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Abstract—Large-scale user contributed images with tags are
easily available on photo sharing websites. However, the noisy or
incomplete correspondence between the images and tags prohibits
them from being leveraged for precise image retrieval and
effective management. To tackle the problem of tag refinement,
we propose a method of Ranking based Multi-correlation Tensor
Factorization (RMTF), to jointly model the ternary relations
among user, image and tag, and further to precisely reconstruct
the user-aware image-tag associations as a result. Since the
user interest or background can be explored to eliminate the
ambiguity of image tags, the proposed RMTF is believed to
be superior to the traditional solutions, which only focus on
the binary image-tag relations. During the model estimation, we
employ a ranking based optimization scheme to interpret the tag-
ging data, in which the pair-wise qualitative difference between
positive and negative examples is used, instead of the point-wise
0/1 confidence. Specifically, the positive examples are directly
decided by the observed user-image-tag interrelations, while the
negative ones are collected with respect to the most semantically
and contextually irrelevant tags. Extensive experiments on a
benchmark Flickr dataset demonstrate the effectiveness of the
proposed solution for tag refinement. We also show attractive
performances on two potential applications as the by-products
of the ternary relation analysis.

Index Terms—tag refinement, factor analysis, tensor factoriza-
tion, social media

I. INTRODUCTION

With the popularity of Web 2.0 technologies, there are

explosive photo sharing websites with large-scale image col-

lections available online, such as Flickr,1 Picasa,2 Zooomr3

and Pinterest.4 These Web 2.0 websites allow users as owners,

taggers, or commenters for their contributed images to interact

and collaborate with each other in a social media dialogue. Its

typical structure (Flickr as example) is illustrated in Fig.1,

in which three types of interrelated entities are involved,
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Fig. 1. An integrated structure of social tagging in Flickr

i.e., image, tag and user. From this view, we can deem the

user contributed tagging data as the products of the ternary

interactions among images, tags and users.

Obviously, given such a large-scale web dataset, noisy and

missing tags are inevitable, which limits the performance of

social tag-based retrieval system [1], [2]. Therefore, the tag

refinement to denoise and enrich tags for images is desired to

tackle this problem. Existing efforts on tag refinement [3], [4],

[5], [6], [7], [8], [9], [10] exploited the semantic correlation

between tags and visual similarity of images to address the

noisy and missing issues, while the user interaction as one of

important entities in the social tagging data is neglected.

As above mentioned, users are the originator of the tagging

activity and they are involved with images and tags in many

aspects. We believe that the incorporation of user information

contributes to a better understanding and description of the

tagging data. We take two simple examples to explain this

observation. As shown in Fig.2(a), both images are tagged

with “jaguar” by the two users (indicated by user ID,5) but

they have different visual content, i.e., a luxury car and an

animal respectively. Due to the well-known “semantic gap”,

traditional work on image content understanding cannot solve

the problem well. In this case, users’ interest and background

information can be leveraged to specify the image semantics.

That is, a car fan will possibly use “jaguar” to tag a ‘car’

image, while an animal specialist will use “jaguar” to tag a

‘wild cat’. Fig.2(b) shows three images from the FIFA 2010

final. We can see that different tags of “football” and “soccer”

are annotated to the visually similar images. Considering

the tagger information, we can easily understand this phe-

nomenon: users have different tagging patterns. Maybe user

88077630@N00 is a Spanish fan while user 14915523@N05

5 The user ID of the taggers can be acquired from the Flickr API:
http://www.flickr.com/services/api



2 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, 20XX

and 43175983@N00 are Americans. These two examples can

be considered as the reinforcement of tag understanding by

introducing the user information. Note that it is not necessary

to explicitly know the users’ interests or profiles. What we

are interested in is the fact that the tags are annotated by

different users and there are variations in individual user’s

perspective and vocabulary. Incorporation of user may bring

similar benefits to the image understanding. On top of visual

appearance, the fact that images from the same user or tagged

by similar users can capture more semantic correlations.

The goal of our work is to improve the underlying asso-

ciations between the images and tags provided with the raw

tagging data from photo sharing websites. To this end, in this

paper, we solve it from a factor analysis perspective and aim at

building the user-aware image and tag factor representations.6

With the user factor incorporated, the image and tag factors

will be free to focus on their own semantics and we can obtain

more semantics-specified image and tag representations. A

novel method named Ranking based Multi-correlation Tensor

Factorization (RMTF) is proposed to tackle the tag refinement

task. The framework is illustrated in Fig.3. It contains three

primary parts: data collection, RMTF and tag refinement. For

data collection, three types of data including users, images

and tags as well as their ternary interrelations and intra-

relations are collected.7 In the RMTF module, we utilize tensor

factorization to jointly model the multiple factors. To make full

use of the observed tagging data and partial use of unobserved

data, we present a novel ranking scheme for model estimation,

which is based on the pair-wise qualitative difference between

positive examples (i.e., observed tagging data) and negative

ones (i.e., partial unobserved data). The collection of negative

examples is carried out by analyzing user tagging behavior.

The issue of noisy tags and missing tags are considered in a

conservative filtering strategy by exploiting the tag correlation

on context and semantics. Besides, the multiple intra-relations

are employed as the smoothness constraints and then the

factors inference is cast as a regularized tensor factorization

problem. Finally, based on the learnt factor representations,

which encode the compact users, images and tags representa-

tion over their latent subspaces, tag refinement is performed

by computing the cross-space image-tag associations.

The main contributions of this paper are summarized as

follows.

• We introduce user information into the social tag pro-

cessing and jointly model the multiple factors of user,

image and tag by 3-order tensor.

• We propose the RMTF model to extract the latent factor

representations. A convergence provable learning algorith-

m is also presented.

• To make full use of the tagging data, a ranking optimiza-

tion scheme is proposed to leverage the incomplete and

ambiguous characteristics of user-generated tagging data.

6 These can be viewed as the feature matrices on the latent subspaces, which
are spanned by the images and tags. We detail factor matrices derivation in
Section 3

7 We show a running example consisting of three users, five tags and four
images in Fig.3(a).

(a)

(b)

Fig. 2. Example images from Flickr and their associated tags and taggers

• RMTF provides an entrance to other potential applica-

tions in the social media and information retrieval fields,

which is discussed in Section V.D.

The rest of the paper is organized as follows. Related work

is briefly reviewed in Section II. In Section III we formulate the

problem and explain our basic idea. The detail of the proposed

RMTF is addressed in Section IV. We report and discuss the

experimental results as well as the applications in Section V.

Finally, the conclusion and future work are given.

II. RELATED WORK

In this section, we briefly review some of the research

literatures related to ternary analysis and image tag refinement.

A. Ternary Analysis and Applications

Tensor is a mathematical representation of a multi-way

array. The order of a tensor is the number of modes. A second-

order tensor is a matrix, and a higher-order tensor has three

or more modes. The most important tensor operation is tensor

factorization. Many tensor factorization methods have been

proposed, among which, CANDECOMP/PARAFAC (CP) and

Tucker Decomposition are the most popular ones. A good

survey for tensor factorization is provided in [11].

The advantage of ternary analysis is that we can use higher-

order tensor to capture the multi-dimension relational data and

employ tensor factorization to analyze their correlations. In the

last decade, interest in ternary analysis has expanded to many

fields, such as signal processing, numerical analysis, graphic

analysis, and so on. We do not intend to cover all the related

work and only focus on examples from the communities of

computer vision and data mining.

In [12], the authors presented a dimensionality reduction

algorithm based on tensor decomposition of N-mode SVD.

They demonstrated the power of multilinear subspace analysis

in the context of facial image ensembles. He et al. [13]

also applied ternary analysis to the face recognition problem.

Li et al. [14] introduced an online tensor subspace learning

algorithm to the visual tracking problem. Considering the

influence of the environment changing in the tracking process,

Wen [15] extended the biased discriminant analysis (BDA) to
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Fig. 3. The proposed framework.

the tensor biased discriminant analysis (TBDA) for appearance

modeling and foreground extraction.

With the popularity of large-scale social media, massive

amounts of data with multiple aspects and high dimensions

are generated. Tensor provides a natural representation for

such data. In [16], tensor factorization is utilized for multi-

aspect data mining on the network data flow. Franz et al.

[17] modeled the Semantic Web by a 3-dimensional tensor

that enables the seamless representation of arbitrary semantic

links. Under the rich media social network scenario, such as

Diggs, Flickr, Last.fm, multi-relational data, user, item (post,

photo), keyword, comment, contact are involved. In [18], the

authors utilized 3-order tensor to model altogether users, tags

and items in music sharing websites, and tackled personalized

music recommendation based on latent semantic analysis.

Beyond ternary relationship modeling, recently, researchers of

[19] modeled the quaternary relationship among users, items,

tags and ratings as a 4-order tensor and conducted multi-

way latent semantic analysis. Lin et al. [20] introduced tensor

factorization into photo sharing websites. The motivation is

to extract meaningful communities by modeling the multi-

relational social media contexts and interactions. As far as we

know, little work has focused on incorporating user interaction

to enhance the analysis of the correlation between images and

tags. Our work is the first to incorporate user information into

the task of image tag refinement.

One major challenge for ternary analysis is how to deal with

the sparse and large-scale data. Standard tensor factorization

methods do not account for the sparsity of the data. There

have been substantial developments on variations of CP or

Tucker Decomposition to account for the sparsity problem. For

example, Kolda et al. [22] developed a greedy CP for sparse

tensors that computes on triad at a time via an alternative

least square (ALS) method. Recently, several works tackled

the sparsity issue and avoided overfit by incorporating priors

and combining with other schema. Chi et al. [23] employed

the external information as smoothness priors into the tensor

factorization and provided a good probabilistic interpretation.

While in [24], the authors embeded a factorized representation

of relations in a nonparametric Bayesian clustering framework,

which achieves a tradeoff between the good predictive per-

formance and interpretable representations. In this paper, the

sparsity issue is addressed in two ways:

• The intra-relations among users, images and tags are

employed as multi-correlation smoothness constraints into

the tensor factorization model.

• We leverage the characteristics of user tagging activity and

introduce a novel ranking optimization scheme.

B. Image Tag Refinement

The literatures [10], [2] provide good surveys for the

research work on image tag refinement. Along the structure

of the tagging data illustrated in Fig.1, we characterize the

related work according to the resources they leveraged.

As a pioneer work, Jin et.al [3] employed WordNet to esti-

mate the semantic correlations among the annotated tags and

remove weakly correlated ones. The work of [25] performed

belief propagation among tags within the random walk with

restart framework to refine the imprecise original annotations.

In [6], Xu et al. proposed to jointly model the tag similarity

and tag relevance and perform tag refinement from the topic

modeling view. These work is typically based on the tag-

tag analysis. In [26], the authors explicitly considered the

tag-image and tag-tag relations and proposed a dual cross-

media relevance model for image annotation. Liu et al. [5]

proposed to rank the image tags according to their relevance

w.r.t. the associated images by modeling tag similarity and

image similarity. In [9], the improved tag assignments are

learnt by maximizing the consistency between visual similarity

and semantic similarity while minimizing the deviation from

initially user-provided tags. An interesting work is done by

Xie et al.[27], in which several important issues in building an

end-to-end image tagging application are addressed, including
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tagging vocabulary design, taxonomy-based tag refinement,

classifier score calibration for tag ranking, and selection of

valuable tags. Recently, Liu et al.[28] proposed a multi-edge

graph based unified framework to solve the image annotation,

tag-to-region and tag refinement problem. Tag-tag, image-

image and image-tag relationships are explored in these work.

The most related work to this paper is [7], [10], which

solves the tag refinement problem through low-rank matrix

approximation. Zhu et al. [10] considered the tagging char-

acteristics from the view of low-rank, error sparsity, content

consistency and tag correlation. In [7], a factor analysis

model is proposed and the tag refinement problem is cast

as estimating the image-tag correlations. While these work

simultaneously modeled the tag-tag, image-image and image-

tag relationships, they aggregated images’ tags over all users,

thereby losing important information about individual user’s

variation in tag usage. In this paper, we exploit the social

aspect of the photo sharing websites and consider user factor

into the tag refinement problem. We believe that incorporation

of user information will facilitate explaining the tagging data

and lead to better estimates of image and tag factors.

III. PROBLEM FORMULATION

The low dimensional user, image and tag factor matrices

can be viewed as compact representations in the corresponding

latent subspaces. The latent subspaces capture the relevant

attributes, e.g., the user dimensions are related to users’

preferences or social interests, the image dimensions indicate

visual themes and the tag dimensions are related to the

semantic topics of tags. The basic intuition behind this work is:

The incorporation of user information will help extract more

compact and informative image and tag representations in the

semantic subspaces. The task of image tag refinement is then

solved by computing the cross-space image-tag associations.

In this section we first introduce the idea of jointly modeling

the user, image and tag factors into a tensor factorization

framework, then explain how to employ the derived factors

for tag refinement.

In the following, we denote tensors by calligraphic up-

percase letters (e.g., Y), matrices by uppercase letters (e.g.,

U, I, T ), vectors by bold lowercase letters (e.g., u, i), scalars

by lowercase letters (e.g., u, i) and sets by blackboard bold

letters (e.g., U, I,T).

A. Tensor Factorization

There are three types of entities in the photo sharing

websites. The tagging data can be viewed as a set of triplets.

Let U, I,T denote the sets of users, images, tags and the set

of observed tagging data is denoted by O ⊂ U × I × T,

i.e., each triplet (u, i, t) ∈ O means that user u has annotated

image i with tag t. For example, the left image in Fig.2(a)

corresponds to three triplets in O sharing the same image and

user. The ternary interrelations can be viewed as a three-mode

cube, where the modes are the user, image and tag. Therefore,

we can induce a three dimensional tensor Y ∈ R|U|×|I|×|T|,

which is defined as:

yu,i,t =

{

1 if (u, i, t) ∈ O
0 otherwise

(1)

where |U|, |I|, |T| are the number of distinct users, images

and tags respectively. Fig.5(a) shows the tensor constructed

from the running example base on Eq.1.

To jointly model the three factors of user, image and tag,

we employ the general tensor factorization model, Tucker

Decomposition for the latent factor inference. In Tucker De-

composition, the tagging data Y are estimated by three low

rank matrices and one core tensor (see Fig.4):

Ŷ := C ×u U ×i I ×t T (2)

where ×n is the tensor product of multiplying a matrix on

mode n. Each low rank matrix (U ∈ R|U|×rU , I ∈ R|I|×rI ,

T ∈ R|T|×rT ) corresponds to one factor. The core tensor

C ∈ RrU×rI×rT contains the interactions between the dif-

ferent factors. The ranks of decomposed factors are denoted

by rU , rI , rT and Eq.2 is called rank-(rU , rI , rT ) Tucker

decomposition. An intuitive interpretation of Eq.2 is that the

tagging data depend not only on how similar an image’s visual

features and tag’s semantics are, but on how much these

features/semantics match with the users’ preferences.

Typically, the latent factors U , I , T can be inferred by

directly approximating Y and the tensor factorization problem

is reduced to minimizing an point-wise loss on Ŷ:

min
U,I,T,C

∑

(ũ,̃i,t̃)∈|U|×|I|×|T|

(ŷũ,̃i,t̃ − yũ,̃i,t̃)
2 (3)

where ŷũ,̃i,t̃ = C×uuũ×iiĩ×ttt̃. As this optimization scheme

tries to fit to the numerical values of 1 and 0, we refer it as the

0/1 scheme. To alleviate the sparse problem and better utilize

the tagging data, in this paper, we propose RMTF for factor

inference, which is detailed in section IV.

B. Tag Refinement

From the perspective of subspace learning, the derived

factor matrices U , I , T can be viewed as the feature represen-

tations on the latent user, image, tag subspaces, respectively.

As illustrated in Fig.3(c), each row of the factor matrices

corresponds to one object (user, image or tag). The core tensor

C defines a multi-linear operation and captures the interactions

among different subspaces. Therefore, multiplying a factor

matrix to the core tensor is related to a change of basis. We

define

T UI := C ×t T (4)

then T UI ∈ RrU×rI×|T| can be explained as the tags’ feature

representations on the user× image subspace. Each rU × rI
slice of matrix corresponds to one tag feature representation.

By summing T UI over the user dimensions, we can obtain

the tags’ representations on the image subspace. Therefore,

the cross-space image-tag association matrix XIT ∈ R|I|×|T|

can be calculated as:8

XIT = I · (T UI ×u 1⊤
rU ) (5)

8 In practice, for new images not in the training dataset, we can approx-
imate their positions in the learnt image subspace by using approximated
eigenfunctions based on the kernel trick [29].
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Fig. 4. Tucker decomposition: the tensor Y is constructed by multiplying
three factor matrices U, I, T to a small core tensor C.

The tags with the K highest associations to image i are

reserved as the final annotations:

Top(i,K) = max
t∈TKXIT

i: (6)

In the experiment, we fix K = 10.

IV. RANKING BASED MULTI-CORRELATION TENSOR

FACTORIZATION

In this section, we detail the proposed RMTF model. We

first introduce a novel ranking based optimization scheme for

better interpretation of the tagging data. Then the multiple

intra-relations among users, images and tags are utilized as

the smoothness constraints for the latent factors and finally

we present a convergence provable learning algorithm.

A. Ranking based Optimization Scheme

Traditional factorization models [7], [10] approximate the

tagging data based on the 0/1 scheme. Under the situation of

social image tagging data, the semantics of encoding all the

unobserved data as 0 are incorrect, which is illustrated with

the running example of Fig.3(a):

• Firstly, the fact that user3 has not given any tag to image2

and image4 does not mean that user3 considered all the tags

are bad for describing the images.9 Maybe he/she does not

want to annotate the image or has no chance to see the

image.

• Secondly, user1 annotates image1 with only tag3. It is

also unreasonable to assume that other tags should not be

annotated to the image, as some concepts may be missing

in the user-generated tags and individual user may not be

familiar to all the relevant tags in the large tag set.

According to the optimization function in Eq.3, the learning

process tries to predict 0 for both cases, which is apparently

unreasonable. To address the above problems, we present a

ranking optimization scheme which intuitively considers the

user tagging behaviors and addresses the issues of missing

tags and noisy tags.

We note that only the qualitative difference is important

and fitting to the numerical values of 1 and 0 is unnecessary.

Therefore, instead of solving an point-wise classification task,

we formulate it as a ranking problem which uses tag pairs

within each user-image combination (u, i) as the training data

9 We call triplets like (u3, i2, :) and (u3, i4, :) as the neutral triplets.

(a)

(b)

Fig. 5. Tagging data interpretation. (a) 0/1 scheme (b) ranking scheme

and optimizes for correct ranking. For example, y(u, i, t+) >
y(u, i, t−) indicates that user u considers tag t+ is better to

describe image i than tag t−.

We provide some notations for easy explanation. Each user-

image combination (u, i) is defined as a post. The set of

observed posts is denoted as PO:PO = {(u, i)|∃t ∈ T, yu,i,t = 1} (7)

The neutral triplets constitute a set M:M = {(u, i, t)|(u, i) 6∈ PO} (8)

It is arbitrary to treat the neutral triplets as either positive or

negative and we remove all the triplets inM from the learning

process (filled by bold question marks in Fig.5(b)).

For the training pair determination, we consider two char-

acteristics of the user tagging behaviors. On one hand, some

concepts maybe missing in the user-generated tags. We assume

that the tags co-occurring frequently are likely to appear in the

same image (we call it context-relevant). On the other hand,

users will not bother to use all the relevant tags to describe

the image. The tags semantic-relevant with the observed

tags are also the potential good descriptions for the image.

The two assumptions are reasonable. Looking at the running

example, user1 annotated image1 with tag3 (we assume tag3

is to describe Nemo, e.g., tag3=“fish”). We can see that the

tags “water”, “sea”, “coral” which are context-relevant and

“animal”, “seafish” “clownfish” which are semantic-relevant

with the tag “fish” are all good descriptions for image1. To

perform the idea, we build a tag affinity graph WT based on

tag semantic and context intra-relations.10 The tags with the

k-highest affinity values are considered semantic-relevant or

context-relevant.

Regarding the possible noises in the user-generated tags, it

is risky to enrich the semantic or context relevant tags into

the positive set. Therefore, we choose a conservative strategy:

we keep the unobserved tags semantic-irrelevant and context-

irrelevant with any of the observed tags, to form the negative

10 Detail of WT construction is introduced in next subsection.
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tag set. Note that the ranking optimization is performed over

each post and within each post (u, i) a positive tag set T+
u,i

and a negative tag set T−
u,i are desired to construct the training

pairs. Given a post (u, i) ∈ PO, the observed tags constitute

a positive tag set (the corresponding triplets are filled by plus

signs in Fig.5(b)):T+
u,i = {t|(u, i) ∈ PO ∧ yu,i,t = 1} (9)

The negative tag set is constituted as:T−
u,i =

{

t|(u, i) ∈ PO ∧ yu,i,t 6= 1 ∧ t 6∈ NT+
u,i

}

(10)

where NT+
u,i

indicates the set of tags relevant to the annotated

tags in post (u, i). Then t4, t5 ∈ T−
u1,i1

, presumably tag1 and

tag2 are relevant to tag3. The final tagging data representation

for the running example is illustrated in Fig.5(b). The triplets

corresponding to tags t ∈ NT+
u,i

are also removed from the

learning process and filled by plain question marks. The minus

signs indicate the filtered negative triplets.

Any tag t ∈ T+
u,i is considered a better description for

image i than all the tags t ∈ T−
u,i. The pairwise ranking

relationships can be denoted as:

ŷu,i,t1 > ŷu,i,t2 ⇔ t1 ∈ T+
u,i ∧ t2 ∈ T−

u,i (11)

The optimization criterion is to minimize the violation of the

pairwise ranking relationships in the reconstructed tensor Ŷ ,

which leads to the following objective:

min
U,I,T,C

∑

(ũ,̃i)∈PO( ∑

t+∈T+

ũ,̃i

∑

t−∈T−

ũ,̃i

f(ŷũ,̃i,t− − ŷũ,̃i,t+)) (12)

where f : R→ [0, 1] is a monotonic increasing function (e.g.,

the logistic sigmoid function or Heaviside function). Through

necessary algebra manipulation, we derive the matrix form of

the objective function:

min
U,I,T,C

f











...

C ×u uũ ×i iĩ ×t (T
−

ũ,̃i
⊗ 1⊤

|T−

ũ,̃i
|
− T+

ũ,̃i
⊗ 1⊤

|T+

ũ,̃i
|
)

...











× 1∑

(ũ, ˜i)∈PO |T+

ũ,̃i
|·|T−

ũ,̃i
|

where ⊗ is the cross product, f switches to a component-wise

function and 1D ∈ R1×D is 1-vector with all the elements

1d = 1. T+

ũ,̃i
is the positive tag set for the post (ũ, ĩ):T+

ũ,̃i
=

{

t
(ũ,̃i)+

1 , · · · , t
(ũ,̃i)+

|T+

ũ,̃i
|

}

T+
ũ,̃i

∈ R
|T+

ũ,̃i
|×rT

is the tag vector matrix composed by the

positive tags in T+

ũ,̃i
: T+

ũ,̃i
=

(

t⊤
(ũ,̃i)+:1

, · · · , t⊤
(ũ,̃i)+:|T+

ũ,̃i
|

)⊤

.

Here t(ũ,̃i)+:t̃ is t
(ũ,̃i)+

t̃
-th row vector of the tag factor matrix.

Note that the number of positive and negative tags in

the post (ũ, ĩ), |T+

ũ,̃i
| and |T−

ũ,̃i
|, are constant once the tag

relevances are determined. For simplicity, we denote N =
∑

(ũ,̃i)∈PO |T+

ũ,̃i
| · |T−

ũ,̃i
| and further define

p⊤ =











...

C ×u uũ ×i iĩ ×t (T
−

ũ,̃i
⊗ 1⊤

|T−

ũ,̃i
|
− T+

ũ,̃i
⊗ 1⊤

|T+

ũ,̃i
|
)

...











p is a long row vector of length
∑

(ũ,̃i)∈PO |T+

ũ,̃i
| · |T−

ũ,̃i
|.

Therefore, with our novel ranking optimization scheme, the

tucker decomposition model amounts to minimizing:

f(p⊤)× 1N (13)

Note that the work in [30], [31] provided similar ranking

schemes for recommender systems, while the main difference

is that we explicitly consider the incomplete and ambiguous

characteristics of the user-generated tagging data and filter

out the quasi-positive tags. In their formulation, given a post

(u, i) ∈ PO, all the tags that not annotated by user u to image i

will be treated as negative tags, and the corresponding negative

set is: T−
u,i = {t|(u, i) ∈ PO ∧ yu,i,t 6= 1} (14)

Apparently, this formulation ignores the issues of missing tags

and noisy tags, which cannot be directly applied to the social

tagging problems. In addition, Rendle employed l-1 norm for

regularization, while in the proposed RMTF, additional mul-

tiple intra-relations are utilized as the smoothness constraints,

which is detailed in the following subsection.

B. Multi-correlation Smoothness Constraints

In addition to the ternary interrelations, we also collect

multiple intra-relations among users, images and tags. These

intra-relations constitute the user, image, tag affinity graphs

WU ∈ R|U|×|U|, W I ∈ R|I|×|I| and WT ∈ R|T|×|T|, re-

spectively. Two objects with high affinities should be mapped

close to each other in the learnt subspaces. Therefore, the

intra-relations are employed as the smoothness constraints to

preserve the affinity structure in the low dimensional factor

subspaces. In this subsection, we first introduce how to con-

struct the affinity graphs, and then incorporate them into the

tensor factorization framework.

User affinity graph WU . Generally speaking, the activity of

joining in interesting groups indicates the users’ interests and

backgrounds. Also, the group statistic is more easy to obtain

compared with other privacy concerning information, e.g.,

searching history, the query log, etc. Therefore, we measure

the affinity relationship between user um and un using the

co-occurrence of their joined groups:

WU
m,n =

n(um, un)

n(um) + n(un)
(15)

where n(um) is the number of groups user um joined and

n(um, un) is the number of groups um and un co-joined.

Image affinity graph W I . To measure the visual similarities

between images, each image is extracted a 428-dimensional

feature vector d as the visual representation [10], [9], including

225-d blockwise color moment features, 128-d wavelet texture

features and 75-d edge distribution histogram features. The
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image affinity graph W I is defined based on the following

Gaussian RBF kernel:

W I
m,n = e−||dm−dn||

2/σ2
I (16)

where σI is set as the median value of the elements in W I .

Tag affinity graph WT . To serve the ranking based optimiza-

tion scheme, we build the tag affinity graph based on the tag

context and semantic relevance. The context relevance of tag

tm and tn is simply encoded by their weighted co-occurrence

in the image collection:

tcm,n =
n(tm, tn)

n(tm) + n(tn)
(17)

For tag semantic relevance, we follow Liu et al. [9]’s approach

and estimate the semantic relevance between tag tm and tn
based on their WordNet distance:

tsm,n =
2 · IC(lcs(tm, tn))

IC(tm) + IC(tn)
(18)

where IC(·) is the information content of tag, and lcs(ti, tj)
is their least common subsumer in the WordNet taxonomy.

The tag affinity graph is constructed as:

WT
m,n = λct

c
m,n + λst

s
m,n (19)

where λc + λs = 1, λc and λs are the weights of context

relevance and semantic relevance.11 Note that we have no

requirements on how to build the affinity graphs and other

intra-relation measurements can also be explored.

The affinity graphs are utilized as the regularization terms

to impose smoothness constraints for the latent factors. All the

affinity graphs are normalized. Take the image affinity graph

W I as an example, the regularization term is:

|I|
∑

m=1

|I|
∑

n=1

W I
m,n||im − in||

2 (20)

where || · ||2 denotes the Frobenius norm. The basic idea is

to make the latent representations of two images as close as

possible if there exists strong affinity between them. We can

achieve this by minimizing tr(I⊤LII), where tr(·) denotes

the trace of a matrix and LI is the Laplacian matrix for the

image affinity matrix W I . Similar regularization terms can be

added for the user and tag factors. In this way, the extracted

data characteristics are consistent with such prior knowledge,

which alleviate the sparsity problem as well as control over

the outcomes.

Combining with Eq.13, we obtain the overall objective

function:

min
U,I,T,C

g = f(p⊤)× 1N + β(||U||2 + ||I||2 + ||T||2)

+ α(tr(U⊤LUU) + tr(I⊤LII) + tr(T⊤LTT ))
(21)

where ||U||2 + ||I||2 + ||T||2 is l-1 regularization term to

penalize large parameters, α and β are weights controlling

the strength of corresponding constraints.

11 In the experiment, we choose λc = 0.9 and λs = 0.1.

Algorithm 1 Alternating Learning Algorithm

Input:
User tagging tensor Y ∈ R|U|×|I|×|T|; affinity graph adjacency

matrices WU ∈ R|U|×|U|, W I ∈ R|I|×|I|, W T ∈ R|T|×|T|;
rank of the factor matrices rU , rI , rT ; and the weighting
parameters α, β.

Output:

User, image and tag factor matrices U ∈ R|U|×rU , I ∈ R|I|×rI ,
T ∈ R|T|×rT and the core tensor C ∈ RrU×rI×rT .

1: initialize random dense matrices U (0)
∈ R|U|×rU , I(0) ∈R|I|×rI , T (0)

∈ R|T|×rT ; t← 0.
2: repeat
3: C(t+1) = argmin g(U (t), I(t), T (t), C)
4: U

(t+1) = argmin g(U, I(t), T (t), C(t+1))
5: I

(t+1) = argmin g(U (t+1), I, T (t), C(t+1))
6: T

(t+1) = argmin g(U (t+1), I(t+1), T, C(t+1))
7: t← t+ 1
8: until converge

9: return U = U (t−1),I = I(t−1),T = T (t−1),C = C(t−1)
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Fig. 6. The convergence curve of Algorithm 1.

C. Learning Algorithm

Next we present an algorithm to solve the optimization

problem. Obviously, directly optimizing Eq.21 is infeasible

and we use an iterative optimization algorithm. To begin with,

we first provide the following theorem:

Theorem 1. g is strictly convex w.r.t. U , I , T and C, respec-

tively.

We propose an alternating learning algorithm (ALA) to learn

the factors by iteratively optimizing each subproblems, which

is shown in Algorithm 1. According to Theorem 1, each sub-

problem in Algorithm 1 has a unique solution. In practise, as g
is convex w.r.t. I , it is also convex w.r.t. each im.12 Therefore,

when performing optimization on I , we optimize one row

im at a time with other rows {i1, · · · , im−1, im+1, · · · , irI}
fixed. We prove that the learning algorithm has a good

convergence property.

Theorem 2. The alternating learning algorithm converges to

a local optimum.

The proof of Theorem 1 directly follows the regularized matrix

factorization [32] and is omitted here. We provide the proof

of Theorem 2 in Appendix A. With the learnt factors, tag

refinement is performed by computing the cross-space image-

tag associations as discussed in Section III.B.

In the experiments, we observed that the proposed ALA

converges to the minimum after about 20 iterations. Fig.6

12 The user factor U and tag factorT are the same cases as the image factor
I .
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TABLE I
THE STATISTICS OF NUS-WIDE-USER15

Users |U| Images |I| Tags |T| |O|

USER15 3,372 124,099 5,018 1,223,254

shows the change of objective function values in the conver-

gence process. We perform our experiments on MATLAB in a

PC with 2.13GHz CPU and 16 GB memory. The convergence

time on the experimental dataset is about 6 hours. Actually,

in the proposed learning algorithm, each factor vector im is

updated independently of other vectors, which gives rise to po-

tentially massive parallelization (e.g. parallel MATLAB). The-

oretically, the algorithm achieves a linear converge speedup

which is proportion to the number of used processors [33].

Distributed storing also provides a convenient way to store

very large matrices. The larger rU , rI , and rT are, the more

obviously the speedup is.

Note that the user, image and tag factor matrices are initial-

ized randomly in the proposed learning algorithm. Likewise to

other non-convex learning problems, the initialization of the

factor matrices is very important to our learning algorithm. We

will be working towards investigating a proper initialization

scheme in the future.

V. EXPERIMENTS

A. Data Set

We perform the experiments of social tag refinement on the

large-scale web image dataset, NUS-WIDE [1]. It contains

269,648 images with 5,018 unique tags collected from Flickr.

We crawled the owner information according to the image ID

and obtained the owner user ID of 247,849 images.13 The

collected images belong to 50,120 unique users, with each

user owning about 5 images. We select the users owning

no less than 15 images and keep their images to obtain

our experimental dataset, which is referred as NUS-WIDE-

USER15. Table I summarizes the collected dataset. |O| is

the number of observed triplets. The NUS-WIDE provides

ground-truth for 81 tags of the images. In the experiments,

we evaluate the performance of tag refinement by the F-score

metric:
Fscore =

2× Precision×Recall

Precision+Recall
(22)

B. Impact of Parameters

The proposed approach, RMTF, has five parameters, the

rank of factor matrices rU , rI , rT and the regularization

weights α, β. We explore the influence of different parameter

settings on a smaller but representative dataset, NUS-WIDE-

USER50, which has 588 users and 55,141 images by filtering

out the users with less than 50 images.

Choosing the rank of factor matrices rU , rI and rT in

Tucker Decomposition model is not trivial. A practical option

is to use ranks indicated by SVD on the unfolded matrices in

each mode [34]. The tensor Y can be unfolded along different

modes, leading to three new matrices YU ∈ R|U|×|I||T|,

13 Due to link failures, the owner ID of some images is unavailable

YI ∈ R|I|×|U||T| and YT ∈ R|T|×|U||I|. In this way, rU ,

rI and rT are chosen by preserving a certain percentage

of singular values in the unfolded matrices. By fixing small

values of α = 0.001 and β = 0.001, we investigated the

average F-score of tag refinement on NUS-WIDE-USER50

by tuning the percentage of the preserved energy from 50% to

95%. The result in Fig.7(a) indicates that 80% performs well

on NUS-WIDE-USER50. By preserving 80% energy of the

singular values, rU = 25, rI = 105 and rT = 18.

The regularization terms α and β control how much the

tensor decomposition incorporates the information of affinity

intra-relations. We keep rU = 25, rI = 105 and rT = 18.

Fig.7(b) shows the impacts of α and β on the average F-score.

α = 0.01 and β = 0.001 achieves the best result. From the

results, we can see that the performance is more sensitive to

the regularization weights than to the rank numbers. The poor

performances when α = 0 or β = 0 confirm with the intuition

that purely affinity constraints or l-1 norm constraints cannot

generate good latent factors. For the remaining experiment, we

select rU = 25, rI = 105, rT = 18, α = 0.01 and β = 0.001.

C. Performance Comparison

To compare the performances, five algorithms as well as the

original tags are employed as the baselines:

• Original tagging (OT): the original user-generated tags.

• Random walk with restart (RWR): the tag refinement

algorithm based on random walk [25].

• Tag refinement based on visual and semantic consistency

(TRVSC, [9]).

• Multi-Edge graph (M-E Graph): a unified multi-edge

graph framework for tag processing proposed in [28].

• Low-Rank approximation (LR): tag refinement based on

low-rank approximation with content-tag prior and error

sparsity [10].

• Multiple correlation Probabilistic Matrix Factorization

(MPMF): the tag refinement algorithm by simultaneously

modeling image-tag, tag-tag and image-image correlations

into a factor analysis framework. [7].

In addition, we compared the performances of the proposed

approach with four different settings: 1) TF without smooth-

ness constraints, optimization under the 0/1 scheme (TF 0/1),

2) TF with multi-correlation smoothness constraints, optimiza-

tion under the 0/1 scheme (MTF 0/1), 3) TF without smooth-

ness constraints, optimization under the ranking scheme with

negative set constructed as Eq.14 (TF rank) and 4) TF with

multi-correlation smoothness constraints, optimization under

the ranking scheme with negative set constructed as Eq.10

(RMTF).

Table II lists the average performances for different tag

refinement algorithms. It is shown that RWR fails on the noisy

web data. One possible reason is that the model does not

fully explore the image-image intra-relations. Both TRVSC

and M-E Graph suffer from the high computation problem

and the performances are limited on large-scale applications.

As their methods are difficult to implement, the results of
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(a) (b)

Fig. 7. Impact of parameters (a) rank numbers (b) α and β

TABLE II
AVERAGE PERFORMANCES OF DIFFERENT ALGORITHMS FOR TAG REFINEMENT

OT RWR TRVSC M-E Graph LR MPMF TF 0/1 MTF 0/1 TF rank RMTF

F-score 0.477 0.475 0.490 0.530 0.523 0.521 0.515 0.542 0.531 0.571

Fig. 8. F-score of a subset of the 81 tags for different algorithms

TRVSC and M-E Graph are taken from [28], which conducted

tag refinement on a selected subset of NUS-WIDE. Their

results on the whole NUS-WIDE dataset tend to decrease.

Using factor analysis methods, MPMF and LR perform well on

sparse dataset, which coincides with the authors’ demonstra-

tion. For different settings of the proposed approach, RMTF,

and MTF 0/1 are superior than other algorithms, showing the

advantage of incorporating user information. Interpreting the

tagging data based on the proposed ranking scheme instead of

the conventional 0/1 scheme, RMTF is generally better than

MTF 0/1. Without smoothness priors, TF 0/1 fails to preserve

the affinity structures and achieves inferior results.

We note that TF rank follows the same spirits as Rendle’s

works [30], [31] and was implemented to perform performance

comparison with the proposed RMTF method. Consistent with

the discussion in section IV.A that Rendle’s works cannot fully

account for the issues of missing tags and noisy tags, TF rank

obtains less improvement than the proposed RMTF. Actually,

without consideration on the utilization of smoothness con-

straints, TF rank is even inferior to MTF 0/1. In addition,

according to the negative set selection strategy of TF rank, the

optimization algorithm needs to consider redundant pairs of

training samples. It turns out that generally TF rank achieves

slower convergence speed than MTF 0/1 and RMTF.

The detailed performances for a representative subset of the

81 tags are provided in Fig.8. We can see that, for simple

concepts like “airport”, “beach”, “bear” and “birds”, our meth-

ods achieve a comparable, if not worse performance with the

baselines. The reason is that images containing these concepts

describe feasible and tangible objects, where image under-

standing can be effectively conducted by propagating visual

similarities and only exploiting the image-tag relations. While,

for more abstract and complex concepts like “cityscape”,

“earthquake”, “military”, “protest”, existing methods focusing

on utilizing image appearances and tag semantics fail and

our methods show remarkable improvement thanks to the

incorporation of user information. In addition, we also found

that for those uncommon concepts like “elk” and “glacier”,

both the proposed methods and the baselines obtained no

improvement and failed to perform image refinement. The

failure of our methods may be due to the severe sparse user

distribution on these concepts. Those uncommon concepts

focalize to small groups, which make it difficult to propagate

information between users.
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(a) (b) (c)

(d) (e) (f)

Fig. 9. Example of tag refinement results. For each image, the top 5 annotations are shown.

D. Case Studies

We show some case studies in this subsection to demonstrate

the effectiveness of RMTF. Fig.9 further illustrates the tag

refinement results for some exemplary images by the proposed

RMTF framework. For examples of Fig.9(c) and Fig.9(e), it is

very hard to restore the relations between tags and images only

from the visual appearance, since the images are very complex.

With the aid of user information, it is observed that the tagger

of Fig.9(c) also tagged “mosaic” and “building” to images

and the tagger of Fig.9(d) is a “sculpture” fan. Therefore, the

exploited semantic is propagated into the refined results. In the

original tag set of Fig.9(a), only the tag “airport” is related to

the image content. After tag refinement, the subjective tags

are removed and the context-relevant tags, “airport”, “road”,

and semantic-relevant tags “plane” are enriched through the

proposed ranking-based optimization scheme. Fig.9(d)(f) fur-

ther show this advantage. Moreover, Fig.9(b) demonstrates

the capacity of the proposed framework on automatic image

annotation. It can be seen that the experimental results vali-

date our intuition that incorporation of user information with

appropriate optimization scheme and smoothness constraints

contributes to a better modeling of the tagging data and derives

compact image and tag factor representations.

We have employed smoothness constraints into the op-

timization function to preserve the affinity structure in the

low dimensional factor subspace. To show the effectiveness

of smoothness constraints, we show in Table III and Table

IV the five nearest tags and images for the selected tag and

image, respectively. It is shown that RMTF succeeds to mine

the semantic correlations among tags and images from the

observed tagging data. Context and semantic relevant tags are

close in the derived tag subspace, while in the image subspace,

visual and sematic similar images are clustered together.

E. Applications

In the tag refinement task, we employed the derived factor

matrices to analyze the image-tag associations. As we model

the social tagging data by taking into account all essential

TABLE III
FIVE NEAREST TAGS IN THE LEARNED TAG SUBSPACE FOR EACH OF THE

FOUR SELECTED TAGS

Selected Tag Five Nearest Tags

cat grass, animal, pet, dog, vacation

flower blooms, butterfly, nature, spring, blossoms

airplane aircraft, travel, planes, photographer, airport

buddhist buddha, religion, buddhism, thailand, ancient

TABLE IV
FIVE NEAREST IMAGES IN THE LEARNED IMAGE SUBSPACE FOR EACH OF

THE FOUR SELECTED IMAGES

Image Five Nearest Images

entities, user, image and tag, we can apply the model to many

other real-world tasks.

1) Personalized image search: In personalized image

search, the returned image results depend on not only their

relevances with the query keywords, but the relevances with

the searchers. For our case, the associations between users and

images can be estimated by measuring the user-image cross-

space distances in the same spirits as Eq.5, which reflect the

users’ preferences and can be leveraged to re-rank the returned

images.

An experiment is conducted. Following [35]’s evaluation

framework, in the context of Flickr, the photos marked Fa-

vorites by the searcher are treated as the ground-truth. We
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Fig. 10. Evaluation results for the personalized image search

Fig. 11. Evaluation results for the personalized tag recommendation

chose 30 users who have the largest number of Favorites in the

image collection as the searchers. 58 tags frequently appearing

in their favorite images are selected as the queries. The metric

of NDCG@k is utilized to evaluate the performance. For each

query, we re-rank the top 50 (if there are) results by the tag-

relevance, and average the evaluated scores over queries and

searchers. The average results are demonstrated in Fig.10,

where we compare with two personalized methods, user-

based collaborative filtering (CF, [36]) and user interests-based

preference prediction (UI-PP, [35]) and three non-personalized

rules depending on relevance, view number and timelines.

We can see that the three personalization methods outperform

the non-personalized rules and RMTF achieves comparable

performance with state-of-the-art.

2) Personalized tag recommendation: The goal of a per-

sonalized tag recommender is to predict tags for each user

on a given web item (image, music, URL or publication).

The reconstructed tensor Ŷ captures the ternary relationships

between users, images and tags, where the value of ŷu1,i1,t1

indicates the likelihood of user u1 using tag t1 to annotate

image i1. Therefore, the tags with the highest ŷu,i,t can be

recommended to user u as the potential tags for item i.
We conducted the experiment on a small benchmark dataset

from Bibsonomy,14 which consists of 116 users, 412 tags

and 361 items (publications). For each user, one post is

randomly removed for evaluation. We averaged the F-scores

in top-N recommended tags over users. Four personalized

tag recommendation algorithms are performed as baselines:

most popular tags by item (Popular I), most popular tags

by user (Popular U), Adapted PageRank [37] and FolkRank

[38]. Fig.11 illustrates the results. It is shown that with an

increasing number of recommended tags, the F-score decreases

less steeper for RMTF than other algorithms.

Note that we provide these two experiments to demonstrate

the potentials of the proposed framework. As the focus of

14 http://www.bibsonomy.org/

this paper is image tag refinement, we did not fully adapt

RMTF to other applications. For example, typical methods

of personalized tag recommendation (e.g., FolkRank) will

consider the user and item bias, while in our implementations

we did not explicitly consider this. With careful adaption to

these applications, the performance of RMTF has the potential

to improve.

The proposed RMTF can also be applied to other appli-

cations, e.g., user profile construction and user recom-

mendation. It is believed that users express their individual

interests through tags [39], thus the latent user interests can

be understood by estimating the user-tag association. Besides

exploring the interrelations, we can directly evaluate the intra-

relations among users, images and tags in the corresponding

subspaces. Users with similar feature representations can be

recommended to each other to connect people with common

interests and encourage people to contribute and share more

content.

VI. CONCLUSIONS

We have presented a ranking based multi-correlation factor

analysis method that jointly models the user, image and tag

factors. We argued that by exploiting the underlying structure

of the photo sharing websites, our model is able to learn

more semantics-specified image and tag descriptions from a

corpus of social tagging data. The experimental results on

collections from the photo sharing site Flickr show that our

model performs well on the tag refinement task.

The potential applications and two simple experiments are

also presented in the paper. It is an interesting issue to adapt

the proposed RMTF to more related applications in the future.

In addition, there exist different forms of metadata, such as

descriptions, comments, and ratings. While we focus on tags

in this paper, how to model other metadata for a overall

understanding is also our future work.

APPENDIX

PROOF OF THEOREM 2

Proof: For easier explanation, we rewrite the optimization

function of Eq.21 into a general form:

min
Θ∈X g(Θ) (23)

where Θ are the model parameters of U, I, T, C and denoted

as Θ = (θ1, θ2, θ3, θ4), X is a Cartesian product of closed

convex sets X1,X2,X3,X4:X = X1 ×X2 ×X3 ×X4 (24)

We assume that X1, X2, X3, X4 are closed convex subsets ofRrU×rI×rT , R|U|×rU , R|I|×rI , R|T|×rT , respectively. Then

the subproblems in Algorithm 1 can be formulated into a

unique form:

θ
(t+1)
i = arg min

θi∈Xi

g(θ
(t+1)
1 , · · · , θ

(t+1)
i−1 , θi, θ

(t)
i+1, · · · , θ

(t)
4 )

(25)

According to Theorem 1, the minimum in Eq.25 is uniquely

attained. In the following, we first prove the algorithm will
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converges to a limit point, and then show the limit point is a

local optimum.

An auxiliary vector is introduced:

Z
(t)
i := (θ

(t+1)
1 , · · · , θ

(t+1)
i , θ

(t)
i+1, · · · , θ

(t)
4 )

By Eq.25, we obtain

g(Θ(t)) ≥ g(Z
(t)
1 ) ≥ · · · ≥ g(Z

(t)
3 ) ≥ g(Θ(t+1)), ∀t (26)

Let Θ̄ = (θ̄1, · · · , θ̄4) be a limit point the sequence {Θ(t)}.

Since X is closed, Θ̄ ∈ X. Eq.26 implies sequence {g(Θ(t))}
converges to g(Θ̄).

Let {Θ(tj)|j = 0, 1, · · · } be a subsequence of {Θ(t)}. We

first show that {Z
(tj)
1 − Θ(tj)} converges to zero as j → ∞.

Assuming the contrary that {Z
(tj)
1 −Θ(tj)} does not converge

to zero, we define γ(tj) = ||Z
(tj)
1 −Θ(tj)|| and ∃γ̂, γ(tj) ≥ γ̂.

Let s(tj) = (Z
(tj)
1 − Θ(tj))/γ(tj). Thus, Z

(tj)
1 = Θ(tj) +

γ(tj)s(tj), s
(tj)
1 = 1 and s

(tj)
2,3,4 = 0. Fix some ǫ ∈ [0, 1] with

0 ≤ ǫγ̂ ≤ γ(tj). Therefore,

g(Z
(tj)
1 ) = g(Θ(tj)+γ(tj)s(tj)) ≤ g(Θ(tj)+ǫγ̂s(tj)) ≤ g(Θ(tj))

We assume limj→∞ s
(tj)
1 = s̄ and take the limit of the above

equation as j → ∞, to obtain: g(Θ̄) ≤ g(Θ̄ + ǫγ̂s̄) ≤ g(Θ̄).
We have

g(Θ̄) = g(Θ̄ + ǫγ̂s̄), ∀ǫ ∈ [0, 1]

Since γ̂s̄ 6= 0, this contradicts the fact that g is uniquely

minimized w.r.t. each subproblem. Therefore, we conclude that

lim
j→0

Z
(tj)
1 −Θ(tj) = 0

From Eq.25, we have

g(Z
(tj)
1 ) ≤ g(θ1, θ

(tj)
2 , θ

(tj)
3 , θ

(tj)
4 ), ∀θ1 ∈ X1

Taking the limit as j → ∞, we obtain

g(Θ̄) ≤ g(θ1, θ̄2, θ̄3, θ̄4), ∀θ1 ∈ X1 (27)

Similar conclusions can be obtained for θ2, θ3 and θ4, and

we conclude that Θ̄ minimizes g over X. Combining with the

converge conclusion proved above, g is guaranteed to converge

to a stationary point. Because g is not jointly convex w.r.t. U ,

I , T and C, the stationary point is a local optimum.
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