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User Association and Power Allocation for

Multi-cell Non-Orthogonal Multiple Access

Networks
Kaidi Wang, Student Member, IEEE, Yuanwei Liu, Senior Member, IEEE, Zhiguo Ding, Senior Member, IEEE,

Arumugam Nallanathan, Fellow, IEEE, and Mugen Peng, Senior Member, IEEE

Abstract—In this paper, user association and power allocation
are investigated in a non-orthogonal multiple access (NOMA)-
based multi-cell network. In order to perform successive inter-
ference cancellation (SIC) techniques for removing the intra-base
station (BS) interference, the optimal decoding order is derived
for all users associated with the same BS. In an effort to improve
the system, a sum rate maximization problem is formulated by
jointly designing user association and power allocation. Two game
theory based algorithms are proposed to obtain the stable user
structure by dividing users into different BSs’ clusters, where
the sub-optimal and global optimal solutions can be achieved.
The properties of the proposed algorithms, including complexity,
convergence, stability and optimality, are analyzed. Based on the
quality-of-service (QoS) constraint, the closed-from solutions for
power allocation are derived, and thus the expressions for the
sum rate of all users in each cluster is obtained. Moreover, the
case that the QoS threshold cannot be achieved by all users
in each cluster is considered. Simulation results demonstrate
that: i) the proposed user association algorithms and the closed-
form solutions for power allocation can significantly enhance
the sum rate and outage probability; and ii) the proposed
NOMA-based system is capable of achieving promising gains
over the conventional orthogonal multiple access (OMA)-based
framework in the multi-cell scenario.

Index Terms—Game theory, non-orthogonal multiple access
(NOMA), power allocation, user association

I. INTRODUCTION

Multiple access (MA) techniques, as one of the key enabling

techniques in the fifth generation (5G) wireless network,

have received considerable attentions and extensive research

interest. The existing MA technologies can be classified into

orthogonal multiple access (OMA) and non-orthogonal multi-

ple access (NOMA) approaches based on whether the users

are served in orthogonal resource blocks [2]. NOMA as a

scheme which allows non-zero cross correlation signals, can
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improve spectrum efficiency and provide massive connectivity

[3]. In conventional OMA schemes, such as frequency division

multiple access (FDMA) and time division multiple access

(TDMA), the spectrum efficiency is low when the bandwidth

resources are occupied by the users having poor channel

conditions [4]. However, the users in NOMA systems are

communicating in the same frequency, time and code with

different power levels [5]. By carefully selecting the power

allocation coefficients, the system throughput and the user

fairness in NOMA systems can be guaranteed [6]. More

particularly, the users with strong channel conditions are

capable of removing the interference of weak users with the

aid of successive interference cancellation (SIC) techniques

[7]. The random allocated users in a cellular downlink NOMA

system was studied in [8], which shows that NOMA can

outperform traditional OMA in terms of the ergodic sum rate

and outage probability. By investigating user paring in multiple

scenarios, the authors in [9] have pointed out that both sum

rate and individual rates in NOMA systems were greater than

OMA. As a development, user pairing was also investigated

in [10]. By comparing the different schemes of user pairing,

it was indicated that the NOMA systems can consequently

outperform OMA in spectral efficiency and system throughput.

In [11], the user fairness was considered as the standpoint.

The simulation results demonstrated that NOMA schemes can

achieve the better fairness and efficiency than OMA.

A. Related Works

In existing research contributions, most of the papers have

explored the potential of NOMA systems by considering

user pairing/clustering and power allocation [12]–[17]. More

particularly, user pairing was studied in [12], where the user

with the weak channel condition was paired with the user with

the strong channel condition when the minimum data rate was

achieved. As the extension of user pairing, user clustering

and power allocation were studied in [13] for improving

the fairness in a downlink multi-input multi-output (MIMO)-

NOMA system. The impact of sub-carrier assignment and

power allocation were studied in NOMA systems [14], where

the formulated problems were jointly optimized with weight

factors. Furthermore, the jointly designed user clustering and

power allocation were investigated in both uplink and down-

link NOMA systems [15], in which the formulated problems

were respectively solved by a low-complexity algorithm and
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closed-form solutions. The downlink and uplink NOMA sys-

tems were also considered in [16], [17], where the presented

joint cell association and power control problem was solved

by proposed algorithms.

However, user pairing/clustering and power allocation in

multi-cell NOMA systems are more challenging than that in

single-cell NOMA systems. Specifically, in addition to the

intra-BS interference caused by the co-channel interference

of NOMA systems, the inter-BS interference caused by the

un-associated BSs also needs to be take into consideration

[18], [19]. In order to mitigate inter-BS interference, different

technologies have been proposed to multi-cell NOMA sys-

tems [20]–[28]. Specifically, in [20], heterogeneous networks

(HetNets) were adopted in multi-cell NOMA systems, where

massive MIMO and NOMA were considered in macro and

pico BSs, respectively. Hybrid HetNets were also applied in

[21], [22], in which OMA and NOMA were exploited in

different tiers. Coordinated multipoint (CoMP) transmission

was discussed in [23], where the user located in the cell-edge

area can receive signals from multiple BSs. As an extension of

[23], power allocation was optimized at each coordinating BS

individually to reduce the huge computational complexity in

[24]. By adopting beamforming techniques, inter-BS interfer-

ence was partly removed in the multi-cell mmWave-NOMA

network [25]. Furthermore, the negative impact of inter-BS

interference can also be moderated by utilizing resource blocks

to serve the users at different time or frequency domains [26]–

[28].

B. Motivation and Contributions

As mentioned above, the multi-cell NOMA system has

been extensively explored with various technologies, but, to

be best of our knowledge, the NOMA-based homogeneous

multi-cell networks have not been researched. More specif-

ically, the implementation of NOMA brings more sophisti-

cated co-channel interference to the existing networks, and

such distinct characteristics necessitate the redesign of user

association. To further enhance the performance of NOMA

networks, the optimization of power allocation coefficients

should be considered. It is a meaningful and challenging

problem for simultaneously partitioning users into different

clusters and maximizing the sum rate with different power

levels. However, the complete systematic performance of

multi-cell NOMA systems by jointly designing user clustering

and power allocation is still not well studied due to the

high computational complexity, which motivates this work.

In the previous works, the user clustering problem was only

considered in the two-user case [21], [23], [27], and the power

allocation minimization problem was solved in a random user

structure [22], [26], where these obtained solutions result in

the significant computational complexity [28]. In this paper,

the users connected to the same BS are treated as a cluster and

receive signals with NOMA principles. The power allocation

coefficients in NOMA schemes are iteratively optimized. The

main contributions of this paper can be cited as follows:

• A downlink multi-cell NOMA network is investigated,

where users are allocated to multiple clusters controlled

by different BSs. In particular, in each cluster, the optimal

decoding order for SIC techniques is first derived. Then,

based on the optimal decoding order, the user association

and power allocation problems are jointly designed and

iteratively solved.

• With the aid of game theory, two user association al-

gorithms, namely, preference relation based algorithm

(PRA) and simulated annealing based algorithm (SAA),

are proposed. More particularly, PRA provides a low

complexity approach for obtaining the suboptimal solu-

tion, while SAA can yield the global optimal solution

with a large number of iterations. The properties of both

algorithms, including complexity, convergence, stability,

and optimality, are analyzed.

• For the power allocation problem, the closed-form ex-

pressions for the sum rate are derived and employed at

each iteration of the proposed user association algorithms.

In particular, two types of quality-of-service (QoS) con-

straints are considered while developing the solutions:

in the first case, all users’ rate requirements need to be

satisfied; in the second case, only part of users’ minimum

rates need to be realized.

• Simulation results are presented to illustrate that PRA

with the fixed power allocation can achieve the near-

optimal solutions with much lower complexity compared

with the proposed global optimal algorithm. It is also

demonstrated that user association and power allocation

in the NOMA-based framework can achieve better per-

formance in the sum rate and outage probability than the

OMA-based framework.

C. Organization

The rest of the paper is organized as follows. In Section

II, a NOMA-based downlink system with multiple BSs and

users is demonstrated. In Section III, an optimization problem

is formulated for maximizing the sum rate of the multi-

cell NOMA system, and divided into user association and

power allocation problems. In Section IV, two coalitional game

based algorithms are proposed for solving the formulated user

association problem. In Section V, the closed-form expressions

for power allocation coefficients are derived. In Section VI,

simulation results are presented with the analysis. Finally, a

conclusion is summarized in Section VII.

II. NETWORK MODEL

In this section, a NOMA-based multi-cell framework is pre-

sented, in which the user association scenario is investigated

and the optimal decoding order for SIC techniques is analyzed.

A. System Description

Consider a downlink multi-cell NOMA system with K BSs

and N users, where N > K . The BSs are located at the fixed

points of a disc D with radius RD, and users are uniformly

distributed within the disc. The collections of all BSs and users

are denoted by K = {1, 2, · · · ,K} and N = {1, 2, · · · , N},

respectively. It is assumed that the individual users can be
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Fig. 1: An illustration of the proposed downlink multi-cell

NOMA network.

associated with one BS at the same time. The data of users is

shared among multiple BSs, but each BS only transmits the

superposition signal of the connected users. It is also assumed

that the total transmit power of each BS is equal1. The users

associated with the same BS are considered as a cluster, hence,

there are K clusters formed in this paper. The user structure

S is the collection of all clusters, i.e., S = {S1, S2, · · · , SK},

where any cluster Sk is formed by BS k. The NOMA scheme

is employed in the proposed system, which implies that all

BSs transmit signals in the same frequency and time slot. Or

in other words, for any user, both desired and interference

signals are received, as shown in Fig. 1.

B. Signal Model

In the proposed multi-cell NOMA system, two types of

interferences should be considered. Firstly, the inter-BS in-

terference is generated by the signals transmitted from the

un-associated BSs. Secondly, the intra-BS interference is pro-

duced by the co-channel interference of NOMA schemes.

Therefore, for any cluster Sk, the received signal at the n-

th user associated with BS k can be expressed as follows:

yk,n =

K∑

i=1

|Si|∑

j=1

hi,n
√
pi,jsi,j + nk,n

=
K∑

i=1,i6=k

|Si|∑

j=1

hi,n
√
pi,jsi,j

︸ ︷︷ ︸

inter-BS interference

+ hk,n

|Sk|∑

j=1,j 6=n

√
pk,jsk,j

︸ ︷︷ ︸

intra-BS interference

+ hk,n
√
pk,nsk,n + nk,n, (1)

where hk,n is the channel between BS k and the n-th user

in cluster Sk, pk,n is the power allocation coefficient of the

n-th user, sk,n is the signal transmitted from BS k to the

n-th user, and nk,n is the additive noise. Additionally, the

channel coefficient is defined by |hk,n|2 = |ĥk,n|2L(dk,n),
1Note that it is possible to use different transmit powers at different

BSs. Resource allocation with such a different consideration is an important
direction for future research, but it is out of the scope of this paper.

where ĥk,n ∼ CN (0, 1) is the small-scale fading coefficient

from BS k to the n-th user in cluster Sk, L(dk,n) = ηd−α
k,n

is the large-scale path loss, dk,n is the distance between BS

k and the n-th user, η is the frequency dependent factor, and

α is the path loss exponent. In NOMA schemes, the users

associated with the same BS are served at different power

levels. In any cluster Sk, the power allocation coefficients of

all users associated with BS k satisfy
∑|Sk|

i=1 pk,i = 1.

Due to the high density of BSs and users, the interference

in the proposed system, especially the inter-BS interference,

is very severe. The commonly used method for avoiding

the inter-BS interference, such as fractional frequency reuse

(FFR), is conflicting with NOMA schemes [18]. Therefore,

in this paper, the inter-BS interference is treated as noise

and the SIC technique is utilized to reduce the intra-BS

interference. By employing SIC techniques, users with strong

channel conditions need to detect and remove the signals of

the users with weak channel conditions, and the weak users

treat the signals of strong users as noise [29]. Without loss

of generality, the users in each cluster are ordered based on

their channel conditions, where the user with the best channel

quality is set as the last user in the cluster. For the n-th user

in any cluster Sk, where i < n < j, it can decode the signal

of the i-th user, and treat the signal of the j-th user as noise.

The inter-BS interference of the n-th user in cluster Sk can

be expressed as follows:

Ik,n =

K∑

i=1,i6=k

|Si|∑

j=1

|hi,n|2pi,j =
K∑

i=1,i6=k

|hi,n|2. (2)

It can be found that the inter-BS interference is fixed for the

given user when the transmit power is equal for all BSs, and

hence, the complexity for performing SIC in the proposed

multi-cell NOMA system is similar as it in the conventional

single-cell NOMA network. By allocating users into different

clusters, the complexity for performing SIC techniques in each

cluster is significantly reduced. By utilizing SIC techniques,

the n-th user can receive the signal with the following signal-

to-interference-plus-noise ratio (SINR):

SINRk,n =
|hk,n|2pk,n

|hk,n|2
∑|Sk|

i=n+1pk,i+Ik,n+
1
ρ

, (3)

where ρ = Pt/σ
2 is the transmit signal-to-noise ratio (SNR),

Pt is the transmit power, and σ2 is the variance of the additive

white Gaussian noise (AWGN). For the last user in cluster

Sk, it can remove all intra-BS interference by applying SIC

techniques. Assume that there are t users in cluster Sk, i.e.,

|Sk| = t, the t-th user can decode its own signal with the

following SINR:

SINRk,t =
|hk,t|2pk,t
Ik,t+

1
ρ

, (4)

In this paper, it is assumed that the application of SIC

is carried out at each user, which indicates that one user

can always decode the signals of the users before it in the

sequence. Assume that m and n are two users in cluster Sk,

where the n-th user’s channel condition is better than the m-

th user, i.e., m < n. Based on [8] and [29], the condition of
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SIC is that the rate of the n-th user to decode the m-th user’s

signal is no less than the rate of the m-th user for decoding

its own signal, i.e.,

Rk,n→m ≥ Rk,m→m. (5)

If above inequality is not satisfied, the SIC technique cannot be

perfectly performed at the m-th user, and hence, the remaining

intra-BS interference should be included. In this case, the

achievable data rate of the m-th user is reduced. According to

[8], the data rate of the m-th user should be constrained by

the rate of the n-th user to decode the m-th user’s signal, i.e.,

Rk,m→m = Rk,n→m. By considering all users after the m-th

user, the data rate of the m-th user in cluster Sk is limited by

the subsequent users. The individual rate of the m-th user can

be expressed as follows:

Rk,m = min{Rk,j→m|∀j ≥ m}, (6)

where the rate of the j-th user to decode the m-th user’s signal

is given by

Rk,j→m = log2

(

1+
|hk,j |2pk,m

|hk,j |2
∑t

i=m+1 pk,i+Ik,j+
1
ρ

)

. (7)

Hence, the achievable data rate of the m-th user in cluster Sk

can be expressed as follows:

Rk,m=min

{

log2

(

1+
|hk,j |2pk,m

|hk,j |2
∑t

i=m+1pk,i+Ik,j+
1
ρ

)∣
∣
∣
∣
∣
∀j≥m

}

.

(8)

In other words, the data rate of the m-th user is equal to the

minimum rate of the users after the m-th user to decode the

m-th user’s signal.

C. Optimal Decoding Order

In order to avoid the decrease of the achievable data rate,

the decoding order of all users in each cluster should be deter-

mined. The conventional decoding order in single-cell NOMA

systems, i.e., the order of channel gains, cannot be employed

in the proposed system, since the inter-BS interference should

be considered as part of channel conditions. In [28], user

scheduling was jointly designed and iteratively executed in

the user association algorithm. As a result, the computational

complexity of user association is significantly increased. In

this subsection, an optimal decoding order is derived, which

can efficiently increase the individual rate of each user.

It can be found from Eq. (8) that the m-th user’s data rate is

partially decided by the channel conditions and interference of

the users after it. By equivalent transformation, the following

equation can be obtained:

Rk,m=log2



1+
pk,m

∑t
i=m+1 pk,i+max

{
ρIk,j+1
ρ|hk,j |2

∣
∣
∣∀j≥m

}



.

(9)

For maximizing the individual rate of each user in cluster Sk,

the users should be ordered based on their channel conditions

and inter-BS interference. The optimal decoding order of all

users in cluster Sk is a sequence as follows:

max

{
ρIk,j+1

ρ|hk,j |2
∣
∣
∣
∣
∀j≥1

}

≥· · ·≥max

{
ρIk,j+1

ρ|hk,j |2
∣
∣
∣
∣
∀j≥ t

}

. (10)

The sequence in (10) is always satisfied if the following

decoding order holds:

ρIk,1+1

ρ|hk,1|2
≥ · · · ≥ ρIk,t+1

ρ|hk,t|2
. (11)

Based on the optimal decoding order, the condition of inequal-

ity (5) is always satisfied. The achievable data rate of the m-th

user in cluster Sk can be presented as follows:

Rk,m=log2

(

1+
|hk,m|2pk,m

|hk,m|2∑t

i=m+1 pk,i+Ik,m+ 1
ρ

)

. (12)

Therefore, for raising the achievable data rates, the optimal

decoding order in the proposed multi-cell NOMA system can

be presented as follows:

Remark 1. In any cluster Sk with t users, the data rate of the

n-th user in the multi-cell NOMA system is given by

Rk,n=log2

(

1+
|hk,n|2pk,n

|hk,n|2
∑t

i=n+1 pk,i+Ik,n+
1
ρ

)

, (13)

if all users in cluster Sk are ordered based on the following

sequence:

Q(Sk) ,
ρIk,1+1

ρ|hk,1|2
≥ ρIk,2+1

ρ|hk,2|2
≥ · · · ≥ ρIk,t+1

ρ|hk,t|2
. (14)

III. PROBLEM FORMULATION

For the sake of improving the performance of the pro-

posed multi-cell NOMA system, an optimization problem

is formulated for maximizing the sum rate. User clustering

and power allocation are considered as efficient methods to

enhance the performance of NOMA systems. That is, the

users are associated with BSs by allocating them to different

clusters, and the BSs transmit the signals to the associated

users at different power levels. By optimizing the user structure

and power allocation coefficients, the sum rate maximization

problem can be formulated as follows:

max
{x,p}

K∑

i=1

N∑

j=1

xi,jRi,j (15)

s.t. Q(Si), ∀i ∈ K, (15a)

Ri,j ≥ γ, ∀i ∈ K, ∀j ∈ Si, (15b)

xi,j ∈ {0, 1}, ∀i ∈ K, ∀j ∈ N , (15c)
∑K

i=1
xi,j = 1, ∀j ∈ N , (15d)

0 ≤ pi,j ≤ 1, ∀i ∈ K, ∀j ∈ N , (15e)
∑|Si|

j=1
pi,j = 1, ∀i ∈ K, (15f)

where x is the collection of all user association indicators,

and p is the collection of all power allocation coefficients.

More particularly, constraint (15a) is the optimal decoding
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order of the users in each cluster, which ensures that any user

can successfully decode the signals of the users with weaker

channel conditions. Constraint (15b) is the QoS threshold,

where γ is the minimum data rate of the individual users.

Constraint (15c) is the value of the user association indicators,

xk,i = 1 indicates that user i is associated with BS k, xk,i = 0
otherwise. Constraints (15d) indicates that any user can only

connect to one BS at the same time. The conditions of power

allocation coefficients are presented in constraints (15e) and

(15f).

It can be found that the formulated problem is a mixed

integer linear programming (MILP) problem. More particu-

larly, even if the power allocation coefficients are fixed, the

user association related problem is still a non-deterministic

polynomial-time (NP)-complete, since it subsumes a 0-1 linear

program [30], [31]. Additionally, the non-convex problem is

difficult to transform to a convex problem, since the channel

conditions of users are varied by associating with different

BSs. Therefore, the formulated optimization problem (15)

is decoupled into a user association problem and a power

allocation problem.

A. User Association Problem

The user association problem is formulated to obtain the

stable user structure which can improve the performance of

the proposed multi-cell NOMA system. By optimizing the

indicators x, the user association problem is formulated as

follows:

max
{x}

K∑

i=1

N∑

j=1

xi,jRi,j (16)

s.t. Q(Si), ∀i ∈ K, (16a)

xi,j ∈ {0, 1}, ∀i ∈ K, ∀j ∈ N , (16b)
∑K

i=1
xi,j = 1, ∀j ∈ N . (16c)

In the user association problem, users connect to BSs for

increasing the sum rate. In constraint (16a), the optimal

decoding order is adopted in the user association problem,

which indicates that the users are ordered in each given cluster.

The QoS constraint is not included in the user association

problem, since the existing of the target rate will severely

restrict the swaps of users and affect the obtaining of the

global optimal solutions. Consider a situation with extremely

large number of users, not all users’ QoS thresholds can be

achieved. By considering the QoS constraint in this situation,

some users cannot join in any cluster because their target rates

are not achieved in these clusters, and the user structure cannot

be changed in this situation. Without the QoS constraint, more

users can swap between different clusters in the user associa-

tion problem, and hence, the user structure can converge to a

better result. Therefore, the QoS constraint is only considered

in the power allocation problem in this paper, where the users’

QoS thresholds can be achieved by adjusting power allocation

coefficients.

B. Power Allocation Optimization Problem

In this subsection, the power allocation coefficients are

optimized for enhancing the sum rate. The power allocation

problem is formulated as follows:

max
{p}

K∑

i=1

|Si|∑

j=1

Ri,j (17)

s.t. Ri,j ≥ γ, ∀i ∈ K, ∀j ∈ Si, (17a)

0 ≤ pi,j ≤ 1, ∀i ∈ K, ∀j ∈ Si, (17b)
∑|Si|

j=1
pi,j = 1, ∀i ∈ K. (17c)

In the power allocation problem, the user structure and de-

coding order are obtained by the user association problem.

Therefore, the optimization of power allocation coefficients is

performed at the given user structure.

IV. COALITIONAL GAME BASED USER ASSOCIATION

ALGORITHM

In the considered multi-cell NOMA system, by dividing

users into different clusters, each user is associated with the

feasible BS which can provide a higher sum rate. Therefore,

the formulated user association problem can be considered

as a user clustering game (N , U) in coalition formation with

non-transferable utility (NTU), since the coalition utility of

any cluster is a mapping function and cannot be expressed

as a function over the real line [32]. In user clustering game

(N , U), the coalition utility of any cluster Sk can be defined

as follows:

U(Sk) = {u(Sk) ∈ R
|Sk||ui(Sk) = Rk,i, ∀i ∈ Sk}, (18)

where ui(Sk) is the payoff of the i-th user in cluster Sk,

and Rk,i is given by equation (13). According to [32], user

clustering game (N , U) is in characteristic formation, since

the payoff of any user only depends on the users in the same

cluster.

In order to solve the user clustering game (N , U), two

game theory based user association algorithms are proposed in

this section. Firstly, preference relation based algorithm (PRA)

provides a low-complexity solution. Secondly, simulated an-

nealing based algorithm (SAA) is proposed for obtaining the

global optimal solution.

A. Preference Relation Based Algorithm

In PRA, the users swap between different clusters based

on their preference. In this paper, it is assumed that the users

connect to different BSs by comparing the change of coalition

utilities. In order to express the swap operation of users, a

notation ≺ is introduced for denoting the preference. For any

user n in cluster Si, the preference relation Si ≺n Sj denotes

that user n is willing to be part of cluster Sj , rather than

Si, where i 6= j. The sum utility of clusters Si and Sj is

considered as the criteria for the swap operation. The strict

preference relation in this paper is defined as follows:

Si ≺nSj⇔U(Si)+U(Sj)<U(Si\{n})+U(Sj∪{n}). (19)
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In other words, user n decides to split from cluster Si and

join in cluster Sj , the sum utility of clusters Si and Sj is

strictly increased with the swap operation. In the proposed user

association algorithm, the users compare the preference with

all other clusters, and decide the swap operations based on the

preference relation function. By introducing the compare-and-

swap operation, PRA is presented in Algorithm 1.

Algorithm 1 Preference Relation based Algorithm (PRA)

Initial State

The game is started from an initial structure Sinit, in which

all users are associated with the nearest BSs.

Repeat

The users begin their operations from user 1 to user N .

For any user n ∈ N , where n ∈ Si, Si ∈ S,

1: User n visits all other clusters from S1 to SK except its

current cluster. For any cluster Sj ∈ S, where j 6= i.
2: Calculate the sum utilities of clusters Si and Sj .

3: User n moves from cluster Si to Sj , the user structure is

changed from S to Snew.

4: All users in clusters Si and Sj are ordered based on the

optimal decoding order.

5: Calculate the new sum utility of clusters Si and Sj .

6: Compare the preference of user n based on the strictly

preference relation function (19).

7: If the preference relation Si ≺n Sj is satisfied, record

current partition as S = Snew .

8: Else, user n moves to cluster Si and the user structure

back to S.

Final State

The game is finished when all of the users have no incentive

to swap to other clusters.

The proposed algorithm can be started from any structure.

For reducing the number of iterations in PRA, a simple scheme

is considered as the initial partition, in which the users are con-

nected to the nearest BSs. During the game, the users perform

the compare-and-swap operations based on the sequence. If

the last user has finished its operations, the first user starts

the game again. In any user’s round, the user visits all other

clusters from S1 to SK . More particularly, the user disconnects

from the associated BS, and connects to another BS. Note that

the user’s channel condition and interference are updated with

the swap operation. At each iteration, the decoding order of

the users in the changed clusters are re-ordered for applying

SIC techniques. The sum utility of the changed clusters is

calculated based on the closed-form expressions for power

allocation coefficients, which will be discussed in Section

V. If any user’s swap operation is successfully executed, the

user structure S is transformed to a new structure Snew . The

strategy σ of any user n in cluster Si is a set of possible

operations:

σn =

{
S if Si ≻nSj , ∀Sj ∈ S,
Snew if Si ≺nSj , ∃Sj ∈ S. (20)

If any user has visited all other clusters, its operations are

finished, and the next user starts the compare-and-swap op-

erations. The game is stopped until no user can join in other

clusters, and therefore, the outputted user structure is the final

structure Sfinal.

B. Simulated Annealing Based Algorithm

In this subsection, SAA is proposed as a probabilistic

approach for approximating the global optimum in a large

number of possible user structures [33]. By randomly con-

necting users and BSs at each iteration, the global optimal

solution can be obtained by the proposed algorithm. In SAA,

the sum utility of all users in any structure is calculated for

comparison. The sum utility of user structure S is calculated

as follows:

U(S) =
K∑

i=1

U(Si). (21)

The initial user structure Sinit is established by associating

users with the nearest BSs. At this stage, a maximum utility

Umax is defined as the sum utility of the initial structure.

Durning the game, the new user structure Snew is produced by

randomly connecting one user to one BS. The sum utility of

the new structure U(Snew) is calculated. The maximum utility

Umax and the user structure S are updated at each iteration.

For the maximum utility Umax, the value is compared with

the sum utility of the new structure U(Snew), and replaced as

follows:

U(Snew) > Umax ⇒ Umax = U(Snew) (22)

In terms of the user structure, the acceptance of Metropolis-

Hastings algorithm in [34] is adopted. If U(Snew) > Umax,

the user structure is replaced by the new structure, i.e., S =
Snew. If U(Snew) ≤ Umax, the increment of the sum utility

is obtained as follows:

∆U(Snew) = U(Snew)− Umax, (23)

and the new structure is accepted at the following probability:

Pr = Te(
∆U(S)
Umax

), (24)

where T is the temperature in simulated annealing methods.

With the acceptance, maximum utility Umax is guaranteed

to strictly increase during the proposed algorithm, while the

user structure is capable of transforming to a worse neighbor

structure. The probability for the current structure changes to

a worse neighbor structure is based on the decrement of sum

utility. If the gap between the current structure and the new

structure is small, the probability is relatively large. If the

sum utility is significantly reduced, the transformation almost

never occurs. The acceptance ensures that the user structure

always has a chance to jump out form a local optimum and

converge to a global optimal partition with a large number of

iterations. The proposed global optimal algorithm is presented

in Algorithm 2.

In SAA, a maximum number of iterations Ωmax is defined

at the beginning of the algorithm. The sum utility in the

algorithm is calculated by the optimal decoding order and

the closed-form expressions for power allocation coefficients.

The game is finished when the number of iterations Ω is

equal to the maximum number of iterations Ωmax. As the
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Algorithm 2 Simulated Annealing based Algorithm (SAA)

Step 1: Initialization Phase

1: All users are associated with the nearest BSs.

2: Order all users based on the optimal decoding order.

3: Record the current structure as Sinit.

4: Set the maximum utility by Umax = U(Sinit).
5: Set Ω = 0.

Step 2: Swapping Phase

while Ω < Ωmax

1: Record current partition as S.

2: Randomly select user i and BS j, where i /∈ Sj .

3: User i joins in cluster Sj , the user structure is changed

from S to Snew.

4: Order all users based on the optimal decoding order.

5: Calculate the sum utility U(Snew).
6: If U(Snew)>Umax, set Umax=U(Snew) and S=Snew.

7: Else, calculate probability Pr by Eq. (24), and set S =
Snew with the probability.

8: Ω = Ω+ 1.

end while

outcome of SAA, the enhanced sum rate can be obtained at

the final iteration, e.g., the maximum utility Umax. During

the proposed algorithm, the maximum utility is guaranteed

to be strictly increased. However, the final structure S at the

Ωmax-th iteration may not be the enhanced structure, cause it

may transform to a worse partition with the probability Pr.

Therefore, the final structure of SAA may not be a stable

structure.

C. Property Analysis of Proposed Algorithms

In order to analyze the properties of the proposed algo-

rithms, the complexity, convergence and stability of PRA are

studied, and the optimality of SAA is discussed.

1) Complexity: In PRA, the users visit all other clusters

for compare operations at each iteration, and execute swap

operations if the preference relation conditions in (19) are

satisfied. The game is repeated several times until it is finished,

then the complexity of PRA is related to the number of cycles.

One cycle means that the users have performed the compare-

and-swap operations for all clusters from user 1 to user N .

By introducing the definition of cycles, the computational

complexity of PRA can be given as follows:

Proposition 1. In PRA, at most N(K−1) times of calcu-

lations are performed in each cycle. With a given number

of cycle times C, the computational complexity of PRA is

approximating O(CNK).
Proof: In PRA, the complexity is based on the number of

compare operations. Even though any user is not successfully

moved to another cluster, the calculation is carried out for

comparing the preference. In each cycle, one user need to

visit all clusters except its current one, hence, K−1 clusters

are visited by one user. For N users, the compare operations

in one cycle are performed N(K − 1) times. The total

number of cycles is defined as C. Therefore, the computational

complexity of PRA can be expressed as O(CNK).

In terms of the global optimal algorithm, the computational

complexity of SAA can be denoted by O(Ωmax), since there is

one time of calculation at each iteration and the total number

of iterations is defined as Ωmax.

2) Convergence: The convergence of PRA for solving user

clustering game (N , U) is guaranteed as follows:

Proposition 2. Starting at any initial user structure Sinit, user

clustering game (N , U) with PRA is capable of converging to

a final structure Sfinal which consists of a series of disjoint

clusters.

Proof: In PRA, the users perform compare-and-swap

operations for other clusters in order to maximize the sum

rate. The user structure is changed only if one user decides to

swap to another cluster, since the user is not moved with the

compare operations. During swap operations, the user structure

is transformed as follows:

Sinit → S1 → S2 · · · → Sfinal. (25)

Assume that Sa is a user structure after a times of swap

operations in sequence (25), which includes K clusters formed

by N users. From user structure Sa to the next partition

Sb, where a < b, one user is successfully moved from one

cluster to another. More particular, the user is disconnect

from one BS, and associated with a different one. The swap

operation follows the preference relation condition in (19),

which indicates that the sum utility of the changed clusters

is strictly increased. Hence, the following condition is always

satisfied for user structures Sa and Sb:

Sa → Sb ⇔ U(Sb) > U(Sa). (26)

In other words, the sum utility is always increased with the

transformation of user structures, as shown in sequence (25).

With the finite number of users, the number of partitions

is finite and equal to the Bell number [35]. Therefore, the

sequence in (25) can always converge to a final structure

Sfinal. Note that any user can only join in one cluster at

the same time, and hence, the final structure is formed by K
disjoint clusters.

The convergence of the simulated annealing based method

is studied in [36]. It is proved that the algorithm based

on simulated annealing with the acceptance of Metropolis

procedure can converge to the optimal solution.

3) Stability: Given the convergence of PRA, the stability of

the user association algorithm can be analyzed. In this paper,

the stability of PRA follows Nash-stable in [37]. The definition

is shown as follows:

Definition 1. A structure S is Nash-stable if ∀n ∈ N , n ∈
Si, Si ∈ S, the preference relation Si ≻nSj is always satisfied

for all Sj ∈ S, j 6= i.

By introducing the definition of Nash-stable, the stability of

PRA is guaranteed as follows:

Proposition 3. In user clustering game (N , U), any final user

structure Sfinal resulting from PRA is a Nash-stable structure.

Proof: If the final partition Sfinal produced by PRA is

not a Nash-stable structure, there exists at least one user n
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tends to move to another cluster. Assume that user n in cluster

Si is willing be part of cluster Sj , then preference relation

Si≺nSj holds, where i 6= j. Based on the preference relation

condition in (19), the sum utility of the clusters Si and Sj is

strictly increased by the swap operation of user n. There exists

one partition Snew which satisfies U(Snew) > U(Sfinal). It

is contradicted to the fact that Sfinal is the final structure,

since the sum utility of the final structure cannot be improved

by swap operations. Therefore, the final structure achieved by

PRA is Nash-stable.

4) Optimality: Note that the outcome of PRA is not guar-

anteed to converge to a global optimum. Alternatively, SAA

is proposed for obtaining the global optimal solution. The

optimality of SAA is shown as follows:

Proposition 4. With sufficiently iterations Ωmax, SAA can

achieve the global optimum of the sum rate, and the result is

Nash-stable.

Proof: In SAA, the final structure may not be the optimal

result, since the user structure can be transformed to a partition

with a deteriorated sum rate. However, the maximum utility

Umax is guaranteed to strictly increased with the swap oper-

ations. It is proved in [38] and [39] that the algorithm based

on simulated annealing method is capable of converging to a

global optimal solution with the sufficient number of iterations.

In a global optimal structure, the utility is maximized and

the maximum utility Umax can not be increased. The user

structure with the global optimal utility is also a Nash-stable

structure since there is no user has the incentive to move to

other clusters.

Note that the performance of SAA depends on the tempera-

ture T and the maximum iterations Ωmax. More particular, the

probability to accept a worse result is significantly affected by

the temperature, and the result is improved with the increasing

number of iterations. In particular, the sufficiently iterations

of SAA is approximately exponential time. In this paper, the

maximum iterations is set as a fixed number.

V. CLOSED-FORM SOLUTIONS FOR POWER ALLOCATION

In this section, the power allocation problem (17) is solved

by deriving closed-form solutions. Two situations, including

the QoS constraint whether can be satisfied, are considered.

Two closed-form expressions for the sum rate are respectively

derived to achieve the global optimum in different situations.

Note that the proposed user clustering game (N , U) is

in characteristic formation, the change of power allocation

coefficients in any cluster will not affect the utility of other

clusters since the inter-BS interference is not changed. There-

fore, the power allocation optimization problem in (17) can

be considered as K problems for the individual clusters. For

any cluster Sk with t users, the original problem can be

equivalently transformed to the following problem:

max
{p}

t∑

i=1

Rk,i (27)

s.t. Rk,i ≥ γ, ∀i ∈ Sk, (27a)

0 ≤ pk,i ≤ 1, ∀i ∈ Sk, (27b)
∑t

i=1
pk,i = 1. (27c)

In order to solve problem (27), the power allocation in [40]

can be utilized. Note that the users in each cluster are ordered

based on their channel conditions and inter-BS interferences,

and the last user has the best channel quality. Therefore, the

optimized power allocation in problem (27) is to achieve all

users’ target rates, and allocates the remaining power to the

t-th user of cluster Sk since it can utilize the power more

efficiently2. If constraint (27a) can be satisfied by all users

in cluster Sk, a closed-form expression can be presented as

follows:

Proposition 5. In power allocation optimization problem (27),

the sum rate of users in any cluster Sk is

R(Sk)= tγ+log2






1+

1−(2γ−1)
[
∑t

i=1
(ρIk,i+1)2(i−1)γ

ρ|hk,i|2

]

ρIk,t+1
ρ|hk,t|2






,

(28)

if the following condition is satisfied:

1− (2γ−1)
[

t∑

i=1

(ρIk,i + 1)2(i−1)γ

ρ|hk,i|2

]

≥ 0. (29)

Proof: See Appendix A.

It can be found that the derived closed-form expression

(28) can be divided into two parts. The first part, tγ, is the

QoS thresholds of all users in cluster Sk, and the second

part is to allocate the remaining power to the t-th user. The

inequality (29) is the condition for this case, which indicates

all users in cluster Sk can achieve the target rate. However,

there exists another case that the transmit power cannot satisfy

all users’ QoS constraints in cluster Sk. In other words, with

the given users and the decoding order, the constraint (27a)

cannot hold for all users. In this case, users with the better

channel conditions and less inter-BS interference have the

higher priority to achieve the target rate, since less transmit

power is consumed for satisfying these users’ QoS constraints.

Based on this strategy, the optimal power allocation in this case

can be expressed as follows:

Proposition 6. In power allocation optimization problem (27),

if the following condition holds:

1− (2γ−1)

[
t∑

i=1

(ρIk,i + 1)2(i−1)γ

ρ|hk,i|2

]

< 0, (30)

2It is worth pointing out that reducing transmit power is capable of
improving the outage probability of the considered multi-cell NOMA system,
but this is beyond the scope of this paper.



9

TABLE I: Table of Parameters

The number of BSs 4
Location of BS 1 (−0.4RD ; 0.4RD)
Location of BS 2 (0.4RD ; 0.4RD)
Location of BS 3 (−0.4RD ;−0.4RD)
Location of BS 4 (0.4RD ;−0.4RD)
System bandwidth 10 MHz

Carrier frequency 1 GHz

Thermal noise power σ2 = −174 dBm

Pass loss exponent α = 3
The minimum data rate γ = 0.1 Mbits/s/Hz

there exists one user n which satisfies the following conditions:






(2γ−1)
[
∑t

i=n+1
(ρIk,i+1)2(i−1)γ

ρ|hk,i|2

]

≤ 1,

(2γ−1)
[
∑t

i=n

(ρIk,i+1)2(i−1)γ

ρ|hk,i|2

]

> 1.
(31)

The maximum sum rate of cluster Sk is

R(Sk)=(t−n)γ+log2

[

1+
|hk,n|2∆p(Sk)

|hk,n|2(1−∆p(Sk))+Ik,n+
1
ρ

]

,

(32)

where ∆p(Sk) = 1− (2γ−1)
[
∑t

i=n+1
(ρIk,i+1)2(i−1)γ

ρ|hk,i|2

]

.

Proof: See Appendix B.

In above proposition, condition (30) indicates that the

transmit power of BS k cannot satisfy the QoS thresholds

of all associated users. In this case, users after the (n + 1)-
th user (includes the (n + 1)-th user) can achieve the target

rate, and the remaining power cannot help at least one user to

achieve the target rate, which corresponds to the conditions in

inequality (31). As a result, the optimal power allocation of

all users in cluster Sk can be shown in (32).

By utilizing the closed-form expressions at each iteration of

the proposed user association algorithms, the user association

and power allocation problems are iteratively optimized.

VI. SIMULATION RESULTS

Simulation results are presented in this section to highlight

the performance of the proposed user association algorithms

and the derived closed-form expressions for power allocation.

The Monte Carlo simulation is employed and the parameters

are shown in Table I. Both OMA and fixed power NOMA

schemes are provided as benchmarks. In terms of the OMA

scheme, TDMA is adopted, where all users in TDMA schemes

receive signals with the equally allocated time slots, and hence,

the time slot allocation coefficient of any user is 1/N . For

fixed power NOMA schemes, the power allocation coefficient

of any user n in cluster Sk is considered as pk,n = |Sk|−n+1
µ

,

where µ =
∑|Sk|

i=1 i is utilized to ensure
∑|Sk|

i=1 pk,i = 1.

By employing the the fixed power allocation coefficients, the

individual rates and the outage probability of the users with

weak channel conditions can be improved. The proposed user

association algorithm, PRA, is also adopted in OMA and fixed

power NOMA schemes, and the sum utilities are calculated

based on the equal time slot allocation and the fixed power

allocation, respectively.

In Fig. 2, the distance-based partition (DP) and PRA are

compared, where the game is played 10 times in both schemes.
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Fig. 2: An illustration of user association and power allocation.

N = 12, RD = 100 m, and Pt = 30 dB. (a) The distance

based partition with the optimized power allocation. (b) Stable

partition based on PRA with the optimized power allocation.

Based on the optimal power allocation coefficients in propo-

sitions 5 and 6, from Fig. 2(a) to Fig. 2(b), the sum rate is

increased from 17.4554 Mbits/s/Hz to 22.0703 Mbits/s/Hz,

and the outage probability is reduced from 0.0333 to 0. The

outage probability is calculated by Po = E(Nfail/N), where

Nfail is the number of users cannot achieve the target rate

γ. In Fig. 2(a), all users are associated with the nearest BSs.

During PRA, several users are connected to the BS with large

distances, as shown in Fig. 2(b). This is due to following

reasons. Firstly, if any user cannot achieve its target rate when

connecting to the nearest BS, it will be associated to the

far BS which can provide enough power to satisfy the QoS

threshold. It confirms to the fact that the outage probability

is decreased. Secondly, if any cluster includes the user has

an extremely good channel condition, the users with worse

channel conditions will be allocated to other clusters, since

more power can be allocated to the best user. As a result,

such a strategy can increase the sum rate.

In Fig. 3, the performance of different schemes is simu-

lated with a large range of transmit power, where DP and

random partition (RP) are considered as benchmarks. It can
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Fig. 3: The impact of transmit power for different schemes.

N = 12, and RD = 100 m. (a) Sum rate. (b) Outage

probability.

be observed from Fig. 3(a) and Fig. 3(b) that PRA and power

allocation are capable of significantly enhancing the sum rate

and the outage probability for NOMA schemes, especially

at high transmit power. By associating the users with the

nearest BSs, both sum rate and outage probability can be

greatly improved. The performance of the derived closed-

form expressions for power allocation can also be observed

from the figure. It is worth pointing out that the outage

probability of optimized partition (OP) is worse than DP with

optimized power when the transmit power is between 0 dBm

and 15 dBm, since there is a trade-off between the sum rate

and outage probability. In the overloaded system, some users

cannot achieve their target rates at lower transmit power, then

the performance of the proposed user association algorithm is

saturated. At higher transmit power, the QoS constraints of

these users can be satisfied, and hence, this saturation effect

is avoided.

The effect of different radiuses is showed in Fig. 4, where

both OMA and NOMA schemes are simulated. For any user,

with the increasing radius of the disc, the average channel

gain and interference channels are reduced. As a result, the

performance including the sum rate and outage probability

is deteriorated. It shows that the proposed user association

algorithm and the derived closed-form solutions for power
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Fig. 4: The impact of different radiuses for NOMA and OMA

schemes. N = 12, and Pt = 10 dB. (a) The distance based

partition. (b) Stable partition based on PRA.

allocation can significantly improve the sum rate, and provides

an acceptable outage probability. In Fig. 4(a), the NOMA

scheme with optimized power is worse than fixed power

when the radius is increased, since more power is allocated

to the users with poor channel conditions for achieving the

minimum data rate. For DP, this situation appears early, since

the users in worse structures are more difficult to satisfy the

QoS constraints. Another point is that the outage probability of

OMA schemes with DP is raised faster than NOMA schemes.

This is due to the fact that there is no interference in OMA

schemes, and hence the influence of the channel gains becomes

more obvious.

In Fig. 5, the sum rate and outage probability with dif-

ferent numbers of users are simulated. Both 3 BSs and 4
BSs scenarios are considered, where the BSs are located at

(0; 0.5RD), (0.4RD;−0.3RD), and (−0.4RD;−0.3RD) for

the 3 BSs scenario. It indicates that the sum rate and outage

probability of NOMA schemes are improved when more BSs

are included, while the OMA schemes are nearly not affected

by the numbers of BSs. In NOMA schemes, the user with

the strongest channel condition plays a dominant role, and

hence, the sum rate will be increased since more BSs brings

more of such users. However, in OMA schemes, there is no

interference and the time slots are equally allocated, then
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Fig. 5: The performance of NOMA and OMA schemes at

different numbers of users. RD = 100 m, and Pt = 10 dB.

(a) Sum rate. (b) Outage probability.

the performance of both schemes are only affected by the

number of users. It can also be observed from Fig. 5(a)

that the sum rate of NOMA schemes with optimized power

is less than that with fixed power when the users exceed a

certain number. Note that the QoS constraint is not included

in the user association problem, OP with the fixed power

allocation may cause a OMA solution, in which the user with

the best channel condition stay in the singleton cluster and the

remaining users are allocated to a grand cluster. The sum rate

can be improved in this case, while the outage probability is

significantly increased. In optimal power allocation, the QoS

threshold γ is considered in the derived closed-from solutions,

and thus this case can be avoid. However, the most power

is allocated to the users with weaker channel conditions for

achieving the target rate, which leads to a lower sum rate.

Additionally, this certain number is decreased if a worse user

structure is employed, which can be found by comparing OP

with DP.

In Fig. 6, the iterations of the proposed algorithms are

shown, in which fixed power allocation coefficients are

adopted. In the imperfect decoding order scheme, the users in

each cluster are not ordered based on the channel conditions

and interference. The individual rate in this case is calculated

by Eq. (8). Note that the performance and the complexity of
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Fig. 6: The iterations of the user association algorithms with

different decoding orders. N = 12, and RD = 100 m.

SAA is significantly affected by the temperature and iteration

numbers. According to [14], the temperature is set as T = 0.5,

and the maximum iterations is Ωmax = 106. The flat lines

are provided by SAA, which is proved to converge to the

global optimum with fixed power allocation coefficients. The

iterations of SAA is not shown, since it is 106. Firstly, it

can be observed that PRA is capable of achieving around

90% performance of the global optimum. Hence, the low

complexity algorithm PRA can be regarded as a near-optimal

algorithm. It is worth pointing out that there are 36 times of

iterations in each cycle of PRA, which is confirmed to the

analysis in Proposition 1 that N(K−1) times of calculations

are performed in each cycle. The sum utility of PRA can

converge to a stable structure with approximately 100 times

of iterations, which confirms the convergence and stability

properties demonstrated in Proposition 2 and Proposition

3. Secondly, it is also indicated that the derived optimal

decoding order can significantly enhance the convergence and

final results of the proposed user association algorithms. Both

PRA and SAA can achieve higher sum rates with the optimal

decoding order than with the imperfect decoding order, and

PRA with the imperfect decoding order needs around 150
times of iterations to reach the stable structure.

VII. CONCLUSIONS

In this paper, a downlink multi-cell NOMA system with

multiple BSs was investigated. In order to improve the sum

rate of the proposed system, an optimization problem was

formulated. The problem was divided into user association and

power allocation problems. By considering the users associ-

ated with the same BS as one cluster, two user association

algorithms were proposed to allocate the users to different

clusters. PRA provided a low complexity near-optimal solu-

tion, while SAA obtained a global optimal outcome for the

user association problem. For jointly solving the formulated

problems, the closed-form expressions for power allocation

were derived and performed at each iteration of the user

association algorithms. The complexity, convergence, stability

and optimality of the user association algorithms were ana-

lyzed. Simulation results showed that the proposed algorithms

greatly improved the performance of the system in terms of the
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sum rate and the outage probability, and the user association

scenario with NOMA schemes have a better performance than

conversional OMA schemes. Moreover, incorporating the time

slot or subcarrier allocation into the optimization problems

is an important research direction for further enhancing the

system performance.

APPENDIX A: PROOF OF PROPOSITION 5

Proof: According to the QoS constraint, the data rate of

the n-th user in cluster Sk satisfies the following inequality:

log2

(

1+
|hk,n|2pk,n

|hk,n|2
∑t

i=n+1 pk,i+Ik,n+
1
ρ

)

≥ γ, (33)

By introducing the minimal power allocation coefficient p̂, the

QoS constraint can be transformed as follows:

log2

(

1+
|hk,n|2p̂k,n

|hk,n|2
∑t

i=n+1 p̂k,i+Ik,n+
1
ρ

)

= γ. (34)

The minimal power allocation coefficient of the n-th user in

cluster Sk can be expressed as

p̂k,n = (2γ−1)

(
t∑

i=n+1

p̂k,i+Ak,n

)

, (35)

where Ak,n is the channel condition of the n-th user in cluster

Sk, and defined as Ak,n ,
ρIk,n+1
ρ|hk,n|2

. The sum of all users’

minimal power allocation coefficients in cluster Sk can be

obtained as follows:

p̂(Sk) =

t∑

i=1

p̂k,i = (2γ−1)

t∑

i=1





t∑

j=i+1

p̂k,j+
ρIk,i + 1

ρ|hk,i|2





= (2γ−1)

[
t∑

i=1

2(i−1)γAk,i

]

. (36)

By allocating the minimal power allocation coefficients to all

users in cluster Sk, the remaining power allocation coefficient

is given by

∆p(Sk)=1−p̂(Sk)=1−(2γ−1)

[
t∑

i=1

2(i−1)γAk,i

]

. (37)

Eq. (35) can be equivalently transformed as follows:

p̂k,n = (2γ−1)

(
t∑

i=n+1

p̂k,i+Ak,n

)

⇒(2γ−1)

(
t∑

i=n+1

∆pk,i

)2

+p̂k,n

t∑

i=n+1

∆pk,i

=(2γ−1)

(
t∑

i=n+1

∆pk,i

)2

+(2γ−1)

t∑

i=n+1

∆pk,i

(
t∑

i=n+1

p̂k,i+Ak,n

)

⇒
t∑

i=n+1

∆pk,i

[

p̂k,n+(2γ−1)

t∑

i=n+1

∆pk,i

]

= (2γ−1)

t∑

i=n+1

∆pk,i

(
t∑

i=n+1

∆pk,i+

t∑

i=n+1

p̂k,i+Ak,n

)

⇒ p̂k,n+(2γ−1)
∑t

i=n+1 ∆pk,i
∑t

i=n+1 ∆pk,i+
∑t

i=n+1 p̂k,i+Ak,n

=2γ−1 (38)

Based on Eq. (38), the QoS threshold can be expressed as

γ = log2

[

1 +
p̂k,n+(2γ−1)

∑t

i=n+1 ∆pk,i
∑t

i=n+1(p̂k,i +∆pk,i)+Ak,n

]

(39)

The increment of the individual rate for the n-th user is defined

by ∆Rk,n = Rk,n − γ. Based on Eq. (39), the increment of

data rate at the n-th user can be expressed as follows:

∆Rk,n = log2

[

1+
p̂k,n+∆pk,n

∑t
i=n+1(p̂k,i +∆pk,i) +Ak,n

]

− log2

[

1+
p̂k,n+(2γ−1)

∑t

i=n+1 ∆pk,i
∑t

i=n+1(p̂k,i +∆pk,i)+Ak,n

]

= log2

(∑t

i=n p̂k,i+
∑t

i=n+1 ∆pk,i+Ak,n+∆pk,n
∑t

i=n p̂k,i+2γ
∑t

i=n+1 ∆pk,i+Ak,n

)

= log2

[

1+
∆pk,n−(2γ−1)

∑t

i=n+1∆pk,i
∑t

i=np̂k,i+2γ
∑t

i=n+1∆pk,i+Ak,n

]

.

(40)

It can be found from Eq. (35) that the minimal power

allocation coefficient for any user is fixed with the optimal

decoding order. Therefore, the power allocation optimization

problem in (27) can be equivalently transformed to a problem

for maximizing the sum of increment data rates in cluster Sk,

as shown in follows:

max
{∆p}

t∑

i=1

∆Rk,i (41)

s.t. 0 ≤ ∆pk,i ≤ 1, ∀i ∈ Sk, (41a)

t∑

i=1

∆pk,i ≤ ∆p(Sk), (41b)

where ∆p is the collection of all increment power allocation

coefficients. In problem (41), the QoS constraint in the original

problem is removed, since all users have achieved the target

rates in this case. It can be found from Eq. (40) that the optimal

solution of problem (41) is that allocating all remaining power

to the last user. If user n in Eq. (40) is the last user, i.e., n = t,
the value of ∆pk,n is maximized, (2γ−1)

∑t
i=n+1∆pk,i is 0,

∑t

i=np̂k,i is minimized, and 2γ
∑t

i=n+1∆pk,i is 0. On the

other hand, Ak,n is also minimized when n = t, since the

value of A is ordered based on inequality (14). Therefore, the

optimal power allocation in any cluster is that to satisfy all

users’ QoS constraints, then allocate all remaining power to

the last user. With the optimal power allocation, the increment

of the t-st user’s individual rate is given by

∆Rk,t = log2

(

1+
∆pk,t
Ak,t

)

= log2

(

1+
∆p(Sk)

Ak,t

)

= log2






1+

1−(2γ−1)
[
∑t

i=1 2
(i−1)γAk,i

]

Ak,t






. (42)
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The optimal coalition utility of cluster Sk can be expressed as

R(Sk)= tγ+log2






1+

1−(2γ−1)
[
∑t

i=1 2
(i−1)γAk,i

]

Ak,t






,

(43)

and the proposition is proved.

APPENDIX B: PROOF OF PROPOSITION 6

Proof: If condition (30) holds, the sum of all minimal

power allocation coefficients p̂(Sk) is greater than 1, hence,

only part of users in cluster Sk can achieve the target rates.

Based on Eq. (35) and the optimal decoding order in (14), the

following inequality can be obtained:

p̂k,1 > p̂k,2 > · · · > p̂k,t. (44)

The sequence of minimal power allocation coefficients indi-

cates that the users with strong channel conditions are easier

to achieve the target rates. Therefore, there exists one user

n, where 1 < n ≤ t, the QoS constraints of the users

after the (n+1)-th user (includes the (n+1)-th user) can be

satisfied, and the users before the n-th user (includes the n-th

user) cannot achieve the target rates. The n-th user satisfies

following conditions:
∑t

i=n+1 p̂k,i ≤ 1,
∑t

i=n p̂k,i > 1.
(45)

Note that if n = t, it means that not user in cluster Sk can

achieve the target rate. By introducing Eq. (36), constraint (45)

can equivalently transformed to

(2γ−1)[
∑t

i=n+1 2
(i−1)γAk,i] ≤ 1,

(2γ−1)[
∑t

i=n 2
(i−1)γAk,i] > 1.

(46)

By obtaining the n-th user in cluster Sk, the original power

allocation optimization problem in (27) can be equivalently

transformed to following problem:

max
{p}

t∑

i=n

Rk,i (47)

s.t. Rk,i ≥ γ, ∀i ∈ [n, t], (47a)

0 ≤ pk,i ≤ 1, ∀i ∈ [n, t], (47b)

t∑

i=n

pk,i ≤ 1. (47c)

In order to obtain the optimal solution for problem (47), the

power allocated to the users after the (n+1)-user (includes

the (n+1)-th user) for satisfying the QoS thresholds, and all

remaining power is allocated to the n-th user. The remaining

power allocation coefficient is given by

∆p(Sk) = 1−(2γ−1)

[
t∑

i=n+1

2(i−1)γAk,i

]

. (48)

By allocating all remaining power to the n-th user, the data

rate for the n-th user can be expressed as follows:

Rk,n = log2

[

1+
|hk,n|2∆p(Sk)

|hk,n|2(1−∆p(Sk))+Ik,n+
1
ρ

]

. (49)

Therefore, the optimal sum rate of cluster Sk is

R(Sk)=(t−n)γ+log2

[

1+
|hk,n|2∆p(Sk)

|hk,n|2(1 −∆p(Sk))+Ik,n+
1
ρ

]

,

(50)

and the proof is completed.
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