User Association Analysis of Locales on Location Based Social Networks

Josh Jia-Ching Ying¹, Wang-Chien Lee², Mao Ye², Ching-Yu Chen¹ and Vincent S. Tseng³

^{1,3} Department of Computer Science & Information Engineering, National Cheng Kung University, Taiwan, ROC

² Department of Computer Science & Engineering Pennsylvania State University, PA 16802, USA

Speaker: Ching-Yu Chen

Outline

- Motivation
- EveryTrail Dataset
- Locale Based Metrics
 - Locale Clustering Coefficient
 - Inward Locale Transitivity
 - Locale Assortativity Coefficient
 - Locale Assortability Coefficient
- Conclusion and Future Work

Motivation

Online Location-based Social Network

• GPS Logger, smart phones and navigation devices

Motivation

- Clustering Coefficient
- Assortativity Coefficient

EveryTrail Dataset

Joost Schreve

About Me

Trying to make EveryTrail a little better everyday.

Location

Palo Alto, California, United States

Send Message follow

Member Since

September 21, 2006

Username joost

Favorite Activities

Alpine skiing, Back-country skiing, Cross-country skiing, Hiking, Mountain biking, Mountaineering, Road biking, Running, Sailing, Trail running, Walking, Other, Driving, Flying, Motorcycling, Sightseeing, Train, Snowshoeing, Boating, Relaxation

Website

joost-stanford.blogspot.com

276 Trips □ 11 Guides □ 2,157 Pictures □ 2,110 Points □ 542 Followers

Trips

Recent Activity | ▶ Trips | Guides | Destinations | Info

Palo Alto - Small Dish

by **joost** on Aug 12, 2011

follow joost 0.0 miles

1.6 miles

Family hike from savolere down to le marmot

by joost on Aug 04, 2011 follow joost Verbier, Valais, Switzerland

Run From Verbier To Chapelle St Christophe

by joost on Aug 03, 2011 follow joost Médières, Valais, Switzerland 4.1 miles

Family Hike To Clambin

by joost on Aug 01, 2011 follow joost Médières, Valais, Switzerland 1.2 miles

Social information

Traveling information

EveryTrail Dataset

EveryTrail Dataset

	cities	# of	# of	Avg. # of	Max # of
		trips	users	trips per	trips per
				user	user
A	Phoenix	389	102	3.81	36
В	San Francisco	355	207	1.71	16
С	Seattle	340	145	2.34	23
D	New York	333	146	2.28	29
Е	Austin	293	133	2.2	15
F	Minneapolis	277	70	3.96	100
G	Baltimore	266	18	14.78	241
Н	Boulder	180	93	1.94	10
I	Chicago	153	94	1.63	7

• Conventional clustering coefficient

Number of triples = 2

Number of triangles = 1

$$C_i = \frac{1}{2} = 0.5$$

$$C_i = \frac{\text{number of triangles connected to node } i}{\text{number of triples centered on node } i}$$

Cities	LCC (Global)	LCC (Localized)
Austin	0.07	0.005
Seattle	0.056	0.025
Phoenix	0.094	0.018
New York	0.032	0.225
San Francisco	0.107	0.284
Chicago	0.002	0
Boulder	0.017	0
Baltimore	0.069	0
Minneapolis	0	0

All Users: 0.058

Inward Locale Transitivity

: outside user : arbitrary user : inside user

$$T_{\text{inward}}(i) = \frac{\text{\# of In - Pair from node } k \text{ to node } j}{\text{\# of triples from node } k \text{ to node } j \text{ centered on node } i}$$

Inward Locale Transitivity

: outside user : arbitrary user : inside user

$$T_{\text{outward}}(i) = \frac{\text{\# of Out - Pair from node } j \text{ to node } k}{\text{\# of triples from node } j \text{ to node } k \text{ centered on node } i}$$

Inward Locale Transitivity

- Measure the degree of connectivity association
- Examine the assortativity in terms of node degree

Cities	LAC (Global)	LAC (Localized)
Austin	0.941*	1*
SanFrancisco	0.353*	0.524*
Baltimore	no edge	no edge
Boulder	0.612	1*
Chicago	0	0
Minneapolis	no edge	no edge
NewYork	0.376	0.573*
Phoenix	0.238	0.318
Seattle	0.607	0.882*

All Users: 0.159

• Inward Assortativity for Locale (IAL)

Cities	IAL (Absolute)	IAL (Relative)
Austin	0.124 *	0.159*
San Francisco	0.183*	0.275*
Baltimore	0.074*	0.052*
Boulder	0.097*	0.121*
Chicago	0.092*	0.091*
Minneapolis	0.0004	0.011*
NewYork	0.214*	0.335*
Phoenix	0.052*	0.086*
Seattle	0.124*	0.181*

• Observe whether popular users in the network follow the users who are also popular

Cities	LABC (Global)	LABC (Localized)
Austin	0.325	0.961*
San Francisco	0.356*	0.589*
Baltimore	no edge	no edge
Boulder	0.46	0
Chicago	0.707	0
Minneapolis	no edge	no edge
New York	0.562*	0.603*
Phoenix	0.254	0.251
Seattle	0.35	0.236

All Users: 0.158

• Inward Assortability for Locale (IABL)

Cities	IABL (Absolute)	IABL (Relative)
Austin	0.133*	0.076*
San Francisco	0.207*	0.207*
Baltimore	0.075*	0.027*
Boulder	0.102*	0.063*
Chicago	0.093*	0.034*
Minneapolis	0.0004	0.016*
New York	0.258*	0.251*
Phoenix	0.053*	0.051*
Seattle	0.130*	0.094*

Conclusion and Future Work

- We propose a series of locale based metrics to support association analysis of users in a location-based social network
- The analysis result indicate that **high clustering effect** among users in **New York City** and **San Francisco**
- Our locale based association analysis shows similar result for users in the locales of **New York City** and **San Francisco** but not for users in other cities
- We plan to further investigate other locale based metrics to enhance the analysis on LBSNs and apply these metrics to real application

Thanks for your attention!