method seems to be a 
useful estimation technique.  

ct ct

The simulation for the Siegloch-method allows us also to evaluate the capacity with the 
predetermined - and -values, since for the simulation a continuous queue has to be 
generated. Thus, the number of minor street vehicles, being able to pass the conflict zone, is 
exactly the capacity of the intersection. The results from a series of 10-hour simulation runs 
have been noted. They were described by a regression function (cf. fig. 10) 

ct ft

pBeAc ⋅−⋅=  (s) (33) 

which is of the same type as Siegloch’s capacity function (eq. 4). The values for A and B 
have been estimated according to the principle of least squares using a spreadsheet technique 
without prior linear transformation. This type of function allows another type of estimation of 

 and : ct ft

2
tBt

A
3600t f

cf +==  (s) (34) 

The simulated capacity results and the regression function ("simulated") are represented in 
fig. 10.  The regression has an extremely high r-value, which indicates a very good 
correlation.  However, the - and -value obtained from the regression line are different 
from the true values. The relation between capacity and major flow, as it would be calculated 
from Siegloch's original formula with the true values for  and  is also indicated in the 
graph of fig. 10 ("calculated"). Both curves for the capacity show significant differences. 
Therefore, criterion 3 is not fulfilled. The reason is that the Siegloch formula (eq. 4) is only 
exactly valid for constant - and -values and poisson major street traffic flows whereas the 
simulation has been performed for more realistic circumstances especially with non-poisson 
major stream arrival patterns. This result indicates that the Siegloch estimation technique is 
sensitive to the major street headway distribution (cf. criterion 3). 

ct ft

ct ft

ct ft

Fig. 11 gives an overview of all the regression lines obtained. 

 

5.2 Results for the variance of estimated critical gaps 

The simulated 10 hours of constant flows do not represent a sample which could be observed 
in reality. Under practical circumstances only measurements for one or two hours can be 
taken. Therefore, we studied also the convergence behaviour of some of the methods. Here 
the results for the maximum likelihood method are mentioned. Fig. 12 shows the range of 
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minimum and maximum -values obtained from observation intervals of different durations.  
We see that for 1 hour (and longer) intervals the variability is less then 0.2 s.  

ct

Of course, here also the traffic volume should be regarded as an additional influencing factor. 
Therefore, fig. 13 shows the standard deviation in relation to the true value as a function of 
the number of minor street vehicles simulated. On the horizontal axis a logarithmic scale has 
been used. We see that above a sample size of 100 minor street vehicles the standard 
deviation is less than 0.3 s. The relation shown in fig. 13 seems to be of more general validity 
compared to fig. 12. 

 

5. CONCLUSION 

A review of publications about estimation of critical gaps reveals a lot of different proposed 
solutions. Here it is difficult to understand which procedure is reliable and which not. From 
the sample of methods, which have been tested by simulations for this paper, the maximum 
likelihood procedure and Hewitt's method gave the best results. Both were valid for the two 
cases which have been studied. This is the reason why the maximum likelihood method has 
been selected for the evaluation of critical gaps which are to be used for the next edition of 
the HCM, chapter 10, (24). 

The investigation of the different theoretical concepts, however, shows that principles of the 
various methods could also be combined. Thus, in future also even more estimation 
techniques for critical gaps might be proposed. 
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conflict area 
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Fig. 1:   
Illustration of the basic 
queuing system 
 
 

 
 

 
Fig. 2: Illustration of Siegloch's method: The points illustrate the observed values for 

g. The circles represent the average t-values for each g. The line indicates the 
regression equation: t9.28.4t ⋅+= ,  
from which we can obtain the estimations s25.6tc =  s9.2t f = . 
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Fig. 3: The distribution function  ( )tFc  of the critical gaps must be situated between 

the distribution functions of rejected gaps ( )tFr  (here case a2): lags are treated 
as  and the distribution function 0t r = ( )tFa  for accepted gaps. 
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Fig. 4: Example for the logit estimation obtained from the simulation runs mentioned 

below for = 800 veh/h and  = 200 veh/h .  
The resulting values are: α = 6.61 ,  β = -1.01 ,   = 6.54 s  . 
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Fig. 5: Results from the simulation runs for the Hewitt-method for two -values. ct
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Fig. 6: Results from the simulation runs for Troutbeck's maximum likelihood method 

and for two -values. ct
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Fig. 7: Results from the simulation runs for the logit method and Ashworth's method. 

For logit only the case for = 5.8 s has been evaluated. ct
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Fig. 8: Results from the simulation runs for the Raff and Harders methods and for two 

-values. ct

 
 



Brilon, Troutbeck, Koenig :  Estimation of Critical Gaps  28 
   

 

 

5,0 
5,5 
6,0 
6,5 
7,0 
7,5 
8,0 
8,5 

es
tim

at
ed

 c
rit

ic
al

 g
ap

 [s
]

100 200 300 400 500 600 700 800 900 
volume of priority stream [veh/h]

Siegloch  tc = 5.8 s

5,0 

6,0 

7,0 

8,0 

9,0 

es
tim

at
ed

 c
rit

ic
al

 g
ap

 [s
]

100 200 300 400 500 600 700 800 900 
volume of priority stream [veh/h]

Siegloch  tc = 7.2 s

 
Fig. 9: Results from the simulation runs for Siegloch's method.  
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Fig. 10: Simulated capacities compared with results calculated from Siegloch's formula 

(eq. 4) using the given critical gap and move-up time. 
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Fig. 11: Comparison of the regression lines for the relation between major street traffic 

flow and estimated -values for  = 5.8 s (a) and   = 7.2 s (b). ct ct ct
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Fig. 12: Minimum and maximum estimates for the critical gap in relation to the 

duration of the observation period for the maximum likelihood method and a 
given  = 5.8 s.  ct
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Fig. 13: Standard deviation of the estimated critical gaps  in relation to the sample 

size of minor street vehicles for the maximum likelihood method and a given  
 = 5.8 s .  
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Figure captions 
 
Fig. 1:  Illustration of the basic queuing system 
 
Fig. 2: Illustration of Siegloch's method: The points illustrate the observed values for 

g. The circles represent the average t-values for each g. The line indicates the 
regression equation: t9.28.4t ⋅+= ,  
from which we can obtain the estimations   = 6.25 s     = 2.9 s . ct ft

 

Fig. 3: The distribution function ( )tFc of the critical gaps must be situated between the 
distribution functions of rejected gaps ( )tFr  (here case a2): lags are treated as 

) and the distribution function 0t r = ( )tFa  for accepted gaps. 

 
Fig. 4: Example for the logit estimation obtained from the simulation runs mentioned 

below for = 800 veh/h and  = 200 veh/h .  
The resulting values are: α = 6.61,  β = -1.01, = 6.54 s . 

pq nq

ct

 

Fig. 5: Results from the simulation runs for the Hewitt - method for two -values. ct
 
Fig. 6: Results from the simulation runs for Troutbeck's maximum likelihood method 

and for two -values. ct
 
Fig. 7: Results from the simulation runs for the logit method and Ashworth's method. 

For logit only the case for  = 5.8 s has been evaluated. ct

 
Fig. 8: Results from the simulation runs for the Raff and Harders methods and for two 

-values. ct

 
Fig. 9: Results from the simulation runs for Siegloch's method.  
 
Fig. 10: Simulated capacities compared with results calculated from Siegloch's formula 

(eq. 4) using the given critical gap and move-up time. 
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Fig. 11: Comparison of the regression lines for the relation between major street traffic 
flow and estimated - values. ct

 
Fig. 12: Minimum and maximum estimates for the critical gap in relation to the 

duration of the observation period for the maximum likelihood method and a 
given  = 5.8 s .  ct

 
Fig. 13: Standard deviation of the estimated critical gaps  in relation to the sample 

size of minor street vehicles for the maximum likelihood method and a given 
 = 5.8 s .  
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Definition of variables: 
   has not finally been adjusted to the text / is not part of the text 

iA   = number of accepted gaps of size  i  (Harders method) 
number of accepted lags of size  i  (lag method) 

ia  = 
i

i
i N

Aa =
  
rate of acceptance for gaps of size  (Harders method) 

it

i

i
i N

Aa =
  
rate of acceptance for lags of size  (lag method) 

it

c = capacity = maximum number of minor street vehicles,  

  which can cross the major stream during one hour  (veh/h) 

t∆  = length of time interval for the lag method or Harders method 

( )tfa  = statistical density function for the accepted gaps 

( )tFa  = cumulative distribution function for the accepted gaps 

( )tfc  = statistical density function for the critical gaps 

( )tFc  = cumulative distribution function for the critical gaps 

( )tfr  = statistical density function for the rejected gaps 

( )tFr  = cumulative distribution function for the rejected gaps 

g = observed value for g(t)  (-) 

( )tg  = number of minor street vehicles, which can enter into a  
major street gap of size  t  (-) 

( )th  = statistical density function for gaps (headways) between  
vehicles in the major stream 

L = Log-likelihood function 
∗L  = Likelihood function 

aµ  =  mean of the accepted gaps   (s) at

cµ  = average critical gap 
= expectation within the distribution function ( )tFc   (s) 

n = number of observed minor street drivers 

iN  = number of all gaps of size i , which are provided to  
         minor vehicles (Harders method) 
number of all lags of size  i , which are provided to  
         minor vehicles (lag method) 
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p = major (= "priority") street traffic volume 3600/qp=   (veh/s) 

nq  = minor street traffic volume   (veh/h) 

pq  = major (= "priority") street traffic volume   (veh/h) 

as   =  standard deviation of accepted gaps     (s) at

cs  = standard deriation of critical gaps 

 =  standard deriation within the distribution function ( )tFc   (s) 

t = time  (s) 
index for drivers or decision situations (logit method) 

at  = accepted gap  (s) 

ct  = critical gap  (s) 

ft  = move-up time  (s) 

gt  = average t-value for each g (Siegloch method)  (-) 

it  = center of the i-th time interval for Harders method  (s) 

rt  = rejected gap  (s) 

W = number of time intervals (lag method)  (-) 

 


