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Abstract

The increasing demand for intelligent and sustainable healthcare services has prompted the development

of smart health systems. Rapid advances in wireless access technologies and in-network data reduction

techniques can significantly assist in implementing such smart systems through providing seamless inte-

gration of heterogeneous wireless networks, medical devices, and ubiquitous access to data. Utilization

of the spectrum across diverse radio technologies is expected to significantly enhance network capacity

and Quality of Service (QoS) for emerging applications such as remote monitoring over mobile-health

(m-health) systems. However, this imposes an essential need to develop innovative mechanisms networks

selection that account for energy efficiency while meeting application quality requirements. In this context,

this paper proposes an efficient networks selection mechanism with adaptive compression for improving

medical data delivery over heterogeneous m-health systems. We consider different performance aspects, as

well as networks characteristics and application requirements, so as to obtain an efficient solution that grasps

the conflicting nature of the various users’ objectives and addresses their inherent tradeoffs. The proposed

methodology advocates a user-centric approach towards leveraging heterogeneous wireless networks to

enhance the performance of m-health systems. Simulation results show that our solution significantly

outperforms state-of-the-art techniques.

Index Terms

Heterogeneous wireless environment, network selection, multi-RAT architectures, decomposition.

I. INTRODUCTION

The increasing number of elderly individuals and chronic disease patients that require continuous

monitoring within higher population cities, and the increasing demand for intelligent, efficient, and

sustainable healthcare services, have led to the appearance of mobile-health concept. The evolution

This work was made possible by GSRA grant # GSRA2-1-0609-14026 and NPRP grant # 7-684-1-127 from the Qatar National

Research Fund (a member of Qatar Foundation). The findings achieved herein are solely the responsibility of the authors.



of computational intelligence systems, mobile communications, and Internet of Things (IoT) has

boosted the evolution of traditional healthcare processes into smart health services. M-health can be

conceptualized as the integration of technologies (e.g., cloud computing, IoT, edge computing), and

devices (e.g., smart bio-sensors and wearable devices) for providing reliable, and secure healthcare

services (e.g., remote monitoring, smart hospitals, etc.). In general, smart health can be considered as

the context-aware evolution of mobile-health (m-health), leveraging mobile technologies to provide

smart personalized health through efficient and user-friendly services and tools that patients can

use to monitor their own health conditions [1]. In such systems, a combination of implantable

or wearable medical and non-medical sensors is leveraged for monitoring vital signs within the

smart assisted living homes, which facilitates continuous monitoring and automatic detection of

individuals’ context [2].

Remote monitoring applications typically require the recording, processing, and transmission of

large volumes of data. Consider, for instance, high-quality Electroencephalography (EEG) devices

consisting of up to 100 electrodes that can generate a data rate of 1.6 Mbps per single patient.

In normal conditions, such medical data should be reported to the M-Health Cloud (MHC) every

5 minutes, while, in the case of emergency where high-intensive monitoring is needed, it should

be reported every 10 seconds [3]. This demand of high data rates and QoS has motivated us to

leverage the development of cellular networks into dense heterogeneous networks (HetNets) with the

utilization of multi-Radio Access Technology (RAT). However, it is essential for each user/device

to leverage different RATs, hence, the available radio resources across different spectral bands, to

communicate with the network infrastructure [4].

In such heterogeneous multi-radio environment, implementing m-health systems is challenging.

As shown in Figure 1, we can divide m-health architecture into three main modules: data acquisition

and pre-processing, wireless multi-RAT network, and health monitoring services and applications.

Patients are equipped with sensor nodes, namely, a Body Area Sensor Network (BASN), pre-attached

to their smartphones. The smartphone acts as Personal/Patient Data Aggregator (PDA), i.e., it gathers

the medical data from the sensors and performs in-network processing to optimize the data transport

based on the context and the network state. In particular, the PDA may compress the data at the

cost of a certain degree of signal distortion, and sends it to the MHC over the multi-RAT wireless

network. Importantly, the multi-RAT wireless environment allows the PDA to be connected anywhere

and anytime, provided that innovative network selection techniques are implemented. Additionally,

data transfer from the PDAs to the MHC should take place in an energy-efficient manner, in order

to ensure a long lifetime of the battery-operated PDAs.

Accordingly, the focus of this paper is on how to benefit from the integration of multiple RATs
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Fig. 1. Multi-RAT m-Health system scenario.

within the above system architecture, so as to meet the application and system requirements and to

facilitate the management of, e.g., chronic diseases. Also, since PDAs can compress the data before

transmission, each PDA has to select not only the most suitable RAT(s) through which data should

be sent, but also the compression level to be used based on the network state. More specifically, we

aim at answering the following questions: (i) Which network(s) should be selected among multiple

RANs? (ii) What is the optimal level of data compression to be used? (iii) What is the amount

of data that should be sent through each selected RAN after compression? While addressing the

above issues, we account for both network characteristics and application requirements, providing

a solution, which achieves an optimal energy-quality-cost tradeoff.

The rest of the paper is organized as follows. Section II discusses the related work and highlights

our novel contributions, while Section III introduces the system model under study. Section IV

introduces our problem formulation and presents the analytical solution of the problem. Section V

describes our iterative algorithm that converges to the optimal solution even when PDAs do not have

a reliable initial estimate of their resource share over the available RANs. Section VI presents the

performance evaluation of our solution and the gain that it provides with respect to state-of-the-art

techniques. Finally, Section VII concludes the paper.

II. RELATED WORK

The investigated approaches in the field of m-health can be broadly classified, according to the

overall architecture of m-health systems in Figure 1, into three categories: data acquisition and in-

network processing (including low-power hardware designs, smartphone health-related applications,

signal compression, and feature extraction [5]), wireless transmission resource allocation and opti-

mization, and data retrieval at the cloud (including data delivery, reconstruction, and classification).

In m-health systems, sensor technologies have been combined with mobile communications in

order to enable data collection from heterogeneous sensing units, while providing ubiquitous access
3



to the data. In this context, PDAs (i.e., smartphones) were initially used both as a sensor and

data aggregator [6], where they gather the medical data from BASN and embedded sensors in

smartphones, then forward the aggregate traffic to the MHC. In [7], the processing capability

of smartphones has been considered. The authors described a smartphone-centric architecture,

where smartphones are exploited not only as data aggregators but also as sensing, processing, and

transmitting devices1. However, they consider wireless network as a transport network that can be

accessed through either 3G/4G network or through WiFi interfaces. The aforementioned work has

not considered the multihoming feature of smartphones to optimally select the best communication

interfaces for transmission.

At the MHC, data retrieval, feature extraction, classification, and further analysis can be performed

on the received data, in order to accurately evaluate the state of the patient. The conventional cloud

computing architecture enables smart devices (e.g., sensors, smartphones) to exchange information

with the cloud in order to provide concise and scalable processing as well as storage services

for supporting application requirements [9]. However, the deployment of health monitoring and

emergency response applications on the cloud are facing challenges due to the unpredictable delay

caused by transferring data to and from the cloud. A promising solution to overcome this issue

consists in performing efficient in-network processing at the PDA level (i.e., edge user) [10]. This

could significantly help to save network resources, offload core network traffic, and meet application

requirements for swift and secure data transfer.

Regarding wireless transmission optimization, in future 5G networks, user association with net-

work infrastructure may be concurrent, exploiting the multihoming feature of mobile devices, or to

be switched from one access point to another (within the same Radio Access Network (RAN), or

between different RANs) in order to enhance system performance and user experience [11]. This

switching and concurrent association between different RANs needs to be done while taking into

consideration different network characteristics and application requirements. In this context, several

initiatives have recently explored the interaction between cellular operators and WiFi network owners

[12]. The WLAN community has also participated in this trend with some initiatives, such as Hot

Spot 2.0 and high-efficiency WLAN standardization, which study RAN-based integration solutions

[13]. These initiatives aim to increase cooperation between 3GPP Long Term Evolution (LTE) and

WiFi radio technologies. For instance, the authors in [13] discuss convergence of WLAN-based

small cells with operator-managed cellular deployment, and envision different architectural options

for networks integration. Also, new standards like IEEE 802.21 exploits interoperability between

heterogeneous networks for handover optimization [14]. However, this standard only facilitates

1A comprehensive overview of recent smartphone applications designed for remote health monitoring can be found in [8].
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handover without specifying any network selection mechanisms2.

The problem of determining the optimal association between users and available RANs across

multiple RATs, operating at different frequencies and using different protocols, has received a great

deal of attention. Two main approaches have been proposed: a game theoretic approach, where

convergence to Nash equilibrium and the Pareto-efficiency of this equilibrium have been studied

[15][16], and a utility-based approach, where decisions are made based on properly defined utility

functions and the network with the best value is selected. The utility can be a function of monetary

cost, power consumption, network conditions, or user preferences [17][18].

Other studies have considered the resource allocation problem for parallel transmission using

multiple RATs [19][20]. However, the formulated problem in [19] is NP-hard, and a sub-optimal

allocation strategy is developed by exploiting the intrinsic quasi-concavity of the problem. While,

in [20], the authors present a framework of multi-RAT systems, where a small cell serves a number

of mobile users via IEEE 802.11 WLAN and 3GPP LTE access technologies. A scheduler at

the small cell is proposed to minimize the total transmission power subject to quality of service

constraints on the users transmission rates. In [21], an urban deployment scenario is investigated,

where WiFi small cells are overlaid on top of the 3GPP LTE network. The authors propose user-

centric network selection algorithms to minimize feedback overhead while taking into account user

preferences. A comprehensive review of the state-of-the-art mathematical models that are applied

to the network selection problem, including utility-based approach, game theory, combinatorial

optimization, Markov decision processes, and fuzzy logic can be found in [22].

To the best of our knowledge, none of the aforementioned work advocates the user-centric

approach for efficient network association with active context-aware in-network processing in order

to improve the delivery, cost, and latency of the patient data to MHC. Our main contributions can

be summarized as follows:

1) We formulate a multi-objective problem that allows each PDA to optimally set its data

compression ratio and select the RAN(s) for data transmission, in an energy-efficient and

cost-aware manner while ensuring an acceptable signal distortion.

2) We propose an analytical solution for the optimization problem, by decomposing it into two

sub-optimizations. The two sub-problems turn out to be solvable with low complexity, and

they are proved to lead to the same optimal solution as the original problem.

3) We design a distributed, iterative, PDA-centric algorithm and we analytically show that it can

converge to the optimal solution starting from any rough estimate of their resource share on

the available RANs.

2We remark that handover execution, although being a relevant aspect, is not addressed in our work.
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4) Finally, we evaluate the performance of the proposed solution and compare it against that of

state-of-the-art techniques. Results show that the proposed approach allows for high-quality

healthcare monitoring of patients, it significantly outperforms other solutions, and swiftly

adapts to varying network conditions.

III. SYSTEM MODEL AND PERFORMANCE METRICS

Consider a wireless heterogeneous m-health system, as shown in Figure 2. It is assumed that

the medical data3 is collected and sent to the PDA (i.e., smartphone) which compresses the data

using adaptive compression techniques. Each PDA has multiple RANs available, through which

it can transmit its data toward the MHC. The RANs have different characteristics, such as data

rate, energy consumption, monetary cost (i.e., requested payment for using network services), and

transmission delay. Furthermore, due to mobility, wireless channel dynamics and time-varying traffic

patterns, the level of quality of service offered by the available RANs may change over time.

PDA

EEG

ECG

Accelerometer

RAN 3RAN 2
RAN 1

M-Health Cloud

Fig. 2. System scenario under study.

In the following, we focus on a time period T and assume that each PDA i (i = 1, . . . N ) has

to transfer Bi bits of data toward the MHC. As mentioned, data is compressed by each PDA so

that the actual amount of bits to be transmitted is given by: bi = Bi(1� i) with i being the data

compression ratio adopted by PDA i. Data compression introduces a signal distortion, which can

be expressed through the Percentage Root-mean-square Difference (PRD) between the recovered

EEG data and the original one. Using the results obtained through our real-time implementation

[24], the relation between encoder distortion Di, compression ratio i and wavelet filter length F

is defined as

Di =
c1e

(1�i)
+ c2 · (1� i)�c3

+ c4 · F�c5 � c6
100

. (1)

3Although the proposed framework is assumed to employ the encoding model of EEG signals [23], it can be extended to diverse

biosignals and multimedia data, which are typically encoded at higher data rates, such as streaming of electrocardiogram (ECG)

signals and medical video, or at a lower data rate, such as human pressure or heart-rate reading.
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where i is evaluated as i = 1 � Q
S , with Q being the number of output samples generated after

discrete wavelet transform (DWT)-based EEG compression and S being the length of the input

signal, while the model parameters c1, c2, c3, c4, c5 and c6 are estimated by the statistics of the

typical EEG encoder used in [24].

Now, assume that RAN j operates on a band of width Wj and that the generic PDA i can enjoy

a data rate rij on RAN j. Clearly, rij depends on the network access technology (e.g., its maximum

value is 54Mbps in IEEE 802.11a/g) and on channel radio propagation conditions. As noted in [23],

the estimated energy consumption for PDA i to send bi bits over RAN j is:

eEij =  j

✓
biN0Wj

rijgij
(2

rij
Wj � 1)

◆
+ cj . (2)

In the above expression, N0 is the noise spectral density, while the channel gain gij is defined as

gij = K · � · |hij|2

where K = �1.5/(log(5BER)), � is the path loss attenuation, and |hij| is the fading channel

magnitude for PDA i over RAN j. In (2),  j and cj are specific parameters that differ for each

network interface [25]. They can be found in the radio interface specifications, or obtained through

power consumption measurements [26].

Next, looking at the expected latency provided by each RAN, we define:

eLij =
bi
rij

+ ⇠j, (3)

where bi
rij

and ⇠j are, respectively, the air time and the access channel delay that PDA i expects

to experience when transmitting bi bits through RAN j. In other words, it represents the estimated

end-to-end delay when using a given technology [27].

Finally, the monetary cost (hereinafter referred to as cost for brevity) resulting from using RAN

j by PDA i to send bi bits is expressed in Euro and defined as:

eCij = bi"j (4)

where "j is the monetary cost per bit for RAN j. This monetary cost can be acquired through the

use of, e.g., the IEEE 802.21 standard [14], which allows a user device to gather information about

the available wireless networks [26]. Such value can also be stored on the PDAs in advance and

updated if there are any changes in pricing.

IV. JOINT NETWORK SELECTION AND COMPRESSION OPTIMIZATION: PROBLEM

FORMULATION AND SOLUTION

Looking at the system model and the performance provided by each RAN (1)–(4), it can be seen

that there is a tradeoff between distortion on one side and energy consumption, latency and cost on
7



the other. First, the higher the compression ratio (i), the greater the distortion, but the smaller the

amount of data to transmit (bi). Secondly, as the data rate over RAN j (rij) increases, the energy

consumption increases, while the latency decreases. Also, it is often the case that RANs providing

higher data rates and lower latency have a higher monetary cost.

In a system supporting healthcare applications, it is of paramount importance to provide an

acceptable distortion level and to ensure a swift transfer of medical data towards the MHC. Then,

from a practical point of view, it is crucial that PDAs do not have to be recharged too often and that

services have an acceptable cost. Thus, in light of such requirements, in Section IV-A we formulate

a Multi-objective Optimization Problem (MOP) that each PDA should solve and whose aim is to

find the optimal tradeoff between the above conflicting objectives. The proposed problem is then

analytically solved in Section IV-B.

A. Problem Formulation

The objective of the proposed MOP is threefold: (i) minimizing transmission energy consumption,

(ii) minimizing monetary cost, and (iii) meeting the medical data QoS requirements in terms of

signal distortion and data delivery latency. We therefore define a single aggregate objective function

which turns the above multiple objectives into a single objective function. However, each objective

presents different ranges and units of measurement, hence we first normalize these quantities with

respect to their maximum value, in order to make them adimensional and comparable. We will

denote the normalized energy, monetary cost, and latency by Eij , Cij and Lij , respectively.

Given a generic PDA i with M available RANs, the objective of our optimization problem is to

obtain the optimal compression ratio and assign the PDA to the optimal RAN(s) minimizing the

transmission energy consumption Eij , monetary cost Cij , latency Lij , and distortion Di:

P: min

Pij ,i

MX

j=1

PijUij + �iDi (5)

s.t.
Pij · bi
rij

 Tij, 8j 2M (6)

MX

j=1

Pij � 1, (7)

0  Pij  1, 8j 2M (8)

0  i  1. (9)

where Uij = ↵iEij + �iCij + �iLij is the utility function of PDA i over RAN j. The weighting

coefficients represent the relative importance of the four objective functions in the problem; it is
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assumed that ↵i+�i+ �i+ �i = 1. Moreover, in (5) we consider a network utilization indicator Pij

that represents the fraction of data that should be transmitted through RAN j by PDA i. Note that

PDAs have all information to compute the expected energy consumption and cost. Additionally, we

assume that the RAN notifies the PDA about the physical data rate rij . The network also notifies

PDAs about the expected channel access delay (⇠j) the PDA may experience.

The network capacity constraint is represented by (6), where Tij is the maximum fraction of the

time period T that can be used by PDA i over RAN j (resource share). Tij depends on the number

of PDAs accessing the RAN, and we assume that it is notified by the RAN. Constraint (7) instead

ensures that all the data that PDA i has to transfer to the MHC is actually sent through the wireless

medium.

The unknowns in this problem are the Pij’s and i, i.e., each PDA needs to determine its

compression ratio and the amount of data that the PDA should transfer through the different RANs.

Looking at problem formulation in (5), one can see that it is not a linear programming (LP) problem

[28], due to the terms involving the product of Pij by i (or functions of i). Thus, below we

envision a methodology to decompose4 the problem into two sub-optimization problems, for which

an optimal, analytical solution can be obtained.

B. Optimization Decomposition

In order to analytically solve (5), one would like to break the original problem into two sub-

problems such that each of them is a function of one decision variable only and, hence, can be

solved independently of the other. The difficult point in our case is that the optimization variables

(i.e., Pij’s and i) are coupled. To overcome this issue, we proceed as follows.

We first look at the optimization variables in (5) as network selection variables Pij’s and adaptive

compression variables i. Network selection variables can be considered as global variables that

are relevant to the overall system, while adaptive compression variables are local variables at each

PDA. We therefore decompose the problem into the network selection and adaptive compression

sub-problems, and we prove that solving the new problem formulation still leads to the optimal

solution of the original problem in (5).

Theorem 1: The optimization problem in (5) can be decomposed into two sub-optimization

4Note that a simple approach, like transforming the problem into a Geometric Program (GP), would not work in this case due to

the existence of the constraint in (7) with the non-linearity of the distortion objective.
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problems while maintaining the optimal solution, as follows:

SP1: min

Pij

MX

j=1

Pij
ˆUij (10)

s.t.
Pijbi
rij
 Tij, 8j 2M (11)

MX

j=1

Pij � 1, (12)

0  Pij  1, 8j 2M (13)

and

SP2: min

i

 
�iDi �

MX

j=1

Piji ¯Uij

!
(14)

0  i  1 (15)

where ¯Uij and ˆUij have a similar expression as Uij but for some constant terms and the fact that bi

is replaced by Bi, i.e., they are independent of i.

Proof: See Appendix A.

It is worth mentioning that decoupling the overall optimization problem into two sub-problems,

greatly simplifies the problem, thus allowing the study of different adaptive compression techniques

with different distortion models. Similarly, the usage of various video coding schemes for medical

video content delivery could be investigated, in the presence of different network types and network

conditions.

C. Network Selection Optimization

In the following, we present an analytical solution for the network selection optimization problem

in (10). The problem is an LP problem. Thus, we can reduce the objective function by increasing

Pij’s with minimum ˆUij . Since these variables have a nonnegative coefficients in z, there would be

no other way to decrease z. We conclude that in the following proposition.

Proposition 1: The optimal solution of (10) can be obtained by maximizing the values of Pij’s

for which the corresponding ˆUij’s are minimum.

Proof: See Appendix B.

According to the above proposition, we can solve the network selection optimization problem in

(10) using Algorithm 1, while maintaining the optimal solution. The algorithm sorts the available

RANs in ascending order, according to the values ˆUij’s, then the network with the lowest ˆUij is

selected, and Pij is calculated as:

Pij = max

✓
1,

Tijrij
bi

◆
. (16)
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Note, indeed that Pij cannot exceed 1, according to the constraint in (8). If the available resource

share on this RAN does not satisfy the requirement of the PDA (i.e.,
PM

j=1 Pij < 1), the second

RAN in the list is selected, and so on till the constraint in (7) is satisfied. The algorithm complexity

is closely related to the number of available RANs M ; the worst-case complexity is O(M log(M)).

Algorithm 1 Network Selection Optimization at PDA i

Require: ↵i, �i, �i, Tij , rij , "j

1: p = 1.

2: Sort the available RANs according to the ˆUij values in ascending order

3: for j = 1!M do

4: Compute Pij according to (16)

5: if Pij � p then

6: Set Pij = p, and Pik = 0, 8k s.t. j < k �M .

7: Break % Constraint (7) is met

8: else

9: p = p� Pij

10: end if

11: end for

12: return Selected RAN(s) and corresponding optimal Pij’s

D. Adaptive Compression Optimization

As far as the problem in (14) is concerned, a closed-form expression for the solution can be

obtained by imposing that the derivative with respect to i of the objective function is equal to 0.

I.e.,

@/@i = @/@i

"
�iDi �

MX

j=1

Piji ¯Uij

#

= �i
@Di

@i
�

MX

j=1

Pij
¯Uij = 0. (17)

The distortion in (1) can be approximated5 as,

Di ⇡
c2(1� i)�c3

+ c4F
�c5 � 6.5

100

. (18)

5This simplified expression is still extremely accurate with a mean square error that equals 0.1%, while enabling us to maintain

a closed-form expression of the solution.

11



By substituting (18) in (17), we obtain:

@Di

@i
=

PM
j=1 Pij

¯Uij

�i

c2c3(1� i)�c3�1

100

=

PM
j=1 Pij · ¯Uij

�i

(1� i)�c3�1
=

100

PM
j=1 Pij · ¯Uij

�i · c2 · c3

log(1� i) = � log ⇣

(1 + c3)
(19)

where

⇣ =
100

PM
j=1 Pij · ¯Uij

�ic2c3
.

Thus, according to (19), the optimal i is given by:

i = 1� ⇣�
1

1+c3 . (20)

V. ADAPTIVE NETWORK SELECTION AND COMPRESSION

In this section, we propose a distributed, iterative algorithm for optimal Adaptive Network

Selection and Compression, named ANSC for short. ANSC leverages the problem decomposition

introduced in the previous section, and it aims at finding the optimal solution of (5) in practical

scenarios where PDAs may have just an initial estimate of their resource share on a given RAN j.

According to ANSC, once obtained the list of the available RANs, each PDA i initially assumes

that no compression is performed (i.e., i = 0) and runs Algorithm 1 locally, in order to find the

optimal values of Pij that determine which network(s) i should use and the amount of data that i

should transfer on each RAN. Recall that in Algorithm 1 the weights ↵i, �i and �i are assumed

to be pre-defined according to application requirements and/or PDAs’ preferences. Importantly, the

value Tij is initially set to Tij = Tj/Nj, 8j, where Nj is the number of PDAs using RAN j, i.e.,

all PDAs assume to receive the same resource share on RAN j 6. As foreseen by several standards,

the RAN can notify users about the value of Nj .

Next, the generic PDA obtains the optimal i using Eq. (20). It then broadcasts the corresponding

value of eTij’s, i.e., the amount of resources it intends to “consume” over RAN j, which is given

by:
eTij =

Pijbi
rij

. (21)

At the RAN point of access, the actual demand from all PDAs is calculated, and each RAN j can

use whatever mechanism to allocate the remaining resources among competing users (e.g., using

6Note that the value of Tij can be initially set to any arbitrary value.
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proportional fairness, round robin, etc.) [29]. Each RAN can then return to the PDAs the values of

their actual resource share. Accordingly, the PDAs run network selection optimization (Alg. 1) again,

obtaining the updated optimal values of Pij’s. The procedure can be repeated until convergence or

a maximum number of iterations have been reached. The main steps of the ANSC algorithm are

illustrated in Algorithm 2.

Algorithm 2 Adaptive Network Selection and Compression (ANSC) algorithm at PDA i

1: Initialization: i = 0, t = 0

2: S(t) = 0

3: do

4: Get optimal Pij’s through Algorithm 1

5: Compute i using (20)

6: Broadcast requested eTij’s computed through (21)

7: Get updated Tij(t+ 1) from RAN j

8: t++

9: S(t) Value of objective function in (5)

10: while |S(t)� S(t� 1)| > ✏ ^ t < niter

11: return Selected RAN(s); optimal Pij’s and i

Below, we prove that the convergence of ANSC scheme is guaranteed.

Theorem 2: Regardless of the scheduling mechanisms implemented at the available RANs, the

ANSC scheme converges to the optimal solution of the optimization problem in (5).

Proof: See Appendix C.

We remark that the algorithm naturally converges when eTij(t+ 1) =

eTij(t), i.e., when the PDAs

are not willing to give away any fraction of their resource share on the RANs. However, due to

network dynamics, the available resource shares on the RANs as well as the PDAs traffic demand

may vary: this may trigger the PDAs to run the ANSC algorithm again and update their resource

allocation.

VI. SIMULATION RESULTS

We now evaluate the system performance and show the convergence behavior via simulation.

We compare the performance of the proposed ANSC scheme against two baseline algorithms:

the Enhanced Power-Friendly Access Network Selection (EPoFANS) algorithm, which implements

the scheme presented in [26], and the Autonomous Access Network Selection (AANS) algorithm

presented in [30]. To this end, we consider the network topology shown in Figure 2, where each

13



PDA can connect to four RANs with different characteristics. Specifically, RAN1 with a monetary

cost per bit "1 = 610

�6 Euro/bit and data rate r1 = 4 Mbps; RAN2 with "2 = 310

�6 Euro/bit and

r2 = 2.5 Mbps, RAN3 with "3 = 0 Euro/bit, r3 = 1.5 Mbps; RAN4 with "4 = 110

�6 Euro/bit and

r4 = 2 Mbps. Moreover, to emphasize the tradeoff between distortion, energy consumption, latency

and cost, it is assumed that ⇠j = 0, 8j 2M .

A PDA can capture 4096 samples of epileptic EEG data [31]. Each raw sample is represented

using 12 bits. As far as the channel dynamics are concerned, flat Rayleigh fading is assumed, with

Doppler frequency of 0.1 Hz. The other physical layer parameters over the available RANs are set

to: noise spectrum density N0 = �174 dBm, bandwidth W = 0.5 MHz, and path loss attenuation

� = 3.6 ⇤ 10�6.

First, in order to assess the importance of optimizing both network selection and the compression

ratio, Figure 3 depicts the value of the objective function in (5) as the compression ratio i varies,

when ↵i = �i = �i = �i = 0.25. One can clearly see that with increasing i, the length of

the transmitted data decreases; hence, initially the value of the objective function decreases as

well. However, beyond a certain value, distortion becomes dominant and the value of the objective

function starts increasing. Using a high compression ratio enables PDAs to decrease their load on

costly networks and stick to low-cost networks, as shown by Figure 3-(b). This further confirms

that, in order to optimize performance, it is important to jointly consider network selection and

adaptive compression.
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Fig. 3. Value of the objective function (a), and of Pij (network indicators), as the compression ratio, hence distortion, varies.

Next, we compare the performance of the proposed ANSC scheme against the two baseline

algorithms. The EPoFANS algorithm computes a score for each of the candidate RANs, using the

same utility function as Uij . It then selects the network with the lowest score as a target network

[26]. For sake of fairness, here we enhance EPoFANS with the adaptive compression optimization

in (14) to obtain the optimal value of compression ratio i. In the AANS algorithm, instead, we

fix i to a certain value, and determine the optimal RAN(s) by solving the optimization problem in

(10) [30]. Furthermore, we assess the ability of the tested schemes to adapt to network dynamics, in
14



particular, we assume that the number of PDAs that can access the available RANs varies over time,

as shown in Figure 4-(b). As expected, Figure 4-(a) shows that, when the number of PDAs decreases,

the resource share for a generic PDA grows and the value of the aggregate objective functions drops

for all schemes. The opposite occurs when new PDAs join the network. Interestingly, the network

quickly adapts to any change in the scenario by assigning more or less resources to the PDAs

and swiftly reaching convergence to the optimum. In all cases, however, ANSC provides the best

performance.

Figure 5 presents the value of different performance metrics when ANSC, AANS and E-PoFANS

are adopted, and the values of the corresponding network indicators Pij’s over the different RANs.

Here, we fixed the resource share available to each PDA to be Tij = Tj/Nj 8j. We remark that

E-PoFANS selects only one network (the one with the lowest score), thus in this case Pij takes

a value equal to either 0 or 1 (see Figure 5-(H)). Our scheme and AANS instead take different

candidate networks into account and select the optimal RAN(s) that minimize the PDA’s aggregate

objective, i.e., Pij can take any value between 0 and 1. It follows that PDAs can transmit using

different RANs simultaneously instead of being limited to one RAN only (see Figure 5-(E)). This

enables PDAs to decrease their load on costly networks and distribute it on low-cost networks,

which results in a reduced energy consumption and monetary cost (see Figure 5-(a),(b)).

(b)(a)

0 5 10 15 20 25 300

10

20

30

40

50

60

Time steps

N
um

be
r o

f p
ar

tic
ip

at
in

g 
us

er
s

 

 
RAN 2
RAN 1
RAN 3
RAN 4

0 5 10 15 20 25 30
0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

Time steps

O
bj

ec
tiv

e 
Fu

nc
tio

n

 

 
EPoFANS
AANS,  = 30%

AANS,  = 60%

ANSC

Fig. 4. Temporal evolution of the system performance: aggregate objective function (a) as the number of PDAs varies.

Importantly, unlike AANS that uses a fixed compression ratio, our scheme finds the compression

ratio corresponding to the optimal tradeoff between different performance metrics. Herein, we

consider two possible values of compression ratio for AANS: a low i, namely 30%, and a high i,

namely 60%. The former results to be lower than the optimal compression ratio obtained with ANSC,

thus it leads to more transmitted bits. As a consequence, AANS gives a higher energy consumption

and and monetary cost (see Figure 5-(a),(b)), as it increases the amount of data transmitted on costly

networks (see Figure 5-(F)). On the contrary, the latter value (i = 60%) is higher than the optimum.

Despite the decrease in transmission energy, monetary cost, and latency due to the smaller amount

15



of transmitted data (see Figure 5-(a),(b),(C)), AANS leads to a higher objective function because

of the large distortion (see Figure 5-(d)). Thus, from Figure 4 and Figure 5, we can conclude that

our ANSC scheme leads to the optimal tradeoff among the target performance metrics, while other

presented algorithms focus on one or more performance metric at the expense of the others.
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Fig. 5. A comparison of different performance metrics and network indicators under ANSC, AANS and E-PoFANS, with varying

number of PDAs.

Finally, Figure 6 depicts the convergence behavior of the ANSC scheme, compared to AANS.

In this case, we combine AANS with exhaustive search (AANS-ES) so as to iteratively solve the

optimization problem in (5) and find the optimal Pij’s for each i. Specifically, in AANS-ES,

initially i = 0, then it is incremented by a small quantity at every iteration. On the contrary, recall

that ANSC leverages the problem decomposition into two sub-optimization problems. Although the

mechanism exploited by ANSC is iterative, we observe that very few iterations are needed in order

to reach convergence, compared with AANS-ES.
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Fig. 6. Convergence behavior of the proposed ANSC scheme and of AANS with exhaustive search.
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VII. CONCLUSIONS

We considered a heterogeneous m-health system where multiple radio access technologies can

be simultaneously exploited by PDAs, in order to improve the performance of data transfer over

the wireless medium. We proposed a dynamic network selection mechanism that enables energy

efficient and high quality patient health monitoring by targeting jointly RAN selection and data

compression. In the proposed scheme, energy consumption, the application quality of service re-

quirements, and monetary cost are considered as main performance metrics and integrated into a

multi-objective optimization problem. We proved that the optimal solution to the problem can be

obtained analytically by decomposing the problem into two sub-problems. The two sub-problems

have low complexity and allow for a swift solution at the PDAs. Simulation results show that

our scheme significantly outperforms existing techniques, as well as its ability to adapt to varying

network conditions.
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APPENDIX

A. Proof of Theorem 1

The distortion term Di (see Eq. (1)) is not a function of Pij . Thus, the objective function in (5)

can be written as

min

Pij ,i

MX

j=1

PijUij +min

i

�iDi . (22)

By denoting with EM , CM and LM , the maximum energy expenditure, cost and latency, respectively,
we can rewrite Eqs. (2), (4) and (3), as:

Eij =

h
(1� i) j

⇣
BiN0wj

rijgii
(2

rij/wj � 1)

⌘
+ cj

i

EM

= (1� i) ¯Eij

Cij =

(1� i)Bi"j)

CM
= (1� i) ¯Cij

Lij =

(1� i)Bi

rijLM
+

⇠j
LM

= (1� i)¯Lij +
ˆLij

where ¯Eij , ¯Cij , ¯Lij , and ˆLij are independent of i (as well as Pij). By substituting (23) in (22), we
get

Z = min

Pij ,i

MX

j=1

Pij

⇣
↵i

¯Eij + �i ¯Cij + �i(¯Lij +
ˆLij)

⌘

�
MX

j=1

Piji(↵i
¯Eij + �i ¯Cij + �i ¯Lij)

(a)
= min

Pij

MX

j=1

Pij
ˆUij � min

Pij ,i

MX

j=1

Piji ¯Uij

= min

Pij

MX

j=1

Pij
ˆUij + max

Pij ,i

MX

j=1

Piji ¯Uij (23)

where in (a) ˆUij =

¯Eij +
¯Cij + (

¯Lij +
ˆLij) and ¯Uij =

¯Eij +
¯Cij +

¯Lij . Now, to minimize Z,

we need to minimize
PM

j=1 Pij
ˆUij and at the same time maximize

PM
j=1 Piji ¯Uij . However, to

maximize
PM

j=1 Piji ¯Uij , we need to maximize Pij
¯Uij , where ˆUij differs from ¯Uij by an additive

positive constant. Thus, this is conflict with the minimization of
PM

j=1 Pij
¯Uij . Thus, the only possible

solution is to minimize
PM

j=1 Pij
ˆUij with respect to Pij and maximize

PM
j=1 Piji ¯Uij with respect

to i. Accordingly, we will have:

Z = min

Pij

MX

j=1

Pij
ˆUij +max

i

MX

j=1

Piji ¯Uij

= min

Pij

MX

j=1

Pij
ˆUij �min

i

MX

j=1

Piji ¯Uij. (24)

This proves that the original optimization problem in (5) can be decomposed into two sub-optimization

problems, (10) and (14), which still lead to the optimal solution.
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B. Proof of Proposition 1

Initially, assume that P⇤
= 0 is the optimal feasible solution, where P⇤ is a vector of the variables

Pij’s, with corresponding objective value Z⇤
= 0. However, the values of Pij’s have to be increased

in order to satisfy the constraint in (6), i.e., the optimal solution must be P⇤ > 0. Next, recall

that ˆUij depends on the characteristics of RAN j (e.g., data rate, bandwidth, cost per bit, etc.). By

contradiction we can show that the optimum solution P⇤ is the one for which the values ˆUij’s are

minimum, i.e., P⇤
=

˜P such that ˜Uij = min

ˆUij 8j. Indeed, consider that P⇤
=

˜P + � instead.

In this case, ˆU(P ⇤
) > ˆU(

˜P) with ˆU(P) being the vector of the values ˆUij’s obtained for P, and

P⇤
ˆU(P⇤

) > ˜P ˆU(

˜P). This contradicts the assumption that ˜P+� is the optimal solution, hence the

only optimal solution is P⇤
=

˜P; any other feasible solution will have a strictly larger objective

value.

C. Proof of Theorem 2

The ANSC algorithm initially starts assuming an equal resource share among PDAs and no

compression i = 0. Since instead compression can be used, the actual resource share consumed

by any PDA will be less than or equal to this initial arbitrary value, as long as no new users join

the RANs (i.e., Nj is fixed). In other words, after obtaining the optimal i using (20), the length of

the transmitted data, hence the actual amount of radio resources consumed by the PDAs, decreases.

As a result, there will be some extra share of resources on certain RANs that were not available

at the previous iteration. No matter the scheduling mechanism used at the RANs to reallocate the

free resources, for any arbitrary PDA i, we will have:

Tij(t+ 1) � Tij(t), 8t, j. (25)

As a result, at each iteration the constraint in (6) becomes looser and looser, and the objective

function can be decreased by increasing the value of the Pij’s corresponding to the lowest Uij’s.

Thus, from (25) we can conclude that the objective function will always decay as the number of

iterations increases until convergence is reached, and this will happen regardless of the scheduling

mechanism implemented at the available RANs.
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