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Abstract—Data dissemination is useful for many applica-
tions of Disruption Tolerant Networks (DTNs). Current data
dissemination schemes are generally network-centric ignoring
user interests. In this paper, we propose a novel approach
for user-centric data dissemination in DTNs, which considers
satisfying user interests and maximizes the cost-effectiveness
of data dissemination. Our approach is based on a social
centrality metric, which considers the social contact patterns
and interests of mobile users simultaneously, and thus ensures
effective relay selection. The performance of our approach is
evaluated from both theoretical and experimental perspectives.
By formal analysis, we show the lower bound on the cost-
effectiveness of data dissemination, and analytically investigate
the tradeoff between the effectiveness of relay selection and the
overhead of maintaining network information. By trace-driven
simulations, we show that our approach achieves better cost-
effectiveness than existing data dissemination schemes.

I. INTRODUCTION

Disruption Tolerant Networks (DTNs) [10] consist of mo-
bile nodes which contact each other opportunistically. Due to
the low node density and unpredictable node mobility, only
intermittent network connectivity exists in DTNs, and the
subsequent difficulty of maintaining end-to-end communica-
tion links advances “carry-and-forward” approaches for data
delivery. More specifically, node mobility is exploited to let
mobile nodes physically carry data as relays, and forward data
opportunistically upon contact with others. The key problem
is hence how to design appropriate relay selection strategy.

Data dissemination is useful in many applications in DTNs,
including event notification, network status updates and con-
tent publishing. In most of the existing schemes, data is
disseminated to all the nodes in the network. These schemes
are essentially “network-centric” and ignore the satisfaction of
user interest. Data is forwarded to many nodes not interested
in the data, and a lot of network resources are therefore
wasted. To deal with this problem, data recipients should be
appropriately identified based on their interests in the data.

In this paper, we propose the concept of user-centric data
dissemination in DTNs, which considers satisfying user inter-
ests and forwards data only to the nodes that are interested in
the data. Such nodes are called “interesters” in the rest of this
paper. We aim at maximizing the cumulative dissemination
cost-effectiveness over all the data items in the network, by
designing appropriate relay selection strategy.
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The major difficulty of user-centric data dissemination in
DTNs is that the interesters of a data item are generally
unknown a priori at the data source, because it is difficult
for the data source to have knowledge about the interests of
other nodes in the network. Such uncertainty of data recipients
is different from unicast [4], [15], [13] or multicast [14] in
which the destinations are fixed and pre-known, and makes
relay selection for user-centric data dissemination challenging.

Our main idea to overcome the aforementioned difficulty is
to let a node estimate the interest of another node in a data
item as probability, based on which we propose user-centric
data dissemination from the social network perspective. We
exploit node centrality in DTNs to consider the social contact
patterns and interests of mobile nodes simultaneously for
effective relay selection. While centrality in Social Network
Analysis (SNA) generally represents the capability of a node
facilitating the social communication among other nodes [11],
we expand the centrality concept to analytically represent the
capability of a node to forward data to its interesters. Our
detailed contributions are as follows:

∙ We propose a general probabilistic framework for user-
centric data dissemination in DTNs.

∙ We propose a novel approach to relay selection based on
the node centrality values, and ensure that data items are
effectively disseminated based on their popularity.

∙ We provide theoretical insight on the cost-effectiveness
of data dissemination.

In our approach, the effectiveness of relay selection depends
on the scope of network information maintained at individual
nodes. By theoretical analysis, we provide lower bound to the
cost-effectiveness of data dissemination, and investigate the
tradeoff between this cost-effectiveness and the overhead of
maintaining network information. We analytically show that,
when such information is maintained in larger scopes, the
maintenance overhead and the effectiveness of relay selection
increase at similar rates. Hence, network designer has full flex-
ibility to determine the appropriate relay selection strategy to
balance the two aspects based on the application requirements.

The rest of this paper is organized as follows. Section II
reviews the existing work. Section III provides an overview
about problem formulation and the basic idea. Sections IV and
V describe our probabilistic framework and our user-centric
data dissemination in detail. Theoretical analysis is provided
in Section VI. Section VII conducts performance evaluations
based on realistic traces, and Section VIII concludes the paper.
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Fig. 1. User-Centric Data Dissemination

II. RELATED WORK

The research on relay selection strategy in DTNs originates
from Epidemic routing [26], and some later work [23], [4]
studied this problem based on the prediction of node mobility
[12]. Recently, social-based data forwarding schemes have also
been proposed [8], [15], [14], [22], based on various social
network concepts including centrality and communities.

Flooding-based data dissemination is implemented in [19],
and theoretical analysis has been conducted on its stochastic
regimes [3] or aging rules [17]. Later data dissemination
schemes are closely related to publish-subscribe systems [27],
[21] with simplified models of user interest. In [20], [2],
data items are grouped into pre-defined channels, and data
dissemination is based on users’ subscriptions to channels.
This model implicitly assumes the consistency of user interests
over all the data items in the same channel, and simplifies relay
selection by using data dissemination history in the past as
prior knowledge. Comparatively, we propose a general frame-
work for data dissemination, based on a probabilistic model
of user interest without assuming any data inter-dependency.

Social-based data dissemination in DTNs has also been
studied. [2] disseminates data by defining community-based
relay selection policies. SocialCast [7] investigates the “ho-
mophily” phenomenon [24], and assumes that users with com-
mon interests contact each other more often. Being orthogonal
with the existing work, our approach investigates the social
contact pattern of nodes as more accurate and predictable
abstraction of node mobility, and exploits centrality which
analytically represents such contact pattern for relay selection.

III. OVERVIEW

A. Problem Formulation

We formulate user-centric data dissemination as follows:
Problem 1: User-Centric Data Dissemination

For 𝑛 data items originated at source nodes 𝑆1, 𝑆2, ..., 𝑆𝑛
with time constraints 𝑇1, 𝑇2, ..., 𝑇𝑛, how to disseminate them
to maximize the cumulative cost-effectiveness

∑𝑛
𝑖=1

𝑁𝑖
𝐼(𝑇𝑖)

𝑁𝑖
𝑅(𝑇𝑖)

?

In this formulation, 𝑁 𝑖
𝑅(𝑡) is the number of selected relays

for data 𝑑𝑖 at time 𝑡, and 𝑁 𝑖
𝐼(𝑡) is the estimation at time 𝑡

on the number of interesters that will receive 𝑑𝑖 by time 𝑇𝑖.
Each relay estimates this cost-effectiveness ratio based on its
own knowledge at time 𝑡, and such estimation may vary at
different relay. Each relay only has limited buffer space.

B. The Big Picture

Figure 1 illustrates the big picture of user-centric data
dissemination. Two data items 𝑑1 and 𝑑2 are disseminated by
node 𝑆, which is the initial relay. Each node decides whether
to be interested in the data when it contacts another node
carrying the data, and hence data dissemination is split into
two parts, i.e., the uncontrollable part and the controllable part,
according to where an interester receives the data from.

In the uncontrollable part, data is disseminated among the
interesters autonomically without help of additional relays. In
Figure 1, interesters 𝐴 and 𝐵, after having received data from
𝑆, carry and forward the data to other interesters. Since the
interest of a node is less related with its capability of contact-
ing other interesters, the cost-effectiveness of uncontrollable
data dissemination is opportunistic and unreliable.

Comparatively, in the controllable part, relays 𝐶 and 𝐷
are intentionally selected among the non-interester nodes,
according to their capabilities of forwarding data to interesters.
Each relay is selected by another existing relay rather than an
interester, so as to ensure that each selected relay is aware
of other existing relays, and hence has a local estimate of
the cost-effectiveness ratio of data dissemination. The cost-
effectiveness of controllable data dissemination can be ensured
when relays are appropriately selected.

In this paper, we focus on maximizing the cost-effectiveness
of controllable data dissemination. Our approach consists of
two parts: (i) relay selection for each data 𝑑𝑖 to maximize
the cost-effectiveness 𝑁𝑖

𝐼(𝑡)

𝑁𝑖
𝑅(𝑡)

of disseminating 𝑑𝑖, (ii) data item
selection on a relay if its buffer size is not enough to carry
all the data items, to maximize the cumulative dissemination
cost-effectiveness. In Figure 1, when node 𝐹 is selected as the
relay for data 𝑑1 and 𝑑2 simultaneously, 𝐹 decides which data
to carry if its buffer is only enough to carry one of them.

IV. MODELS

A. Network Modeling

Node contacts are described by the network contact graph
𝐺(𝑉,𝐸), where the stochastic contact process between a node
pair 𝑖, 𝑗 ∈ 𝑉 is modeled as an edge 𝑒𝑖𝑗 ∈ 𝐸. Being similar
with [1], [17], we consider the pairwise node inter-contact time
as exponentially distributed. The contacts between nodes 𝑖 and
𝑗 then form a homogeneous Poisson process with the contact
rate 𝜆𝑖𝑗 , which is calculated in a time-average manner at real-
time. Currently, although [18] suggested the aggregate distri-
bution of node inter-contact time to be a mixture of power-law
and exponential distributions, there is still no agreement on
the pairwise distribution of node inter-contact time, and our
modeling has been experimentally validated by [6], [14], [28]
to fit well to realistic DTN traces.

B. User Interest & Data Modeling

Our model estimates the interest of a node in a data item
as probability, which is calculated from user interest profile
and data description. Thus, our model allows a user to have
various interests in different data items in the same category.
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Fig. 2. Scope of network information being maintained

For example, a user interested in “music” and “Jazz” will not
be equally interested in every Jazz song. For Podcasting [20],
a user will not be interested in all the contents of a channel,
especially for advertisements. In this section, we use the model
over a fixed keyword space 𝒦 with size 𝑀 to describe how
the user interest probability is calculated.

Definition 1: The interest profile of a node 𝑖 is a 𝑀 × 1
probability vector P𝑖 = [𝑝𝑖1, ..., 𝑝𝑖𝑀 ]𝑇 , where (⋅)𝑇 indicates
matrix transpose and 𝑝𝑖𝑗 indicates the user probability to be
interested in the 𝑗-th keyword.

In practice, 𝑝𝑖𝑗 is used to compare the user’s interests
in different keywords. Hence, without loss of generality we
technically define

∑𝑀
𝑗=1 𝑝𝑖𝑗 = 1 for ∀𝑖, and P𝑖 can be

considered as a discrete probabilistic distribution.
Definition 2: A data item is described by 𝑛 keywords

𝑘1, ..., 𝑘𝑛 ∈ 𝒦 and weights 𝑤𝑘𝑖
indicating the importance of

keyword 𝑘𝑖 in describing the data. A data item is described by
a 𝑀 × 1 vector D = [𝑑1, 𝑑2, ..., 𝑑𝑀 ]𝑇 , where 𝑑𝑘𝑖

= 𝑤𝑘𝑖
and

all the other elements are 0. We define that
∑𝑛

𝑖=1 𝑤𝑘𝑖
= 1.

As a result, the interest probability of node 𝑖 in data D is

𝑝𝑖 = P𝑇
𝑖 D =

𝑛∑
𝑗=1

𝑤𝑘𝑗
⋅ 𝑝𝑖,𝑘𝑗

. (1)

V. OUR APPROACH

In this section, we present our user-centric data dissemina-
tion, based on a centrality metric which considers the social
contact patterns and node interests simultaneously.

A. Centrality Metric

Suppose data 𝑑𝑘 with time constraint 𝑇𝑘 is generated at time
0, we have the following data-dependent centrality metric:

Definition 3: The centrality value of a node 𝑖 for the data
item 𝑑𝑘 at time 𝑡 ≤ 𝑇𝑘 is defined as

𝐶
(𝑘)
𝑖 (𝑡) =

∑
𝑗∈𝒩𝑖

𝑝
(𝑘)
𝑗 𝐶𝑖𝑗(𝑇𝑘 − 𝑡), (2)

where 𝒩𝑖 is the set of nodes whose information is maintained
by node 𝑖. 𝑝(𝑘)𝑗 is the interest probability of node 𝑗 in data 𝑑𝑘
estimated by node 𝑖, and 𝐶𝑖𝑗(𝑇𝑘 − 𝑡) is the probability that
node 𝑖 can forward data 𝑑𝑘 to node 𝑗 within time 𝑇𝑘 − 𝑡.
𝐶

(𝑘)
𝑖 (𝑡) indicates the expected number of interesters that

node 𝑖 can “produce” within the node set 𝒩𝑖 during the
remaining time 𝑇𝑘−𝑡 of data dissemination. Node 𝑖 maintains

r-1

Fig. 3. Opportunistic path

the network information, including the contact patterns and
interest profiles, of all the nodes in 𝒩𝑖. 𝑝

(𝑘)
𝑗 is then calculated

from the user interest profile and data description according
to Eq. (1), and the calculation of 𝐶𝑖𝑗(𝑇𝑘 − 𝑡) depends on
the scope of network information maintained by 𝑖. Figure 2
illustrates various scopes of network information, where 𝒩 𝑟

𝑖

is the 𝑟-hop neighborhood of node 𝑖 on the contact graph.
The maintenance of network information relies on the con-

tacts among nodes in 𝒩𝑖, such that every two nodes exchange
the network information they have about other nodes when
they contact. When 𝑟 > 1, more communication overhead is
needed to maintain such information within 𝒩 𝑟

𝑖 .
1) Local Centrality (LC): For local centrality, 𝒩 1

𝑖 is
exploited in Eq. (2). Since the inter-contact time between
node 𝑖 and 𝑗 follows exponential distribution with the pairwise
contact rate 𝜆𝑖𝑗 , we have

𝐶𝑖𝑗(𝑇𝑘 − 𝑡) = 1− 𝑒−𝜆𝑖𝑗(𝑇𝑘−𝑡). (3)

2) Multi-hop Centrality (MC): For multi-hop centrality,
𝒩 𝑟
𝑖 is exploited in Eq. (2). Here 𝑟 ∈ (1, 𝑅], and 𝑅 is the

network diameter [5] indicating the topological length of the
longest pairwise shortest path on the network contact graph.
In the rest of this paper, centrality value of node 𝑖 calculated
based on 𝒩 𝑟

𝑖 will be referred to as its “𝑟-hop centrality”.
As shown in Figure 2, when 𝑟 > 1, nodes in 𝒩 𝑟

𝑖 may
opportunistically connect to node 𝑖 via multiple hops. Such
multi-hop opportunistic connection is formally defined as
follows.

Definition 4: A 𝑟-hop opportunistic path 𝑃𝐴𝐵 = (𝑉𝑃 , 𝐸𝑃 )
between nodes 𝐴 and 𝐵 consists of a node set 𝑉𝑃 = {𝐴,𝑁1,
𝑁2, ..., 𝑁𝑟−1, 𝐵} and an edge set 𝐸𝑃 = {𝑒1, 𝑒2, ..., 𝑒𝑟} with
edge weights {𝜆1, 𝜆2, .., 𝜆𝑟}. The path weight is the proba-
bility 𝑝𝐴𝐵(𝑇 ) that a data item is opportunistically forwarded
from 𝐴 to 𝐵 along 𝑃𝐴𝐵 within time 𝑇 .

As shown in Figure 3, the inter-contact time 𝑋𝑘 between
nodes 𝑁𝑘 and 𝑁𝑘+1 follows an exponential distribution
with probability density function (PDF) 𝑝𝑋𝑘

(𝑥) = 𝜆𝑘𝑒
−𝜆𝑘𝑥.

Hence, the total time needed to forward data from 𝐴 to 𝐵 is
𝑌 =

∑𝑟
𝑘=1𝑋𝑘 following hypoexponential distribution [25].

Lemma 1: (Section 5.2.4 of [25]) For a 𝑟-hop opportunistic
path with edge weights 𝜆1, 𝜆2, ..., 𝜆𝑟 , the PDF of 𝑌 is

𝑝𝑌 (𝑥) =

𝑟∑
𝑘=1

𝐶
(𝑟)
𝑘 𝑝𝑋𝑘

(𝑥), (4)

where the coefficients 𝐶(𝑟)
𝑘 =

𝑟∏
𝑠=1,𝑠 ∕=𝑘

𝜆𝑠

𝜆𝑠−𝜆𝑘
.

From Eq. (4), the path weight is written as

𝑝𝐴𝐵(𝑇 ) =

∫ 𝑇

0

𝑝𝑌 (𝑥)𝑑𝑥 =

𝑟∑
𝑘=1

𝐶
(𝑟)
𝑘 ⋅ (1− 𝑒−𝜆𝑘𝑇 ). (5)

When a data item is forwarded along path 𝑃𝑖𝑗 from node
𝑖 to node 𝑗, it implicitly selects all the nodes on the path



as relays. Therefore, we normalize 𝐶𝑖𝑗(𝑇𝑘 − 𝑡) with the path
length 𝐿𝑖𝑗 in terms of hop count

𝐶𝑖𝑗(𝑇𝑘 − 𝑡) = 𝑝𝑖𝑗(𝑇𝑘 − 𝑡)/𝐿𝑖𝑗 . (6)

Node 𝑖 maintains the best opportunistic path with the largest
𝐶𝑖𝑗(𝑇𝑘 − 𝑡) for each node 𝑗 ∈ 𝒩 𝑟

𝑖 . The information about
opportunistic path is disseminated and updated in a per-hop
manner among nodes in 𝒩 𝑟

𝑖 via their mutual contacts.

B. Relay Selection

1) Basic Rule: A node 𝑖 is only selected as the relay by
another relay 𝑗 for data 𝑑𝑘 at time 𝑡, if selecting 𝑖 increases
the cost-effectiveness ratio 𝑁𝑘

𝐼 (𝑡)

𝑁𝑘
𝑅(𝑡)

estimated at relay 𝑗. That is,

𝑁𝑘
𝐼 (𝑡) + 𝐶

(𝑘)
𝑖 (𝑡)

𝑁𝑘
𝑅(𝑡) + 1

≥ 𝑁𝑘
𝐼 (𝑡)

𝑁𝑘
𝑅(𝑡)

, (7)

which can be equivalently written as 𝐶(𝑘)
𝑖 (𝑡) ≥ 𝑁𝑘

𝐼 (𝑡)

𝑁𝑘
𝑅(𝑡)

.
In this case, a new relay always has better capability

of disseminating data to interesters than the existing relays.
Similar methodology has also been used in [9] for effective
data forwarding in DTNs. While selecting more relays always
facilitates data dissemination in DTNs due to its opportunis-
tic nature, our approach maximizes the dissemination cost-
effectiveness by only selecting the best nodes as relays.

The data source 𝑆𝑘, as the initial relay, sets 𝑁𝑘
𝐼 (0) =

𝐶
(𝑘)
𝑆𝑘

(0) and 𝑁𝑘
𝑅(0) = 1. Whenever 𝑆𝑘 contacts another node

𝑖, it determines whether node 𝑖 should be a relay according to
Eq. (7). If so, 𝑁𝑘

𝐼 (𝑡) and 𝑁𝑘
𝑅(𝑡) at both 𝑆𝑘 and 𝑖 are updated

according to Eq. (8). Note that 𝑁𝑘
𝐼 (𝑡) estimates the number

of interesters that receive data 𝑑𝑘 by the time constraint 𝑇𝑘.
Hence, it will only be updated when a new relay is selected,
and will not be updated when a relay contacts an interester.{

𝑁𝑘
𝐼 (𝑡)← 𝑁𝑘

𝐼 (𝑡) + 𝐶
(𝑘)
𝑖 (𝑡)

𝑁𝑘
𝑅(𝑡)← 𝑁𝑘

𝑅(𝑡) + 1
(8)

2) Using Multi-hop Centrality: Relay selection only based
on the local network knowledge may not be optimal. This can
be illustrated in Figure 4, where the value besides a node 𝑗

indicates 𝑝
(𝑘)
𝑗 in Eq. (2), and the value on the dashed edge

between nodes 𝑖 and 𝑗 indicates 𝐶𝑖𝑗(𝑇𝑘 − 𝑡) in Eq. (3). The
local and multi-hop node centrality values are also listed in
the figure. If local centrality is used, 𝐴 will not select 𝐵 as
the relay due to Eq. (7). However, such decision will fail to
select 𝐷 with high centrality as the relay.

To ensure optimal relay selection, multi-hop centrality
should be used instead. As shown in Figure 4, the 2-hop
centrality of node 𝐵 increases a lot due to the high value of
local centrality of node 𝐷. Hence, 𝐵 will be selected as relay.

Afterwards, 𝑁
(𝑘)
𝐼 (𝑡)

𝑁
(𝑘)
𝑅 (𝑡)

at 𝐵 will be updated to 1.2+1.286
2 = 1.243,

and furthermore enables selecting 𝐷 as relay. Note that, due
to the normalization on 𝐶𝑖𝑗(𝑇𝑘 − 𝑡) in Eq. (6), we can safely
update 𝑁𝑘

𝐼 (𝑡) and 𝑁𝑘
𝑅(𝑡) by applying Eq. (8).

The exploitation of multi-hop centrality for relay selection
inevitably requires nodes to maintain network information in a
larger scope, and leads to higher maintenance overhead. Such
tradeoff will be analyzed in Section VI-B.

MCBNI

NR
= 1:2

1
NI

NR
= 1:2

1 MCC
MCD

LCB
LCC
LCD

Fig. 4. Illustration of relay selections

C. Data Item Selection

A node 𝑖 determines which data items to carry, if it is
selected as the relay for data items 𝑑1, 𝑑2, ..., 𝑑𝑚 but its
buffer 𝐵𝑖 is not large enough to carry all of them. Data
items are selected according to their contribution to increase
the cumulative dissemination cost-effectiveness

∑𝑚
𝑘=1

𝑁𝑘
𝐼 (𝑡)

𝑁𝑘
𝑅(𝑡)

.
Such selection is formulated as a knapsack problem as follows.

max

𝑚∑
𝑘=1

𝑤𝑘𝑥𝑘 s.t.
𝑚∑
𝑘=1

𝑠𝑘𝑥𝑘 ≤ 𝐵𝑖, (9)

where 𝑥𝑘 ∈ [0, 1] is the indicator variable indicating whether
data 𝑑𝑘 is carried by node 𝑖, and 𝑠𝑘 is the size of data 𝑑𝑘. 𝑤𝑘

is the contribution of data 𝑑𝑘 which is defined as

𝑤𝑘 =
𝑁

(𝑘)
𝐼 (𝑡) + 𝐶

(𝑘)
𝑖 (𝑡)

𝑁
(𝑘)
𝑅 (𝑡) + 1

− 𝑁
(𝑘)
𝐼 (𝑡)

𝑁
(𝑘)
𝑅 (𝑡)

=
𝐶

(𝑘)
𝑖 (𝑡)− 𝑁𝑘

𝐼 (𝑡)

𝑁𝑘
𝑅(𝑡)

𝑁𝑘
𝑅(𝑡) + 1

.

(10)
The solution to Eq. (9) prefers data items with higher pop-

ularity, because 𝐶
(𝑘)
𝑖 (𝑡) for popular data items are generally

higher. Nevertheless, such preference diminishes when 𝑁𝑘
𝑅(𝑡)

increases. Hence, we also ensure that data items with lower
popularity can be fairly disseminated, when the popular data
items have already been carried by a number of relays.

VI. ANALYSIS

In this section, we provide theoretical insight on our user-
centric data dissemination. More specifically, we provide the
lower bound of the data dissemination cost-effectiveness, and
analytically investigate the tradeoff between the effectiveness
of relay selection and the overhead of maintaining network
information.

We analyze the process of disseminating a single data item,
and the cumulative cost-effectiveness of data dissemination
is maximized by the data item selection in Section V-C. For
simplicity, we omit the data item index 𝑘 in the relevant
notations. We use the notation ℐ(𝑡) to indicate the global set
of interesters having received the data at time 𝑡, and ℛ(𝑡) to
indicate the global set of selected relays at time 𝑡. We assume
that there are 𝑁 nodes in the network described by the contact
graph 𝐺 = (𝑉,𝐸), and that the data is generated at time 0.

A. Lower Bound of Dissemination Cost-Effectiveness

We first analyze the lower bounds of ∣ℐ(𝑡)∣ and ∣ℛ(𝑡)∣
when local centrality is used for relay selection, and obviously
these bounds also hold when multi-hop centrality is used. Note



that ∣ℐ(𝑡)∣ and ∣ℛ(𝑡)∣ calculated at the global scope may be
different from 𝑁𝐼(𝑡) and 𝑁𝑅(𝑡) estimated at individual relays.

As a prerequisite, Lemma 2 first provides a lower bound on
the ratio 𝑁𝐼(𝑡)

𝑁𝑅(𝑡) maintained at an arbitrary relay.

Lemma 2: At any time 𝑡 ≤ 𝑇 , we have
𝑁𝐼(𝑡)

𝑁𝑅(𝑡)
≥ (1− 𝑒−𝑠𝐺(𝑇−𝑡)) ⋅ 𝑝min, (11)

where 𝑝min = min
𝑖∈𝑉

𝑝𝑖, and

𝑠𝐺 = min
𝐴⊂𝑉

∑
𝑖∈𝐴,𝑗∈𝒩 1

𝑖
𝜆𝑖𝑗

∣𝐴∣ . (12)

The proof of Lemma 2 can be found in Appendix A, and
Lemma 3 shows the lower bound on the renewal intervals of
∣ℛ(𝑡)∣.

Lemma 3: Let ∣ℛ(𝑡0)∣ = 𝑘 for 𝑡0 ≤ 𝑇 , and 𝑇
(𝑘+1)
𝑅 be the

time needed to select the (𝑘 + 1)-th relay, then we have

ℙ(𝑇
(𝑘+1)
𝑅 ≤ 𝑡) ≤ (1− 𝑒−(𝑁−𝑘)𝑐𝐺𝑡) ⋅ (1− (1− 𝑒−𝑠𝐺𝑡) ⋅ 𝑝𝑚𝑖𝑛),

(13)
where 1 ≤ 𝑘 ≤ 𝑁/2, and 𝑐𝐺 is defined as

𝑐𝐺 = max
𝐴⊂𝑉

∑
𝑖∈𝐴,𝑗∈𝑉 ∖𝐴 𝜆𝑖𝑗

max{∣𝐴∣, ∣𝑉 ∖𝐴∣} . (14)

The proof of Lemma 3 can be found in Appendix B.
From Lemma 3, we can see that our approach selects more
relays for popular data items, which are disseminated to
more interesters. Such property is analytically described in
the following lemma:

Lemma 4: Let 𝑇𝐼 be the time needed for the selected relays
in ℛ(𝑡0) to contact an interester, we have

ℙ(𝑇𝐼 ≤ 𝑡) ≥ (1− 𝑒−𝑘ℎ𝐺𝑡) ⋅ 𝑝min, (15)

where 𝑘 = ∣ℛ(𝑡0)∣ ∈ [1, 𝑁/2], and ℎ𝐺 is defined as

ℎ𝐺 = min
𝐴⊂𝑉

∑
𝑖∈𝐴,𝑗∈𝑉 ∖𝐴 𝜆𝑖𝑗

min{𝐴, 𝑉 ∖𝐴} .
Proof: Considering that interesters can only receive the

data from the selected relays, the proof of Lemma 4 is similar
with the first part of the proof of Lemma 3, such that a lower
bound on the cumulative contact rate 𝜆 is given as 𝜆 ≤ 𝑘ℎ𝐺
for 1 ≤ 𝑘 ≤ 𝑁/2.

From Lemmas 3 and 4, the lower bound on data dissemi-
nation cost-effectiveness is described in Theorem 1.

Theorem 1: The probability for the dissemination cost-
effectiveness ∣ℐ(𝑡0)∣

∣ℛ(𝑡0)∣ at time 𝑡0 ≤ 𝑇 to increase after time
𝑡 ≤ 𝑇 − 𝑡0 is bounded as

ℙ

( ∣ℐ(𝑡0 + 𝑡)∣
∣ℛ(𝑡0 + 𝑡)∣ ≥

∣ℐ(𝑡0)∣
∣ℛ(𝑡0)∣

)
≥ (1−𝑒−𝑘ℎ𝐺𝑡)⋅𝑒−(𝑁−𝑘)𝑐𝐺𝑡 ⋅𝑝min,

(16)
where 𝑘 = ∣ℛ(𝑡0)∣ ∈ [1, 𝑁/2].

Proof: The dissemination cost-effectiveness increases if
the existing relays contact new interesters within time 𝑡 and
no new relay is selected. As a result,

ℙ

( ∣ℐ(𝑡0 + 𝑡)∣
∣ℛ(𝑡0 + 𝑡)∣ ≥

∣ℐ(𝑡0)∣
∣ℛ(𝑡0)∣

)
≥ ℙ(𝑡 ≥ 𝑇𝐼) ⋅ ℙ(𝑡 ≤ 𝑇

(𝑘+1)
𝑅 ).

Theorem 1 is therefore an immediate result from Eqs. (13)
and (15).

Particularly, 𝑝min in Theorem 1 can be derived from the
cumulative distribution function (CDF) 𝐹𝑝(𝑥) of user interest
probability as in Eq. (17).

ℙ(𝑝min ≤ 𝑥) = 𝐹min(𝑥) =

𝑁∏
𝑖=1

ℙ(𝑝𝑖 ≤ 𝑥) = (𝐹𝑝(𝑥))
𝑁 . (17)

Theorem 1 has the following implications:

1) The cost-effectiveness of disseminating a data item is
proportional to the contact capability of relays and the
data popularity. It is generally more cost-effective to
disseminated popular data items in the network.

2) Eq. (16) shows that, the lower bound of dissemination
cost-effectiveness increases exponentially with 𝑡. This
indicates that our data dissemination approach is sen-
sitive to short time constraints, and will perform much
better when the time constraint increases.

3) The lower bound in Eq. (16) varies at different 𝑡0
because 𝑘 = ∣ℛ(𝑡0)∣. The bound becomes higher when
𝑡0 increases, which means that our approach tends to
achieve higher cost-effectiveness when the time elapses.

B. Tradeoff

As described in Section V-B, maintaining the network
information in a larger scope increases the effectiveness of
relay selection, at the cost of higher maintenance overhead. In
this section, we show analytical results on such tradeoff.

Lemma 5: When node centrality is calculated in the 𝑅-hop
range, where 𝑅 is the network diameter, the relay selection
following Eq. (7) is always optimal. For any relay 𝑠 with
locally estimated 𝑁𝐼(𝑡)

𝑁𝑅(𝑡) , when it contacts node 𝑖 at time 𝑡,

∙ If 𝐶𝑖(𝑡) <
𝑁𝐼(𝑡)
𝑁𝑅(𝑡) , selecting any node 𝑗 ∈ 𝒩 1

𝑖 as the relay

will decrease 𝑁𝐼(𝑡)
𝑁𝑅(𝑡) .

∙ If 𝐶𝑖(𝑡) ≥ 𝑁𝐼(𝑡)
𝑁𝑅(𝑡) , there exists 𝑗 ∈ 𝒩 1

𝑖 , such that selecting

node 𝑗 as the relay increases 𝑁𝐼(𝑡)
𝑁𝑅(𝑡) .

The proof of Lemma 5 can be found in Appendix C.
Comparatively, when the network information is maintained
in a 𝑟-hop range (𝑟 < 𝑅), Theorem 2 gives a upper bound on
the probability of non-optimal relay selection.

Theorem 2: For a relay 𝑠 with estimated 𝑁𝐼(𝑡)
𝑁𝑅(𝑡) at time 𝑡,

∀𝑖 ∈ 𝒩 1
𝑠 and 𝑗 ∈ 𝒩 𝑟+1

𝑖 ∖ 𝒩 𝑟
𝑖 , if 𝐶𝑖(𝑡) <

𝑁𝐼(𝑡)
𝑁𝑅(𝑡) we have

ℙ

(
𝐶𝑖(𝑡)+𝑝𝑗𝐶𝑖𝑗(𝑇−𝑡) > 𝑁𝐼(𝑡)

𝑁𝑅(𝑡)

)
≤ (𝐶max)

𝑟+1 ⋅ 𝔼𝑝𝑗
(𝑟 + 1) ⋅ ( 𝑁𝐼(𝑡)

𝑁𝑅(𝑡) − 𝐶𝑖(𝑡))
,

(18)
where 𝐶max = 1− 𝑒−𝜆max(𝑇−𝑡), and 𝜆max = max𝑖,𝑗∈𝑉 𝜆𝑖𝑗 .

Proof: According to the calculation of multi-hop central-
ity defined in Eq. (6), for a (𝑟 + 1)-hop opportunistic path
between node 𝑖 and 𝑗, we have

𝐶𝑖𝑗(𝑇 − 𝑡) ≤ (1− 𝑒−𝜆max(𝑇−𝑡))𝑟+1

𝑟 + 1
.

As a result, Eq. (18) can be proved by applying Markov’s
inequality, such that

ℙ

(
𝑝𝑗𝐶𝑖𝑗(𝑇 − 𝑡) >

𝑁𝐼(𝑡)

𝑁𝑅(𝑡)
− 𝐶𝑖(𝑡)

)
≤ 𝔼(𝑝𝑗𝐶𝑖𝑗(𝑇 − 𝑡))

𝑁𝐼(𝑡)
𝑁𝑅(𝑡) − 𝐶𝑖(𝑡)

.



According to Theorem 2, the probability of non-optimal
relay selection is negatively proportional to the scope 𝑟 of
network information being maintained, and is also determined
by the node contact frequency and data popularity.

However, the maintenance of network information in DTNs
is expensive. Lemma 6 shows that the opportunistic path in
DTNs cannot be maintained in an iterative manner. Instead, to
calculate its 𝑟-hop centrality value, a node 𝑖 has to maintain
the complete opportunistic paths to all the nodes in 𝒩 𝑟

𝑖 .
Lemma 6: There does not exist a function 𝑓(𝜆, 𝑇 ), such

that for any opportunistic path 𝑃𝐴𝐵 = (𝐴,𝑁1, ..., 𝑁𝑟−1, 𝐵)
with edge weights {𝜆1, 𝜆2, ..., 𝜆𝑟},

𝑝𝐴𝐵(𝑇 ) = 𝑝𝐴𝑁𝑟−1
(𝑇 )⊗ 𝑓(𝜆𝑟, 𝑇 ),

where ⊗ can be any arbitrary arithmetic operation.
The proof of Lemma 6 can be found in Appendix D.

Theorem 3 then gives an upper bound on the increasing rate
of the overhead of maintaining network information when 𝑟
increases.

Theorem 3: For any node 𝑖, the overhead of maintaining
network information within the 𝑟-hop range is Ω(𝑟 ⋅𝑐𝑟), where
𝑐 is a graph-dependent invariant.

Proof: Let 𝑘 be the minimum node degree in 𝐺 = (𝑉,𝐸).
Without loss of generality, we assume that 𝐺 is connected, so
with large probability we have 𝑘 ≥ 2. For ∀𝑖 ∈ 𝑉 , since 𝒩 𝑟

𝑖

is a subgraph of 𝐺, we have ∣𝒩 1
𝑖 ∣ ≤ 𝑘 and ∣𝒩 𝑟

𝑖 ∖ 𝒩 𝑟−1
𝑖 ∣ ≤

𝑘(𝑘 − 1)𝑟−1. Therefore, let 𝑛𝑟 = ∣𝒩 𝑟
𝑖 ∣, we have

𝑛𝑟 ≥
𝑟−1∑
𝑠=0

𝑘(𝑘 − 1)𝑠 =
𝑘

𝑘 − 2
⋅ ((𝑘 − 1)𝑟 − 1).

The theorem therefore holds because 𝑘 is an invariant only
depending on 𝐺, and for ∀𝑗 ∈ 𝒩 𝑟

𝑖 ∖ 𝒩 𝑟−1
𝑖 , the length of the

opportunistic path between node 𝑖 and 𝑗 is at least 𝑟.
From Theorems 2 and 3 we conclude that, when 𝑟 increases,

the optimal probability of relay selection and the overhead
of maintaining network information increase at similar rates.
Hence, the network designers have full flexibility to balance
between the relay selection effectiveness and maintenance
overhead according to the specific application requirements.

C. Global Optimality

In data dissemination, an individual node only estimates the
dissemination cost-effectiveness ratio 𝑁𝐼(𝑡)

𝑁𝑅(𝑡) based on its own
network information, and consequently such estimated ratio
may be different at nodes. For example, when relay selections
happen in the temporal sequence shown in Figure 5(b), the
update process and the final values of 𝑁𝐼(𝑡)

𝑁𝑅(𝑡) at different nodes
are shown in Figure 5(b) and 5(c), respectively.

Due to the lack of end-to-end network connectivity in
DTNs, such difference essentially makes it difficult to guar-
antee the global optimality for relay selection, which means
that every relay selection increases the global value of 𝑁𝐼(𝑡)

𝑁𝑅(𝑡) .
More specifically, a relay selection which increases the local
cost-effectiveness ratio may not necessarily increase the global
ratio. For example in Figure 5, when node 𝐵 contacts 𝐸
and selects 𝐸 as the relay because 1.7 > 5.0

3 , it actually

Fig. 5. Maintenance of 𝑁𝐼 (𝑡)
𝑁𝑅(𝑡)

: (a) node centrality values, (b) update process

of 𝑁𝐼 (𝑡)
𝑁𝑅(𝑡)

, (c) final values of 𝑁𝐼 (𝑡)
𝑁𝑅(𝑡)

at different nodes

reduces the global cost-effectiveness ratio from 10.6
5 = 2.12

to 12.3
6 = 2.05. The main reason is that 𝐵 may be out of

contact with 𝑆 and 𝐴 when it contacts 𝐸, and therefore 𝐵
is not aware of which relays 𝐴 has selected. Nevertheless,
although it is generally hard to achieve the global optimality
for relay selection, our approach ensures its local optimality
by exploiting multi-hop centrality, as stated in Lemma 5.

VII. PERFORMANCE EVALUATION

In this section, we compare the performance of our scheme
with other data dissemination schemes listed below.

1) Flooding, in which all the non-interesters are relays.
2) Random flooding, in which each non-interester has a

fixed probability to be randomly selected as a relay.
3) ContentPlace [2], which uses distributed 𝑘-clique

method [16] to detect social community structures, and
uses the Most Frequently Visited (MFV) policy for
determining data utilities.

4) SocialCast [7], in which we implemented the Kalman-
filter method for co-location prediction.

In this section, 𝑁𝐼 indicates the average number of inter-
esters having received the data, and 𝑁𝑅 indicates the average
number of selected relays. Both quantities are kept globally up-
to-date. In flooding-based schemes, data items are randomly
selected at a relay with limited buffer, and we keep 𝑁𝑅 in
random flooding at the same level as in our approach to
evaluate the effectiveness of random relay selection. All the
experiments are run multiple times with randomly generated
data for statistical convergence.

TABLE I
TRACE SUMMARY

Trace Infocom06 MIT Reality

Duration (days) 4 246
Granularity (secs) 120 300

No. of devices 78 97
No. of internal contacts 182,951 54,667

Pairwise contact rate (per day) 1.70 0.024

A. Simulation Setup

Our evaluations are conducted on two realistic DTN traces,
which record contacts among users carrying Bluetooth-enabled
mobile devices. These devices record contacts by periodically
detecting their peers nearby. The traces cover various types of
corporate environments and have various experiment periods.
They are summarized in Table I.



(a) (b)
Fig. 6. User interest probabilities: (a) in keywords, (b) in data items

In all the experiments, a node updates its contact rates
with other nodes in real-time, based on the up-to-date contact
counts since the network starts. The first half of the trace is
used as the warm-up period for the nodes to accumulate nec-
essary network information. All the data items are generated
and disseminated during the second half of the trace.

1) User interest: We generate user interest profiles based
on a keyword space 𝒦 with size 𝑀 = 20, and assume that
keyword 𝑘𝑗 ∈ 𝒦 is the 𝑗-th popular keyword in the network.

According to Definition 1, the user interest probability in
each keyword 𝑘𝑗 is randomly drawn from a normal distribution
with 𝑃𝑗 as the mean value. We exploit various distributions
for generating 𝑃𝑗 of different keywords:

∙ Zipf distribution with exponent 𝑠: 𝑃𝑗 =
1/𝑗𝑠

∑𝑀
𝑖=1 1/𝑖𝑠

.

∙ Exponential distribution: 𝑃𝑗 = 𝑒−𝑗
∑𝑀

𝑖=1 𝑒
−𝑖 .

∙ Uniform distribution: 𝑃𝑗 = 1/𝑀 .
𝑃𝑗 with different distributions are shown in Figure 6(a).
2) Data item: There are 5 data items to be disseminated in

the network. The data resources and time of data origination
are randomly generated. The sizes of data items are uniformly
generated in the range [100𝑘𝐵, 200𝑘𝐵], and the node buffer
sizes are uniformly generated in [200𝑘𝐵,𝐵max], where the
value of 𝐵max varies to achieve different buffer constraints.

Each data item 𝑑𝑘 is described by 5 keywords with equal
weights. To ensure that the data items have different popularity,
the keyword indices of data item 𝑑𝑘 are {𝑘, ..., 𝑘 + 4}. The
user interest probability in data 𝑑𝑘 can hence be calculated
according to Eq. (1), and the average interest probability 𝑝𝑘𝑎𝑣𝑔
in data 𝑑𝑘 over all the nodes in the network is illustrated in
Figure 6(b). When the mean value 𝑃𝑗 is generated exponen-
tially, most of the user interests concentrate on the popular
data items. For Zipf distributions, such concentration increases
with exponent 𝑠. Therefore, Figure 6(b) actually represents
different data interest patterns of mobile users in DTNs. In
our simulations, a node determines whether it is interested in
an encountered data item, by locally performing a Bernoulli
trial with its interest probability in the data.

B. Dissemination Cost-effectiveness

In this section, we evaluate the data dissemination perfor-
mance and the cost-effectiveness of our approach on the MIT
Reality trace. The simulation settings in different experiments

(a) (b)
Fig. 7. Data dissemination with different time constraints: (a) The number
of interesters (𝑁𝐼 ), (b) The dissemination cost-effectiveness (𝑁𝐼/𝑁𝑅)

vary from the basic setting, where the time constraint 𝑇 = 21
days, and 𝐵max = 500kB. We generate user interest proba-
bilities following the Zipf distribution with exponent 𝑠 = 2,
and maintain network information within the 3-hop range for
centrality calculation. For ContentPlace, we randomly group
the 5 data items into 2 channels, and let each node have a
fixed probability 𝑝 = 0.2 to be interested in each channel.

1) Different Time Constraints: The experiment results are
shown in Figure 7. In general, data items are disseminated
to more interesters when the time constraint 𝑇 is larger. In
Figure 7(a), when 𝑇 is long (> 42 days), 𝑁𝐼 of flooding
approaches the maximum value 𝑁 ⋅ 𝑝𝑎𝑣𝑔, and 𝑁𝐼 of random
flooding is much lower due to random relay selection. Because
of the centrality-based relay selection, 𝑁𝐼 of our approach only
degrades 15%-20% from flooding, and performs much better
than ContentPlace and SocialCast. SocialCast delivers data to
fewer interesters than ContentPlace because the homophily
phenomenon may not hold in the traces we use.

Comparatively, Figure 7(b) shows that our approach
achieves the highest cost-effectiveness of data dissemination
indicated by the ratio 𝑁𝐼/𝑁𝑅. This ratio is also proportional
to 𝑇 , because a relay has higher chance to contact more inter-
esters when 𝑇 is large. As shown in Figure 7(b), our approach
achieves 30% higher cost-effectiveness than ContentPlace, and
50% higher than SocialCast. Note that the cost-effectiveness
of flooding-based schemes remains stable at all cases.

2) Different Buffer Constraints: The experiment results
are shown in Figure 8. We did not include SocialCast because
it assumes infinite node buffer size. We vary 𝐵max from 200kB
to 900kB, so that each relay can at least carry one data item,
but not all of them. In Figure 8(a), 𝑁𝐼 increases when relays
have larger buffer to carry data items. When 𝐵max is increased
from 200kB to 900kB, 𝑁𝐼 of our approach increases by 56%,
and its difference from that of flooding correspondingly de-
creases by 50%. With various buffer constraints, our approach
keeps 25%-30% performance advantage over ContentPlace.

The dissemination cost-effectiveness surprisingly decreases
when 𝐵max increases, as shown in Figure 8(b). Considering
the increase of 𝑁𝐼 in Figure 8(a), the main reason is that
𝑁𝑅 increases when larger buffer size is available. Neverthe-
less, when 𝐵max increases from 200kB to 900kB, the cost-
effectiveness of our approach only decreases by 25%, which



(a) (b)
Fig. 8. Data dissemination with different buffer constraints: (a) The number
of interesters (𝑁𝐼 ), (b) The dissemination cost-effectiveness (𝑁𝐼/𝑁𝑅)

(a) (b)
Fig. 9. Data dissemination with different rages for maintaining network
information: (a) The number of interesters (𝑁𝐼 ), (b) The dissemination cost-
effectiveness (𝑁𝐼/𝑁𝑅) and overhead (𝑁𝑎𝑣𝑔 ⋅ 𝐿𝑎𝑣𝑔)

is much smaller than the 65% decrease of ContentPlace. The
cost-effectiveness of flooding-based schemes remains stable
due to the random strategy for data item selection.

3) Scope of Maintaining Network Information: The re-
sults on various scopes of maintaining network information
are shown in Figure 9. In Figure 9(a), 𝑁𝐼 increases when
network information is maintained in a larger scope, and this
increase is larger for smaller 𝑟. When 𝑟 increases from 1 to
3, 𝑁𝐼 increases by 64%. When 𝑟 furthermore increases from
3 to 5, such benefit is reduced to 7.7%.

Figure 9(b) shows the tradeoff between the cost-
effectiveness of data dissemination and the maintenance over-
head. The overhead is measured by 𝑁𝑎𝑣𝑔 ⋅𝐿𝑎𝑣𝑔 , where 𝑁𝑎𝑣𝑔 is
the average number of nodes whose information is maintained,
and 𝐿𝑎𝑣𝑔 is the average length of maintained opportunistic
paths. It is shown that they both increase at similar rates when
𝑟 increases, which is consistent with our theoretical analysis
in Section VI-B.

C. Distribution of User Interest

In this section, we evaluate the cost-effectiveness of our
approach under different distributions of user interest on the
Infocom06 trace. The experiment results are shown in Figure
10. Since our approach prefers to disseminate popular data
items, the values of both 𝑁𝐼 and 𝑁𝐼/𝑁𝑅 mainly depend on
the user interest probability in popular data items. 𝑁𝐼 and
𝑁𝐼/𝑁𝑅 have the lowest values when user interest is uniformly
distributed. When the exponent 𝑠 of Zipf distribution increases,

(a) (b)
Fig. 10. Data dissemination with different distributions of user interests: (a)
the number of interesters (𝑁𝐼 ), (b) the cost-effectiveness (𝑁𝐼/𝑁𝑅)

the user interest concentrate more on popular data items, and
our approach therefore performs 25% better.

The values of 𝑁𝐼 and 𝑁𝑅 in cases of exponential distri-
bution and Zipf distribution with 𝑠 = 2 are worth special
attention. As shown in Figure 10, our approach performs best
in case of exponential distribution when 𝑇 is longer than 10
hours. This is mainly because user interest concentrates more
on popular data items when it is exponentially distributed,
as shown Figure 6(b). When 𝑇 is longer, popular data items
have higher chances to be disseminated to more interesters,
and hence improves the dissemination cost-effectiveness. In
contrast, when 𝑇 is short, the preference on popular data items
reduces the chances of other data items to be disseminated and
affects the dissemination cost-effectiveness.

VIII. CONCLUSIONS

In this paper, we proposed a novel social-based approach to
user-centric data dissemination in DTNs, which considers user
interests and improves data dissemination cost-effectiveness.
We propose a probabilistic model of user interest, and ex-
pand the centrality concept for effective relay selection by
considering the social contact patterns and interests of mobile
nodes simultaneously. In the future, we will conduct more
detailed performance evaluation of our approach, especially
in cases where nodes dynamically join and leave the network
and network data is randomly being updated. Future research
can also benefit from our work by following the concept of
user-centric data dissemination to further investigate the roles
and impacts of user interests in DTNs.
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APPENDIX

A. Proof of Lemma 2

According to Definition 3, the centrality value 𝐶𝑖(𝑡) of node
𝑖 decreases when 𝑡 increases. Therefore, based on the relay
selection strategy described in Section V-B, we have

𝑁𝐼(𝑡)

𝑁𝑅(𝑡)
≥

∑
𝑖∈ℛ(𝑡)

𝐶𝑖(𝑡)

∣ℛ(𝑡)∣ ≥

∑
𝑖∈ℛ(𝑡),𝑗∈𝒩 1

𝑖

(1− 𝑒−𝜆𝑖𝑗(𝑇−𝑡)) ⋅ 𝑝min

∣ℛ(𝑡)∣ .

Since

2− 𝑒−𝜆1𝑡 − 𝑒−𝜆2𝑡 ≥ 1− 𝑒−(𝜆1+𝜆2)𝑡,

for ∀𝜆1, 𝜆2 ≥ 0 and 𝑡 ≥ 0, according to the definition of 𝑠𝐺
in Eq. (12) we have

𝑁𝐼(𝑡)

𝑁𝑅(𝑡)
≥

∑
𝑖∈ℛ(𝑡)

(1− 𝑒−𝑠𝐺(𝑇−𝑡)) ⋅ 𝑝min

∣ℛ(𝑡)∣ = (1−𝑒−𝑠𝐺(𝑇−𝑡))⋅𝑝min.

B. Proof of Lemma 3

The probability ℙ(𝑇
(𝑘+1)
𝑅 ≤ 𝑡) is equal to 𝑃1 ⋅ 𝑃2, where

𝑃1 is the probability that at least one node in 𝑉 ∖ ℛ(𝑡0) is
contacted by nodes in ℛ(𝑡0), and 𝑃2 is the probability that
at least one node being contacted is selected as the relay. We
prove this lemma by analyzing the two probabilities separately.

First, the time until at least one node in 𝑉 ∖ ℛ(𝑡0) is
contacted by nodes in ℛ(𝑡0) is exponentially distributed with
𝜆 =

∑
𝑖∈ℛ(𝑡0),𝑗∈𝑉 ∖ℛ(𝑡0)

𝜆𝑖𝑗 . Therefore, according to the
definition of 𝑐𝐺 in Eq. (14) we have

𝑃1 = 1− 𝑒−𝜆𝑡 ≤ 1− 𝑒−(𝑁−𝑘)𝑐𝐺𝑡, (19)
where 1 ≤ 𝑘 ≤ 𝑁/2.

Second, according to the relay selection strategy in Section
V-B, we have

𝑃2 ≤ ℙ

(
𝐶𝑖(𝑡) ≥ 𝑁𝐼(𝑡)

𝑁𝑅(𝑡)

)
.

From Lemma 2, along with the memoryless nature of
Poisson processes and the assumption that the user centrality
values are uniformly distributed, we have

𝑃2 ≤ (1− 𝑁𝐼(𝑡)

𝑁𝑅(𝑡)
) ≤ (1− (1− 𝑒−𝑠𝐺𝑡) ⋅ 𝑝𝑚𝑖𝑛). (20)

The lemma hence follows by combining Eqs. (19) and (20).

C. Proof of Lemma 5

The correctness of two cases are proved respectively.
Case 1: According to Eq. (2), for any 𝑗 ∈ 𝒩 1

𝑖 , its
contribution to 𝑖’s centrality value is 𝑝𝑗𝐶𝑖𝑗(𝑇−𝑡). Therefore, if
node 𝑖 is selected as the relay, node 𝑗’s contribution to 𝑁𝐼(𝑡)

𝑁𝑅(𝑡) is
no larger than

∑
𝑘∈𝒩𝑅−1

𝑗
𝑝𝑘𝐶𝑖𝑘(𝑇 − 𝑡). Since 𝒩𝑖 = 𝑉 ∖{𝑖} ⊃

𝒩𝑅−1
𝑗 , generally we have

∑
𝑘∈𝒩𝑅−1

𝑗
𝑝𝑘𝐶𝑖𝑘(𝑇 − 𝑡) ≤ 𝐶𝑖(𝑡),

and therefore the first case of the lemma follows.
Case 2: This case can be proved by contradiction. If the

selection of any 𝑗 ∈ 𝒩 1
𝑖 as the relay decreases 𝑁𝐼(𝑡)

𝑁𝑅(𝑡) , this
comes to be the same with Case 1, and can be concluded as
𝐶𝑖(𝑡) <

𝑁𝐼(𝑡)
𝑁𝑅(𝑡) , which contradicts the prerequisite of Case 2.

D. Proof of Lemma 6

The difficulty of calculating 𝑝𝐴𝐵(𝑇 ) in an iterative manner
mainly comes from the properties of the coefficients 𝐶(𝑟)

𝑘 in
Eq. (5). When a new edge (𝑁𝑟−1, 𝐵) with weight 𝜆𝑟 is added
into a path 𝐴𝑁𝑟−1, such coefficients are modified as

𝐶
(𝑟)
𝑘 =

⎧⎨
⎩
𝐶

(𝑟−1)
𝑘 ⋅ 𝜆𝑘

𝜆𝑟−𝜆𝑘
, 𝑘 ∕= 𝑟

𝑟−1∏
𝑠=1

𝜆𝑠

𝜆𝑠−𝜆𝑟
, 𝑘 = 𝑟

(21)

Our observations from Eq. (21) are two-fold. First, each
coefficient 𝐶(𝑟)

𝑘 (𝑘 ∕= 𝑟) is updated by multiplying a distinct
value 𝜆𝑘

𝜆𝑟+1−𝜆𝑘
. Second, the calculation of 𝐶(𝑟)

𝑟 involves all the
edge weights 𝜆1, ..., 𝜆𝑟−1. Both of the two observations makes
it impossible to calculate 𝑝𝐴𝐵(𝑇 ) solely from 𝑝𝐴𝑁𝑟−1

(𝑇 ) and
𝜆𝑟.


