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AbstrAct

Chronic obstructive pulmonary disease (COPD) affects millions of people worldwide. It 
is now clear that COPD is heterogeneous, different components of the disease being pres-
ent in different patients. Yet, the diversity of COPD pathophysiology, severity and how 
this relates to disease prognosis and treatment outcomes is far from understood. In order 
to address this, mathematical techniques such as cluster analysis have been employed to 
identify subgroups or clusters of COPD patients with differing disease attribute profiles. 
However, significant methodological shortcomings call into question the validity of the 
COPD clusters identified in such studies. Furthermore, few published studies relate COPD 
clusters to underlying disease mechanisms and treatment outcomes. Where this has been 
addressed, progress has particularly been made for patients with an eosinophilic-predom-
inant profile. In order to maximise the usefulness of COPD cluster analysis studies, we 
propose that future studies must implement more stringent methodologies and focus on 
COPD inflammatory biology. (BRN Rev. 2019;5(3):201-214)
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INtrODUctION

The worldwide prevalence of chronic obstruc-
tive pulmonary disease (COPD) has been es-
timated as 251 million people and is now the 
third leading cause of death worldwide1-3. 
The disease is characterised by inflammation 
of the airways leading to a variety of disease 
features including chronic bronchitis, in which 
there is thickening of the bronchiolar walls 
and regular sputum production, and emphy-
sema, in which alveoli are destroyed4. Both of 
these disease characteristics lead to increased 
airways resistance and loss of elastic recoil 
of the airways, resulting in expiratory flow 
limitation which ultimately leads to the dys-
pnoea suffered by patients5,6. Chronic ob-
structive pulmonary disease is a progressive 
condition, punctuated by periods of acute 
respiratory symptom worsening known as 
exacerbations4. Tobacco smoking is the main 
risk factor for COPD, directly damaging air-
way epithelium with associated recruitment 
of inflammatory cells5,7.

COPD has long been recognised as a “heter-
ogenous” disease, meaning not all of its com-
ponents are present in all patients or at all 
time points in a given patient8. Recognition 
of COPD heterogeneity was first made in 1955 
when Dornhorst et al.9 identified two types of 
patients - emphysematous patients with dys-
pnoea and muscle wasting (”pink puffers”) 
and chronic bronchitic patients with cyanosis 
and right heart failure (“blue bloaters”). For a 
long time, a forced expiratory volume in one 
second (FEV1)-centric view of COPD prevailed 
and initial classifications of COPD severity 
used four categories, from 1 to 4 in order of 
increased severity10,11. While spirometric mea-
surements confirming post-bronchodilator 

FEV1/forced vital capacity (FVC) < 0.7 remain 
key for COPD diagnosis today, it is now ap-
preciated that patients’ exacerbation frequen-
cy history and dyspnoea severity are better 
predictors than FEV1 of future exacerbation 
risk and mortality, respectively12,13. However, 
a number of facets of diversity in COPD se-
verity are not adequately accounted for4,14. For 
example, it is acknowledged that COPD patho-
physiology involves a diverse range and de-
gree of inflammatory profiles, yet how COPD 
inflammatory profiles relate to disease pro-
gression and treatment outcomes remains 
poorly understood5. Similarly, it is known 
that comorbidities are common in COPD pa-
tients and adversely impact on mortality but 
an integrated understanding of how comor-
bidities relate to underlying pathophysiologi-
cal and clinical features of COPD in different 
patients is lacking4,15,16. 

The lack of insight into COPD heterogeneity 
has hindered the development of treatments 
which significantly alter the course of dis-
ease; current pharmacological treatment for 
COPD, typically consisting of bronchodilator 
therapy and inhaled corticosteroids (ICS), 
are often empiric in nature, with limited 
consideration of the diversity of COPD se-
verity or associated underlying biological 
mechanisms17. Furthermore, current treat-
ments improve symptoms but do not mark-
edly alter the course of the disease, have clin-
ical deteriorations during treatment and an 
associated side effect profile18. This emphasis-
es the need to identify subgroups of COPD 
patients for whom the benefits of existing 
treatment significantly outweigh the risks, as 
well as to devise new treatments targeting 
disease mechanisms specific to particular sub-
groups of patients4,5. Research has hence sought 
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to identify different COPD “phenotypes” which 
may represent unique prognostic and thera-
peutic subgroups in the COPD population. 
Currently, a COPD clinical phenotype is de-
fined as “a single or combination of disease attri-
butes that describe differences between individuals 
with COPD as they relate to clinically meaningful 
outcomes (symptoms, exacerbations, response to 
therapy, rate of disease progression, or death)”19. 
This has been accompanied by the search for 
“endotypes”, namely, “subtype(s) of disease de-
fined functionally and pathologically by a molec-
ular mechanism or by treatment response”20. The 
large number of variables to be taken into 
account for meaningful COPD phenotyping 
and endotyping has prompted the use of an 
unsupervised machine learning technique 
known as cluster analysis (CA) in airways 
disease heterogeneity research21. The aim of 
this review is to critically evaluate the useful-
ness of attempts to identify COPD clusters 
and how these relate to disease prognosis and 
pathophysiology to inform optimisation of 
treatment outcome.

clUster ANAlysIs – A methOD 
fOr sUbgrOUPINg chrONIc 
ObstrUctIve PUlmONAry DIseAse 

Cluster analysis seeks to organise data points 
representing, for example, individual patients, 
from a heterogeneous population into sub-
groups or “clusters” of relative homogene-
ity22; it also enables the identification of clus-
ters for high dimensional data which cannot 
be visualised, hence the usefulness of CA in 
the context of recognising the diversity of 
COPD subgroups and for the purpose of phe-
notyping and endotyping. Where there are a 
very large number of variables to consider, as 

is the case in COPD heterogeneity research, 
a technique known as principal component 
analysis (PCA) for continuous variables and 
multiple correspondence analysis (MCA) for 
categorical variables, is commonly performed 
before CA to identify a reduced number of 
new, independent variables or dimensions for 
use as input for CA16,23. Figure 1 illustrates 
the concept of clustering. 

There are a number of ways in which a cluster 
can be mathematically defined; for any given 
dataset, different cluster-finding algorithms 
may identify slightly different clusters. Each 
cluster-finding algorithm is associated with 
advantages and limitations. Table 1 summaris-
es some of these considerations for two of the 
most commonly used cluster-finding algo-
rithms in COPD heterogeneity research. 

Figure 1. Illustration of cluster analysis. a. A heterogeneous 
population, featuring three apparent subgroups, is shown in two 
dimensions. b. K-means algorithm enables identification of the 
subgroups (highlighted light blue, dark blue and black).

a

b
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There is no single clustering algorithm which 
performs best in all scenarios; this follows 
from the “no free lunch” theorem for unsuper-
vised optimization problems, including CA, 
which states that “any two algorithms are 
equivalent when their performance is averaged 
across all possible problems”27,28. Thus, when 
performing COPD CA, the algorithm should 
be selected based on the nature of the data 
to be clustered and the ease of use of the 
algorithm for the particular context. Necessary 
steps should then be taken to address the lim-
itations associated with the chosen algorithm. 

The usefulness of attempts to identify COPD 
clusters will now be evaluated.

cOPD clUsters – the fINDINgs 

Over the last decade there have been a mul-
titude of studies using CA to identify COPD 
subgroups. The holy grail of COPD heteroge-
neity research is the identification of COPD 
subgroups which provide prognostic power 
superior to that of the current Global Initia-
tive for Chronic Obstructive Lung Disease 

Table 1. A summary of the procedure of and considerations to be made for K-means and Ward’s methods of clustering

Clustering 
Technique

K-Means (Partitional)22,24,25 Ward’s Method (Agglomerative Hierarchical)26 

How it works i) K initial centroids are chosen, where K is the pre-specified 
number of clusters.

ii) Each data point is assigned to the nearest centroid,  
as determined by a proximity measure (e.g., Euclidean 
distance). 

iii) The position of each centroid is updated based on the data 
points belonging to each centroid’s cluster, and the data 
points are then reassigned to the new nearest centroid. 

iv) These steps are repeated until the centroids remain the 
same. The final grouping of data points around the 
centroids constitutes the final clusters.

i) Each data point initially represents a cluster. 
ii) Clusters which are most similar to each other as deter-

mined by a proximity measure (e.g., Euclidean distance)  
are merged with each other.

iii) This step is repeated until only one cluster remains.
iv) A dendrogram enables geometrical interpretation  

of the tree of clusters.

Strengths Computationally efficient. Number of clusters does not need to be pre-specified  
by the user since all cluster-subcluster relationships  
are evident from dendrogram representation.

Limitations i) Number of clusters must be pre-specified by the user.
ii) Highly sensitive to position of initial centroids in step 1  

of algorithm.
iii) Highly sensitive to outliers. 
iv) Performs poorly if the true clusters are non-spherical,  

or if clusters vary considerably in size or density.

i) Although the number of clusters need not be pre-specified 
by the user in order to run the algorithm, a method  
is required for deciding on the most meaningful clusters  
to extract from the dendrogram. 

ii) Computationally expensive.
iii) Cluster merging decisions in the early steps of the algorithm 

to maximise local optimization may lead to reduced 
optimization in downstream merging decisions, hence 
reducing global optimization.

Possible 
solutions to 
limitations

A number of cluster evaluation methods exist for deciding how 
many clusters from 2 to n, where n is the number of data 
points, are suitable e.g., pseudo F statistic measures the ratio 
of between cluster variance to within-cluster variance 
(Calinski and Harabasz stopping rule).

Bisecting K-means algorithm is less susceptible to initial 
centroid positions.

Outliers can be removed before clustering or identified  
in a post-cluster processing step.

A number of cluster evaluation methods exist for deciding how 
many clusters from 2 to n, where n is the number of data 
points, are suitable e.g., pseudo F statistic measures the ratio 
of between cluster variance to within-cluster variance 
(Calinski and Harabasz stopping rule).
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(GOLD) classification system and/or corre-
spond to distinct pathophysiological subgroups 
within the COPD population, enabling the 
development of treatments specific to the dis-
ease-causing mechanism in individual pa-
tients19. We have selected for critical evalua-
tion examples only of studies which either 
a) compare identified COPD subgroups against 
currently used measures such as exacerbation 
frequency history and dyspnoea severity for 
predicting long term clinical outcomes, b) com-
pare identified COPD subgroups in terms of 
relevant clinical outcome measures longitudi-
nally and c) have focused on sputum- and/or 
serum-based biological COPD subgroups which 
may correspond to potential aetiology and 
inflammation. A summary of the relevant 

studies is provided in table 2 (for more detail, 
refer to Appendix 1) and figure 2. 

Altogether, the studies by Burgel et al. (2010; 
2012; 2017)29,32,37 and Garcia-Aymerich et al. 
(2011)30 identified clusters corresponding to 
patients with severe respiratory symptoms 
and high prevalence of comorbidities, severe 
respiratory symptoms and low prevalence of 
comorbidities, milder respiratory symptoms 
and high prevalence of comorbidities, and 
milder respiratory symptoms with few comor-
bidities. In each of these studies, apart from 
Garcia-Aymerich et al.30, the clusters with high 
prevalence of comorbidities were also the 
clusters with higher patient age29,32,37. It is 
known that the prevalence of comorbidities 

Table 2. Summary of chronic obstructive pulmonary disease (COPD) phenotyping and endotyping study findings 

Study Summary of Findings

Burgel et al. (2010)29 Multicentre. Clinical variables at stable state. Finding of four clusters which differed in terms of patient age, severity  
of airflow limitation and comorbidity. 

Garcia-Aymerich  
et al. (2011)30

Multicentre. Clinical variables at exacerbation. Finding of three clusters which differed in terms of severity of airflow  
limitation and comorbidity. Longitudinal follow-up revealed cluster differences in hospitalisation rate and all-cause mortality.

Bafadhel et al. 
(2011)31

Single-centre. Biological variables at exacerbation. Finding of four clusters which differed in inflammatory profile. 

Burgel et al. (2012)32 Multicentre. Clinical variables at stable state. Finding of three clusters which differed in terms of patient age, severity  
of airflow limitation and comorbidity. Longitudinal follow-up revealed cluster differences in all-cause mortality.

Castaldi et al. (2014)33 Multicentre. Clinical variables at stable state. Finding of four clusters which differed in degree of airflow obstruction  
and emphysema as well as COPD-associated gene variants. 

Rennard et al. 
(2015)34

Multicentre. Clinical and biological variables at stable state. Finding of five clusters which differed in degree of airways 
disease, inflammation and comorbidity. Longitudinal follow-up revealed cluster differences in all-cause mortality and time 
to first exacerbation. 

Esteban et al. (2016)35 Multicentre. Clinical variables at stable state. Finding of four clusters which differed in terms of dyspnoea, lung function, 
health-related quality of life and comorbidity. Longitudinal follow-up revealed cluster differences in mortality. Stability  
of clusters over time was confirmed.

Chang et al. (2016)36 Multicentre. Biological variables at stable state. Finding of four clusters which differed in terms of lung function impairment 
and inflammatory profiles. 

Burgel et al. (2017)37 Multicentre. Clinical variables at stable state and exacerbation. Finding of five clusters which differed in terms of patient age, 
severity of airflow limitation and comorbidity. Longitudinal follow-up revealed cluster differences in all-cause mortality. 

Zarei et al. (2017)38 Multicentre. Biological variables at stable state. Finding of three clusters which differed in terms of degree of airways 
disease and disease-related quality of life. 
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increases with age in the general population4, 
which may explain the aforementioned trend. 
In all four studies, longitudinal follow-up of 
patients was performed to compare mortal-
ity rates between the clusters; in all cases, 
the cluster with the most severe respiratory 
symptoms – in terms of dyspnoea and air-
flow obstruction – was reported as having 
the highest mortality rate29,30,27,39. However, 
a number of methodological limitations are 
noted. Garcia-Aymerich et al.30 and Burgel et 
al.29,32,37 included FEV1- and dyspnoea severi-
ty-related measures among the variables used 
for CA (either directly or in order to generate 
components or factors which were then used 
in CA) but did not subsequently adjust for 
FEV1 and dyspnoea differences between clus-
ters when comparing clusters for all-cause 
mortality. The same limitation applies to the 

studies performed by Rennard et al.34 and 
Esteban et al.36. This can render it improbable 
to conclude that the clusters identified pro-
vide greater prognostic ability than current 
standards. 

While there are no strict sample size rules for 
cluster analysis, research in the field of clus-
ter and latent class analysis suggests a much 
greater sample size than number of variables 
should be used; otherwise the number of the-
oretically possible cluster output solutions 
may be unacceptably high which renders 
cluster solutions unreliable40,41. One study in 
table  2 violated this assumption30. Other 
kinds of methodological errors feature in 
some studies described in table 2. For exam-
ple, in one case PCA and MCA were sepa-
rately applied on continuous and categorical 

Burgel et al. (2010)29

Burgel et al. (2012)32

Castaldi et al. (2014)33

Esteban et al. (2016)35

Burgel et al. (2017)37

CLINICAL VARIABLES BIOLOGICAL VARIABLES

Garcia-Aymerich et al. (2011)30

Rennard et al. (2015)34

Bafadhel et al. (2011)31

Chang et al. (2016)36

Zarei et al. (2017)38

Figure 2. Summary of chronic obstructive pulmonary disease cluster analysis studies in terms of whether clinical and/or biological 
variables were used (studies performing cluster analysis for patients at stable state are shown in black; studies performing cluster 
analysis for patients at exacerbation are shown in red; studies performing cluster analysis for a combination of patients at stable state 
and at exacerbation are shown in blue). 
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variables, respectively, in order to reduce 
the variables to obtain suitable components 
for CA31. In so doing, there can be a failure to 
account for correlation between continuous 
and categorical variables. This may bias the 
importance of selected components in ac-
counting for COPD severity variation which 
would render the clusters inaccurate. A tech-
nique known as factor analysis of mixed 
variables (FAMD) can be used to simultane-
ously reduce the continuous and categorical 
variables so that the factors obtained accu-
rately explain the variation within the data 
based on the entire set of variables rather 
than just a proportion42. The variables with 
the highest loading for the FAMD-derived 
unbiased factors can then be used as input 
for CA, allowing the clusters obtained to 
more accurately reflect the true pattern of 
COPD patient data. 

The Castaldi et al.33 and Bafadhel et al.31 stud-
ies provide additional methods attempting to 
identify COPD phenotypes and endotypes 
respectively. The patient cohort in the Castal-
di et al.33 study was the largest of all studies 
in table 2. Unlike other studies, Castaldi et al. 
assessed various CA models for the quality 
of clusters in order to choose the most appro-
priate CA model. Statistically significant dif-
ferences between clusters in terms of relevant 
clinical outcome measures including dyspnoea 
and exacerbation frequency were then demon-
strated after differences in GOLD stage mem-
bership between clusters had been adjusted 
for33. However, similar to all the cluster anal-
yses discussed thus far, the study by Castaldi 
et al. was cross-sectional and inferred little 
information about underlying mechanisms. 
Only Bafadhel et al.31 have addressed un-
derlying biology in cluster analysis, focusing 

exclusively on biomarkers. Importantly, the 
biological clusters based on sputum media-
tors were related to serum mediators as well 
as differential blood and sputum neutrophil 
and eosinophil counts and sputum microbi-
ology but without any clinical differences 
such as in FEV1 or exacerbation rate being 
demonstrated between each biological clus-
ter31. This is an important realisation since it 
may confirm that clinical symptoms alone are 
not sufficient to fully characterise COPD31. 
Furthermore, in patients with multiple exac-
erbations during the one-year study, biologi-
cal clusters were repeatable31. Few other stud-
ies can be found in which COPD CA has been 
performed solely on sputum- and serum-based 
data. In cases where such work has been con-
ducted, for example, by Chang et al.36 and 
Zarei et al.38, only peripheral blood-based 
data were used for CA without validating 
whether they are related to pulmonary in-
flammation. 

Despite the strengths of the Bafadhel et al.31 
study compared with other COPD CA stud-
ies, there is a paucity of data showing if pa-
tients remain in the same cluster over the 
long term as the disease progresses. These 
are important considerations - if the inflam-
matory profile underlying COPD changes in 
a given patient with time, the kind of treat-
ment needed to target the underlying mech-
anisms may also need to be adapted with 
time. If longitudinally stable clusters based 
on biological data such as sputum and serum 
inflammatory markers are found to exist in 
the COPD population, it would be useful to 
train an algorithm to assign patients to ap-
propriate clusters to identify to which COPD 
pathophysiological, prognostic and/or thera-
peutic subgroups individual patients belong.   
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tO whAt exteNt DO cOPD-
clUsters rePreseNt DIstINct, 
rePrODUcIble sUbgrOUPs whIch 
ADeqUAtely reflect cOPD 
heterOgeNeIty? 

Critical evaluation reveals that no COPD CA 
studies directly determined whether the pa-
tient data used for CA exhibits natural group-
ings of patients or whether the clusters found 
in these studies are merely an artefact of the 
cluster-finding methodology. The majority of 
cluster algorithms, including k-means and 
Ward’s method, find clusters even if the data 
display no natural clusters; this is illustrated 
in figure 3. 

Techniques such as pseudo-f statistics and 
normalised mutual information (NMI) used 
in COPD CA studies to determine cluster num-
ber do not suffice for assessing cluster struc-
ture since they assume that at least two clusters 
are present22,23. This emphasises the impor-
tance of visualising clusters, where possible, 
as was done in the Bafadhel et al.31 study (see 
Fig. 4). 

For studies in which cluster visualisation is 
unfeasible, for example, where high dimen-
sional data has not been reduced prior to CA, 
it is important that mathematical approaches 
are used to determine whether the data pos-
sesses cluster structure. Cluster structure can 
be assessed using spatial randomness tests 
such as the Hopkins statistic43,44. Since the 
purpose of COPD CA studies is to identify 
subgroups of patients with unique prognos-
tic, pathophysiological and therapeutic char-
acteristics, absence of natural cluster struc-
ture in the data defeats the goal of performing 
CA even if apparent clusters are found by the 

algorithm. In keeping with this concern, a 
recent study assessing 17,146 patients from 10 
independent cohorts found limited reproduc-
ibility of the COPD clusters across different 
cohorts45. The PCA plots of the pooled patient 
data from different COPD clustering studies 
revealed the data was organised as a contin-
uum rather than discrete clusters45. However, 
the cluster reproducibility study did not in-
clude biomarker data. 

Another important consideration when per-
forming CA is the extent to which the pa-
tients included in the analysis reflect the 
COPD population at large; CA will only be 

Figure 3. Illustration of cluster identification in absence of 
natural structure in data. a. Randomly distributed data, shown in 
two dimensions. b. Applying the K-means clustering algorithm 
leads to cluster identification (highlighted light blue, dark blue 
and black) despite the data exhibiting no natural structure.

a

b
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able to identify subgroups of COPD patients 
present within the patient sample included in 
the analysis. Hence, the insights which can be 
drawn from the CA studies of table 2 depend 
on the extent to which these studies have 
used representative samples of the COPD 
population. The majority of COPD CA studies 
include patients across all four GOLD severi-
ty categories. However, previous studies in 
which spirometry and symptom question-
naires were performed for a random sample 
of the general population have shown that 
only a minority of individuals with COPD as 
determined by spirometry and symptom scores 
have a previous COPD diagnosis46,47; in other 
words, there is a high rate of under-diagnosis 
for COPD, particularly for patients with less 
severe symptoms46,47. Furthermore, in recent 
years it has become increasingly apparent that 

some patients have disease attributes best de-
scribed as characterising an overlap of asthma 
and COPD48. Such patients are often neglect-
ed from COPD studies that have investigated 
phenotypes and endotypes using CA. Table 3 
(for more detail, see Appendix 2) shows two 
examples of studies (from the same authors) 
attempting to take this into account by iden-
tifying inflammatory profile-based clusters 
for a mixed sample of asthma and COPD pa-
tients at stable state and during exacerbations. 

The field of COPD-CA would benefit from 
protocols in which a random sample of the 
general population is first selected after 
which spirometric measurements and symp-
tom questionnaires are performed to identi-
fy the broad spectrum of COPD patients, 
some of whom overlap with asthma, in the 

Th2

Th1

Bacteria-predominant

Eosinophil-predominant

Viral-predominant

Pauci-inflammatory

Pro-inflammatory

Figure 4. Biological COPD exacerbation clusters shown as ellipsoids in 3-dimensional space using 3 factors (proinflammatory, Th1 and Th2) 
as coordinate axes. There are 4 clear clusters (bacteria-predominant, eosinophil-predominant, viral-predominant and pauci-inflammatory)
(adapted with permission from Bafadhel M et al.31).
COPD: chronic obstructive pulmonary disease; Th: T helper.
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population. Clusters obtained from such stud-
ies would then be more informative regard-
ing the diversity of COPD subgroups in the 
population. 

UsINg INsIghts frOm cOPD-
clUster ANAlysIs stUDIes tO 
OPtImIse treAtmeNt OUtcOmes 
AND INfOrm New treAtmeNts

As has been shown, the vast majority of COPD 
CA studies are hampered by methodological 
shortcomings and have focused on clinical fea-
tures of disease without considering endo-
types. These limitations may render such stud-
ies uninformative when trying to relate COPD 
clusters to outcomes for current treatment 
strategies and when devising new treatments 
aimed at subgroups within the COPD popula-
tion. However, COPD CA has immense poten-
tial for optimising treatment outcomes if per-
formed with appropriate methodology and 
appropriate focus on endotypes. The lack of 
recognition of the diversity of COPD may un-
derlie the mixed outcomes of clinical trials for 
new treatments aiming to target COPD patho-
physiological mechanisms. For example, a re-
cent phase 2 trial tested the efficacy of an 
antagonist (MK-7123) of the cytokine receptor 
CXCR2 in COPD patients51. Since neutrophils 
are believed to be the key inflammatory cell 

type in COPD pathophysiology, it was believed 
that reducing neutrophil chemotaxis by antag-
onising CXCR2 would significantly improve 
lung function in a wide spectrum of COPD 
patients included in the study51-53. However, 
statistically significant improvement in lung 
function and exacerbations was seen only in 
COPD patients who were current smokers51. 
The authors concluded that this may be the 
result of smokers having ongoing exposure- 
induced neutrophil recruitment to their air-
ways and hence exhibiting more neutrophilia 
than ex-smokers, rendering the neutrophil 
chemotaxis-reducing MK-7123 treatment more 
effective in current smokers51. However, the 
authors did not assess differences in sputum 
neutrophil levels between current and ex- 
smokers at the time of starting the MK-7123 
treatment and it is possible that there is a sub-
group of current and ex-smokers with high 
sputum neutrophil levels who would benefit 
from MK-7123 treatment. This would be in 
keeping with the findings by Bafadhel et al.31 
– the bacteria-predominant and pauci-inflam-
matory clusters exhibited significantly higher 
sputum neutrophil levels than patients in the 
remaining clusters, independent of smoking 
history. Thus, even in cases where a particu-
lar pathophysiological mechanism is common 
in the COPD patient population, a biological 
CA-based approach to COPD endotyping 
may be crucial in revealing subgroups likely 

Table 3. Examples of cluster analysis studies including both asthma and chronic obstructive pulmonary disease (COPD) patients

Study Summary of Findings

Ghebre et al. (2015)49 Single-centre. Biological variables at stable state. Finding of three clusters which differed in inflammatory profile, clinical 
symptoms and proportion of COPD patients versus asthma patients. 

Ghebre et al. (2018)50 Single-centre. Biological variables at exacerbation. Finding of three clusters which differed in inflammatory profile, clinical 
symptoms and proportion of COPD patients versus asthma patients. 
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to benefit most from a particular treatment 
approach.

The bacteria-predominant, viral-predominant 
and eosinophil-predominant biological exac-
erbation clusters identified by Bafadhel et 
al.31, characterising 55%, 29% and 28% of ex-
acerbations respectively in this study, point to 
more specific pathophysiological mechanisms 
which may underlie exacerbations in particu-
lar subgroups of patients. Antibiotic use is 
already recommended for COPD patients in 
the treatment of exacerbations if the patient 
displays purulent sputum, a strategy which 
has been shown to reduce short term mortal-
ity and treatment failure4,54. However, the use 
of antibiotics in the long-term management of 
COPD in patients with sputum purulence in 
stable state to improve long term outcomes 
remains controversial, largely due to concerns 
regarding antibiotic resistance54. Treatment 
targeting subgroups of COPD patients with 
virus-associated exacerbations is also likely 
to be difficult due to the limited availability 
of suitable antiviral agents, particularly for 
rhinovirus which is the most common virus 
associated with exacerbations31,55,56. In con-
trast, numerous potentially suitable approach-
es are available for targeting the eosinophil- 
predominant COPD cluster to optimise COPD 
treatment outcomes. These will now be brief-
ly discussed as an example of the potential 
usefulness of COPD CA approaches. 

eOsINOPhIlIc cOPD-clUster –  
A cAse stUDy IN PersONAlIseD 
cOPD treAtmeNt

Although the role of eosinophils in the patho-
genesis of COPD is not understood, it has 

been shown that a raised peripheral blood 
eosinophil count, a sensitive and specific bio-
marker for eosinophilic airway inflammation, 
is associated with poorer COPD clinical out-
comes, including increased risk of exacerba-
tions and COPD-specific mortality31,57-59. There 
have been attempts to directly target eosino-
philic airway inflammation in COPD by the 
use of monoclonal antibodies against the in-
terleukin (IL)-5 receptor, which plays an im-
portant role in signalling pathways facilitating 
eosinophil activation60,61. So far these studies 
have been unsuccessful in improving lung 
function and other relevant clinical outcome 
measures but since these studies were under-
powered for detecting beneficial effects of the 
anti-IL-5, future investigations using larger 
patient cohorts are essential60,61. Another use 
of the eosinophilic COPD cluster, supported 
by a plethora of evidence, is its use in inform-
ing treatment outcomes - predicting which 
COPD patients respond best to corticosteroid 
treatment. Post-hoc analyses of previous clin-
ical trials have shown patients with a raised 
peripheral blood eosinophil count to respond 
more effectively to ICS or oral glucocorticoids, 
in terms of clinical measures such as lung 
function and dyspnoea62,63. A recent meta- 
analysis of three randomised control trials 
showed that COPD patients with a blood eo-
sinophil count ≥ 2% and who did not receive 
prednisolone, an oral corticosteroid, had a 
significantly greater treatment failure rate 
(defined as retreatment, hospitalisation or 
death within 90 days of randomisation) than 
patients with a blood eosinophil count ≥ 2% 
who received prednisolone64. However, a ca-
veat to such studies is the use of cut-off points 
in order to assign patients to a low or high 
blood eosinophil group, as patients may fluc-
tuate around this cut-off value as seen in 
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analysis of the Evaluation of COPD Longitu-
dinally to Identify Predictive Surrogate End-
points (ECLIPSE) cohort65. This limitation 
can be overcome by modelling the eosino-
phil count as a continuous variable to iden-
tify predictors of response to ICS66. In the 
first study of its kind, in a post hoc analysis 
the authors found that there was a non-lin-
ear increase in annual exacerbation rate re-
duction with increasing blood eosinophil 
count for patients receiving the ICS/long-act-
ing β2-agonists (LABA) combination compared 
with patients receiving LABA alone66. Pro-
spective studies are warranted to determine 
the blood eosinophil count and suitable cor-
responding corticosteroid dose for a minimal 
clinically important difference for treatment 
outcome in the general COPD population. 
Nevertheless, the Bafadhel et al.66 study strong-
ly suggests that the severity of COPD eosin-
ophilia, as indicated by peripheral blood eo-
sinophil count, has the potential to guide 
corticosteroid treatment for COPD patients 
to maximise treatment outcome for the rele-
vant patient subgroups. 

cONclUsIONs AND fUtUre 
DIrectIONs

Identifying COPD clusters corresponding to 
different patterns of disease has been widely 
regarded as the holy grail of facilitating per-
sonalised COPD management strategies as an 
alternative to the current suboptimal one-
size-fits-all approach. However, we believe 
that methods for cluster analysis need to be 
reviewed and conducted with accuracy to re-
duce statistical errors. The majority of studies 
focus solely on clinical variables but make no 
attempt to relate the apparent COPD clusters 

to treatment outcomes or underlying mecha-
nisms, which would have the potential for 
maximising COPD treatment outcomes, as ex-
emplified by the use of peripheral blood eo-
sinophil count to guide corticosteroid treat-
ment. In keeping with these considerations, 
we conclude that the attention on characteris-
ing the diversity of COPD heterogeneity must 
now focus on COPD inflammatory profiles, 
and the reproducibility of these inflammatory 
profile COPD clusters over time and between 
different studies must then be assessed. The 
potentially different pathophysiological mech-
anisms underlying different inflammatory 
profile COPD clusters can be explored and 
treatments developed to directly target these 
disease mechanisms. This will enable COPD 
treatment outcomes to be truly maximised.
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Appendix 1. DetaileD summary of CoPD PhenotyPing anD enDotyPing stuDies

Study Burgel et al. (2010) 29 Garcia-Aymerich et al. (2011)30 

Study hypotheses/
research questions

COPD subjects can be grouped into clinical phenotypes. COPD includes various clinically relevant subtypes.

Size and characteristics 
of patient cohort 

n = 322
Multi-centre study. Recruited patients were in a stable condition (defined as having no history of exacerbation 

requiring medication during the previous 4 weeks) and had a COPD diagnosis based on post-bronchodilator FEV1/
FVC < 0.7. Patients from all four GOLD severity categories were included. All patients in the cohort were positive 
for smoking history. Patients with a main diagnosis of asthma, bronchiectasis or other significant respiratory 
condition were excluded.

n = 342
Multi-centre study. Recruited patients had been hospitalised for a first time as  

a result of a COPD exacerbation. Measurements of variables were performed 
three months after discharge, at which point patients were clinically stable  
and COPD diagnosis was confirmed as post-bronchodilator FEV1/FVC < 0.7. 

Variables selected for 
dimension reduction 
and/or cluster analysis

A total of 8 variables were chosen for their relevance to pulmonary and extrapulmonary features of COPD: patient 
age, tobacco-smoking, FEV1, number of exacerbations per patient per year, nutritional status, dyspnoea, health 
status and depressive symptoms. 

A total of 536 variables, of which up to 150 variables were chosen for CA, were 
obtained relating to patient symptoms and quality of life, lung function tests, 
exercise capacity, patient nutritional status, biomarkers of systemic and 
bronchial inflammation, sputum microbiology, and imaging including CT  
of the thorax and echocardiography.

Method of analysis PCA was performed to generate new independent variables – components – for CA. Ward’s method of clustering 
was performed on 3 principal components since these components explained most of the variation in the data. 
Number of clusters was determined using the pseudo F and pseudo t² statistic.

K-means clustering was performed on the selected variables. Number of clusters 
was determined using the pseudo F statistic.

Cluster characteristics 
as described by author

Four clusters of patients were identified:
1: Younger patients with severe to very severe airflow limitation and respiratory symptoms but few comorbidities.
2: Older patients with mild respiratory disease and mild age-related comorbidities.
3: Younger patients with moderate-to-severe airflow limitation but milder symptoms and few comorbidities.
4: Older patients with moderate-to-severe airflow limitation, severe symptoms and significant cardiovascular 

comorbidity.

Three clusters of patients were identified: 
1: Severe airflow limitation and very poor performance in other respiratory 

function tests.
2: Milder airflow limitation.
3: Milder airflow limitation with high proportion of comorbidity (obesity, 

cardiovascular disease, diabetes, systemic inflammation).
Age of patients did not differ significantly between clusters.

Outcome measure  
for cluster validation 
and comparison

Longitudinal follow-up to determine all-cause mortality. Group 1 had the highest mortality rate39. Longitudinal follow-up to determine COPD-specific hospitalisation rate and 
all-cause mortality. Group 1 had the highest hospitalisation rate and all-cause 
mortality.

Study Bafadhel et al. (2011) 31 Burgel et al. (2012) 32

Study hypotheses/
research questions

There are definable biological COPD clusters, which can be identified using biomarkers. Subgroups of COPD patients differ in mortality.

Size and characteristics 
of patient cohort 

n = 145
Single-centre study. Out of 145 patients entered into the study, 182 exacerbations were captured from 86 patients, 

and the desired variables were measured in 75 of these patients. All patients had post-bronchodilator FEV1/FVC  
< 0.7 and COPD diagnosis. Patients from all four GOLD severity categories were included. Patients were all  
aged 40 years or older. Asthma or other lung disease apart from COPD was an exclusion criterion.

n = 527
Multi-centre study. Recruited patients had a COPD diagnosis based on post-bron-

chodilator FEV1/FVC < 0.7. All patients were clinically stable. Patients from all 
four GOLD severity categories were included.

Variables selected for 
dimension reduction 
and/or cluster analysis

17 sputum biomarkers were considered for CA. Measurements were made for patients in the stable state and during 
exacerbations during the course of one year. Measurements of biomarkers at exacerbation were performed if the 
patients had not received prior oral corticosteroids or antibiotics. 

7 continuous variables (patient age, BMI, FEV1, dyspnoea, quality of life scale, 
thoracic gas volume and diffusing capacity) and numerous categorical variables 
(relating to comorbidities and imaging data e.g. CT analysis for emphysema).

Method of analysis Factor analysis (a technique similar to PCA) was performed on the biomarkers, and 3 factors were selected  
for subsequent analysis since they accounted for the majority of the variation in the data. For each factor,  
the biomarker with the highest loading was used for CA. Ward’s method was used to generate a dendrogram  
for visual inspection to select an appropriate number of clusters (4 was the value chosen). K-means clustering, 
pre-specified to identify 4 biological clusters, was then applied to the highest loading biomarkers. Receiver Operating 
Characteristic (ROC) curves were used to determine suitable biomarkers for identification of clinical phenotypes.

PCA and MCA were separately performed on continuous variables and on 
categorical variables, respectively. 2 principal components and 14 MCA axes 
were retained for Ward’s clustering. Visual assessment of dendrogram was 
used to decide upon a suitable number of clusters. 

Cluster characteristics 
as described by author

4 biological exacerbation clusters were identified:
Cluster 1: A proinflammatory profile. 
Cluster 2: High levels of type 2 mediators.
Cluster 3: High levels of type 1 mediators.
Cluster 4: Low sputum mediator concentrations cluster which exhibited few changes in inflammatory profile. 

Clinically, clusters 1, 2 and 3 were bacteria-predominant, eosinophil-predominant and virus-predominant,  
respectively. Bacterial and eosinophilic clinical exacerbation phenotypes could be predicted from stable state.

Three clusters of patients were identified:
1: Airflow limitation and other respiratory disease features were mild to 

moderate, with few comorbidities.
2: Airflow limitation and other respiratory disease features were severe.  

Variable comorbidities - osteoporosis and muscle weakness common but 
cardiovascular comorbidities rare.

3: Airflow limitation and other respiratory disease features moderate to severe. 
Older patients. Obesity, diabetes and cardiovascular comorbidities common.

Outcome measure for 
cluster validation and 
comparison

Sensitive and specific biomarkers for clusters 1-3 were identified. Sputum IL1-β, percentage peripheral eosinophils 
and serum CXCL10 best identified the bacteria-, eosinophil- and virus-predominant subgroups, respectively. 
Validation of these biomarkers was performed in an independent cohort of 89 patients.

Longitudinal follow-up to determine all-cause mortality. Group 2 and 3 patients 
were at a significantly higher risk of mortality than group 1 patients.  

(Continues on next page)
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Appendix 1. Detailed summary of COPD phenotyping and endotyping studies (Continued)

Study Castaldi et al. (2014)33 Rennard et al. (2015)34

Study hypotheses/
research questions

Distinct subtypes of pulmonary damage occur in smokers and these subtypes are strongly associated with relevant 
clinical outcome measures and COPD-associated genetic variants. 

Clinically relevant subgroups of COPD exist and exhibit differences in relevant 
clinical outcomes when evaluated longitudinally.

Size and characteristics 
of patient cohort 

n = 10192 
Multi-centre study. Patients were examined at stable state (at least one month after last exacerbation). Patients 

from all four GOLD categories were included. Patients with a respiratory disease diagnosis other than COPD, 
asthma or emphysema were excluded. All recruited patients were between the ages of 45 and 80 and have  
a smoking history67.  

n = 2164
Multi-centre study. All recruited patients had a COPD diagnosis. Patients from 

GOLD categories 2 to 4 were included. Patients were all exacerbation-free  
for at least 4 weeks before inclusion in the study68. Patients with a respiratory 
disease diagnosis other COPD and severe alpha1-antitrypsin deficiency were 
excluded68. All recruited patients were between the ages of 40 and 75 and have 
a smoking history68.

Variables selected for 
dimension reduction 
and/or cluster analysis

Different variables were used for different cluster models. The variables chosen for the final model were FEV1, 
airway wall thickness and measures of emphysema from CT imaging. 

41 variables relating to clinical, physiologic, imaging and biomarker parameters. 

Method of analysis Half of the patients constituted a training set to be included for CA, while the other half constituted a validation set 
to test the clusters. Various approaches were used to select variables for K-means clustering. The resulting 
clusters from these different models, as well as the different options for a suitable number of clusters, were 
compared against each other using normalised mutual information (NMI), a cluster stability measure. The different 
models were also compared for discriminatory power between relevant clinical outcomes. The best model  
consisted of 4 clusters, using only those variables which were uncorrelated (Pearson’s correlation < 0.7). 

Factor analysis was performed on the 41 variables. 13 factors were selected 
since they accounted for most of the variability in the data; variables with the 
highest loading for the 13 factors were chosen for CA. A random forest-based 
clustering approach was used and number of clusters chosen based on 
silhouette width and clinical relevance of the clusters.  

Cluster characteristics 
as described by author

4 subgroups of patients were identified, all of which were reproduced in the validation group of patients:
1: Smoking-resistant patients with few symptoms of airways disease.
2: Patients with mild upper zone -predominant emphysema and airflow obstruction.
3: Patients with airway-predominant disease.
4: Patients with severe airway obstruction and emphysema. 

5 subgroups of patients were identified:
A: Patients with mild airways disease.
B: Patients with intermediate values for health status and emphysema but low 

levels of inflammatory markers.
C: Systemic inflammation, multiple comorbidities.
D: Low FEV1 and severe emphysema.
E: Intermediate values for most variables.

Outcome measure for 
cluster validation and 
comparison

Clinical measures (including dyspnoea, exacerbation rates in previous year, hospitalisation rates in previous year) 
and COPD-associated gene variants. 

Subgroup 2, 3 and 4 had greater disease severity (subgroup 4 the worst) than subgroup 1 in terms of the validation 
clinical measures. After adjustment for the GOLD categories the patients in each subgroup were in, the association 
with clinical outcome measures remained significant. There was a strong association between subgroup 2  
and the single nucleotide polymorphism (SNP) rs1980057 near the gene HHIP. 

Longitudinal follow-up to determine all-cause mortality and time-to-first 
exacerbation.

Subgroups C and D had the highest mortality and D had the shortest time-to-first 
exacerbation.

(Continues on next page)
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Appendix 1. Detailed summary of COPD phenotyping and endotyping studies (Continued)

Study esteban et al. (2016)35 Chang et al. (201636

Study hypotheses/
research question

Assess the stability of cluster-based COPD subgroups in patients with stable disease over 1 year. Systemic inflammatory signals in peripheral blood gene expression data can 
identify clinically important COPD-related disease subtypes.

Size and characteristics 
of patient cohort 

n = 543
Multicentre study. All patients had a previous COPD diagnosis for at least six months and were free from  

an exacerbation for at least 6 weeks prior to enrolling. For all patients, FEV1/FVC < 0.7 and FEV1/FEV1  
predicted < 0.8. Patients with an asthma diagnosis were excluded. One year after inclusion in the study,  
survivors were followed up.

n = 364
Multi-centre study. Data were captured at stable state. 229 former smokers  

(of whom 141 met the spirometric FEV1/FVC < 0.7 criterion for COPD diagnosis) 
from the ECLIPSE cohort constituted the training set. Clusters obtained based 
on the gene expression data of these patients were then validated in a separate 
cohort of 135 smokers (of whom 76 met the spirometric FEV1/FVC < 0.7 criterion 
for COPD diagnosis) from the COPDGene study. 

Variables selected for 
dimension reduction 
and/or cluster analysis

A number of sociodemographic and clinical variables were included: age, BMI, number of previous hospitalisations, 
FEV1%, hand strength, walking test, physical activity, dyspnoea, Charlson comorbidity index scores and occurrence 
of various comorbidities. 

Gene expression patterns as determined from 1812 probesets associated with 
FEV1 and FEV1/FVC in the ECLIPSE study were used as input for cluster analysis.

Method of analysis MCA was performed on the variables. 4 MCA factors were selected for hierarchical clustering. An optimal number 
of clusters was decided upon based on minimum loss of inertia. The aforementioned analyses were performed  
for patients at first inclusion in the study and then again after a year for surviving patients. 

Network-based stratification (NBS) was used to achieve clustering of gene 
expression data. This was compared against a non-network based method 
(non-negative matrix factorisation); the former displayed superior performance 
to the latter as determined by stability indices associated with different 
numbers of latent factors. After clustering, subtype-specific gene expression  
for each cluster was analysed for gene ontology enrichment of known 
biological processes. The cluster model developed from gene expression  
of ECLIPSE cohort patients was used to generate clusters from the COPDGene 
cohort.  

Cluster characteristics 
as described by author

4 clusters were identified:
Cluster A: Less dyspnoea, better health-related quality of life and lower Charlson comorbidity scores.
Cluster B: Intermediate between A and C. 
Cluster C: Most severe dyspnoea, and poorer pulmonary function and quality of life.
Cluster D: Higher rates of hospitalization during the previous year; higher comorbidity scores. 
Whereas clusters A, B, and C, had marked respiratory profiles with a continuum in severity of several variables, 

cluster D was associated with a more systemic profile with intermediate respiratory disease severity. 

4 clusters were identified in the ECLIPSE cohort via NBS and could  
be reproduced in the COPDGene cohort:

Cluster 1: Enrichment for wound healing and inflammatory processes.
Cluster 2: Enrichment for cytoskeletal and actin filament organization.
Cluster 3: Enrichment for protein catabolism and ubiquitination.
Cluster 4: Lymphocyte activation and protein synthesis.

Outcome measure  
for cluster validation 
and comparison

Clusters at baseline were compared with clusters after 1 year to assess stability. Clusters remained stable  
after 1 year, with only 28% patients migrating between the clusters. In addition, clusters were compared in terms 
of clinical outcomes such as mortality. Cluster D had the highest mortality after 1 year of follow-up, followed  
by cluster C, B and A respectively.  

The gene-expression-based clusters were compared in terms of clinical 
characteristics and peripheral blood cell counts:

Cluster 1: Most severe lung function impairment, respiratory symptoms,  
and emphysema. Higher levels of neutrophils than the other clusters.

Cluster 2: Intermediate levels of lung function impairment, emphysema, and 
respiratory symptoms. Higher levels of eosinophils than the other clusters.

Cluster 3 and cluster 4: Relatively preserved lung function. Cluster 3 had more 
emphysema, more respiratory symptoms, and a higher percentage of women 
than cluster 4. Cluster 3 and cluster 4 had higher levels of lymphocytes than the 
other clusters.

Cell count differentials alone were not enough to predict COPD cluster  
membership. Smoking exposure did not differ significantly between the groups, 
suggesting that biological variability rather than cumulative smoke exposure,  
is more likely to explain the cluster patterns.

(Continues on next page)
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Appendix 1. Detailed summary of COPD phenotyping and endotyping studies (Continued)

Study Burgel et al. (2017)37 Zarei et al. (2017) 38

Study hypotheses/
research questions

An algorithm can be developed for allocating COPD patients into CA-derived clinical phenotypes. Peripheral blood proteomic data can be used to find subtypes of COPD within 
clinically similar individuals at stable state.

Size and characteristics 
of patient cohort 

n = 6060
Multi-centre study. All recruited patients had a COPD diagnosis. Patients from all four GOLD categories were 

included. Patients were recruited in a stable state or at the time of a hospitalisation due to an exacerbation. 

n = 396
Multi-centre study. All recruited patients were former smokers with at least 

10 pack years but abstinence from smoking for at least 12 months before study. 
All patients had moderate to severe COPD (post-bronchodilator FEV1/FVC < 0.7; 
FEV1/FEV1 predicted < 70% predicted; Diffusing capacity of the lung for carbon 
dioxide capacity (DLCO) < 0.7) and were at stable state. All patients had 
emphysema based on visual examination of CT scans.

Variables selected for 
dimension reduction 
and/or cluster analysis

Clinical variables including age, BMI, FEV1, dyspnoea, number of exacerbations in previous 12 months, presence  
of comorbidities (cardiovascular and diabetes).

87 protein biomarkers measured from peripheral blood were used as input for CA.

Method of analysis Factor analysis for mixed data (FAMD) was performed on the variables of 2409 patients and the highest loading 
variables for the selected factors were used as input for Ward’s method of clustering. Classification and 
regression trees (CARTs) were then trained to develop an algorithm for allocating patients into the clusters 
obtained from Ward’s method in the group of 2409 patients. The algorithm was then tested on a separate cohort  
of 3651 patients.

Agglomerative McQuitty hierarchical clustering was performed on the biomarker 
dataset. The optimal number of clusters was determined through the R package 
NbClust which takes into account a variety of indices for this purpose. After 
clustering, enrichment analysis was performed for the biomarkers which had 
different mean values among the clusters in order to identify the molecular 
pathways associated with these biomarkers.

Cluster characteristics 
as described by author

Five subgroups were identified: 
I: Severe respiratory disease, older age patients, high prevalence of comorbidities.
II: Moderate-to-severe respiratory disease, younger patients, few comorbidities.
III: Older patients, high prevalence of comorbidities.
IV: Very severe respiratory disease, younger patients, few comorbidities.
V: Mild respiratory disease, younger patients, few comorbidities.

3 stable state biological clusters were identified. The biomarkers which 
distinguished cluster 3 from cluster 1 and cluster 2 mapped to platelet alpha 
granule and cell chemotaxis pathways.

Outcome measure for 
cluster validation and 
comparison

Longitudinal follow-up to determine all-cause mortality. 
Subgroups I and IV have highest mortality rate.
The CART-developed algorithm successfully assigned patients in the validation cohort to five classes which 

corresponded to the clusters obtained in the training cohort in terms of the relative clinical characteristics and 
mortality rates between the classes.

The clusters were compared in terms of clinical and physiological characteristics. 
Compared to cluster 1 and cluster 2, cluster 3 had less emphysema on 
quantitative analysis of chest CT scans and worse disease-related quality of life 
based on the St. George’s Respiratory Questionnaire.

BMI: body mass index; CA: cluster analysis; COPD: chronic obstructive pulmonary disease; CT: computed tomography; ECLIPSE: Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points; FEV1: forced expiratory volume in one second; FVC: forced 
vital capacity; GOLD: Global Initiative for Chronic Obstructive Lung Disease; IL: interleukin; MCA: multiple correspondence analysis; PCA: principal component analysis.
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Appendix 2. DetaileD examPles of Cluster analysis stuDies inCluDing both asthma anD CoPD
Study Ghebre et al. (2015)49 Ghebre et al. (2018)50 

Study hypotheses/
research questions

Determine the extent to which COPD and asthma at stable state represent distinct or overlapping conditions in 
terms of sputum cellular and mediator profiles. 

Investigate the sputum cellular, mediator, and microbiome profiles of asthma  
and COPD exacerbations via a CA-based approach.

Size and characteristics 
of patient cohort 

n = 385
Single-centre study. 161 patients (86 with severe asthma and 75 with moderate-to-severe COPD) were recruited to 

constitute the training set for CA. Patients were examined at stable state (defined here as at least 8 weeks free 
from an exacerbation). 224 patients (166 with severe asthma and 58 with COPD) were used for validation. 

n = 105
Single-centre study. 32 asthmatic patients and 73 patients with COPD were 

recruited. Patients were assessed at exacerbation. 

Variables selected for 
dimension reduction 
and/or cluster analysis

21 sputum mediators were analysed in the training study and 14 in the validation study. 19 sputum mediators were analysed. 

Method of analysis Factor analysis was performed and 4 factors selected based on scree plots and having an eigenvalue > 1. 
K-means analysis was then performed on the factor scores. The optimal number of clusters was selected based  

on a scree plot and the biological/clinical interpretability of the resulting clusters. 

Factor analysis was performed and 3 factors selected based on scree plots  
and having an eigenvalue > 1. 

K-means analysis was then performed on the factor scores. The optimal number 
of clusters was selected based on a scree plot.

Cluster characteristics 
as described by author

3 stable state biological clusters were identified and reproduced in the validation group of patients:
Cluster 1:Aasthma-predominant, eosinophilic, high TH2 cytokines.
Cluster 2: Asthma and COPD overlap, neutrophilic; this cluster was associated with the highest overall inflammatory 

cell count.
Cluster 3: COPD-predominant, mixed eosinophilic and neutrophilic. 

3 exacerbation state biological clusters were identified:
Cluster 1: COPD predominant. 27 patients with COPD and 7 asthmatic patients 

exhibited increased blood and sputum neutrophil counts, proinflammatory,  
and proportions of the bacterial phylum Proteobacteria.

Cluster 2: 10 asthmatic patients and 17 patients with COPD with increased blood 
and sputum eosinophil counts, type 2 mediators, and proportions of the 
bacterial phylum Bacteroidetes.

Cluster 3: 15 asthmatic patients and 29 patients with COPD with increased type 1 
mediators and proportions of the phyla Actinobacteria and Firmicutes. 

Outcome measure  
for cluster validation 
and comparison

The clusters were compared in terms of clinical, physiological and biological characteristics. Linear discriminant 
analysis was performed on the inflammatory mediators and a model developed to group patients into the training 
set clusters. This model was then used to categorise patients of the validation set into inflammatory mediator- 
based clusters. Patients in the asthma-COPD overlap cluster had higher symptoms of cough than patients  
of the other two clusters.  

The clusters were compared in terms of clinical, physiological and biological 
characteristics. Linear discriminant analysis was performed on the inflammatory 
mediators to develop a model to separate patients out by cluster. However,  
this model was not validated in a separate patient test set.

CA: cluster analysis; COPD: chronic obstructive pulmonary disease.


