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ABSTRACT In this paper, we propose a data-driven approach to group users in a Non-Orthogonal Multiple

Access (NOMA) MIMO setting. Specifically, we formulate user clustering as a multi-label classification

problem and solve it by coupling a Classifier Chain (CC) with a Gradient Boosting Decision Tree (GBDT),

namely, the LightGBM algorithm. The performance of the proposed CC-LightGBM scheme is assessed via

numerical simulations. For benchmarking, we consider two classical adaptation learning schemes: Multi-

Label k-Nearest Neighbours (ML-KNN) and Multi-Label Twin Support Vector Machines (ML-TSVM); as

well as other naive approaches. Besides, we also compare the computational complexity of the proposed

scheme with those of the aforementioned benchmarks.

INDEX TERMS NOMA, multi-label classification, classifier chains, gradient-boosting decision trees, user

clustering.

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) [1] has been in-

tensively investigated in the context of (beyond) 5G wireless

networks. NOMA makes it possible to serve more than one

user in each resource block (RB), e.g., a time slot, subcarrier,

spreading code, or space. Consequently, NOMA exhibits a

higher spectral efficiency than orthogonal multiple access

techniques. This is particularly relevant for scenarios with a

massive number of connections requiring sporadic/low data-

rate transmissions: allocating one entire RB to each connec-

tion would be largely inefficient here. Besides, NOMA archi-

tectures can be easily combined with multi-antenna (MIMO)

techniques.

One of the main challenges with NOMA is how to group

the users sharing the same RB efficiently. Most of the litera-

ture on NOMA has traditionally considered the case of two

users per resource block, because it appears complicated to

be able to successfully separate more than two codewords

under imperfect channel state information conditions. In a

multi-antenna setting, this translates into two users per degree

of freedom, understood as RB per antenna. Equivalently, for

the MIMO scenario considered in this work, we propose

to group users into two subsets (clusters). To decode users,

we use a Linear Minimum Mean Square Error (LMMSE)

receiver in combination with Successive Interference Can-

cellation (SIC) [2]. The challenge here is that the number of

clustering solutions (CS) grows exponentially in the number

of users. This precludes the use of an exhaustive search

to identify the optimal CS in terms of sum-rate. We also

want to depart from greedy/heuristic approaches attempting

to e.g., minimize inter-cluster interference [3] or maximize

channel gain disparity [4] in order to accomplish the task in

a computationally-affordable manner. Instead, we design a

clustering strategy based on data-driven methodologies (see

e.g., [5], [6]) which generally offer a good trade-off between

performance and computational complexity. Specifically, we

model user grouping as a multi-label (ML) classification

problem where binary labels indicate the cluster to which

each user belongs. Admittedly, the so-called label power-

set method allows to transform a ML classification problem
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into multi-class classification one by combining entire label

sets into a single atomic label. However, the number of

such atomic labels increases exponentially in the number

of original labels (the curse of dimensionality problem),

which translates into unaffordable complexity. To avoid that,

a number of specific multi-label classification techniques

have been developed. Those techniques can be categorized

[7] into (i) transformation-learning methods, which decom-

pose the multi-label problem into several single-label ones

(binary relevance method, BM), or transform it into a label

ranking problem (e.g., via calibrated label ranking); and

(ii) adaptation learning methods, which modify single-label

algorithms so that they can directly process multi-label data:

multi-label k Nearest Neighbours (ML-kNN), Decision Trees

(ML-DT), or Twin Support Vector Machines (ML-TSVM).

Even if BM is widely used in the literature, it disregards

pair-wise label correlations (e.g., the fact that two specific

labels frequently/ seldom co-occur). Neglecting such side

information has a negative impact on the performance of the

individual classifiers. To circumvent that, Classifier Chains

(CC) [8] [9] can be used to link the individual classifiers

along a probability chain.

Contribution: In this work, we model user clustering as a

multi-label classification problem. Notably, this application

area is radically different from that of text categorization

(in multiple simultaneous topics) where multi-label learning

techniques originated [10]. Further, ML classification allows

to overcome the scalability problem found in our previous

user clustering work [11] which was based on the power

label set method. We solve the problem by coupling a boosted

decision tree (DT) for each single-label binary classifier (i.e.,

BM approach within transformation learning) with a clas-

sifier chain, to account for label correlation which emerges

from a pre-sorting of users. As for the boosting strategy, we

adopt a gradient-based (vs. bagging) approach [12], which

is able to enhance the limited generalization capability of the

(low-complexity) DTs used as base learners. To minimize the

computational complexity of the resulting Gradient Boosting

Decision Tree (GBDT), we implement it via Microsoft’s

LightGBM algorithm [13]. The overall approach will be re-

ferred to in the sequel as a Classifier Chain-based LightGBM

(CC-LightGBM). To the best of authors’ knowledge, the

combination of CC with LightGBM is novel and, further, it

has never been used to solve a user clustering problem for

MIMO NOMA. Besides, we assess the performance of CC-

LightGBM via numerical simulations and use two classical

adaptation learning algorithms from the literature, ML-kNN

[14] and ML-TSVM [15], as benchmarks.

II. SIGNAL AND SYSTEM MODEL

Consider the uplink of a multi-user SIMO system where one

Base Station (BS) equipped with NBS antennas serves K

single-antenna users. The received signal at the BS reads1

y = Hs+ n, (1)

where H = [h1,h2, ...,hK ] ∈ C
NBS×K is the channel matrix

with hk ∈ C
NBS standing for the (column) channel vector

associated to the kth user; vector s ∈ C
K accounts for the

transmit signal, with its elements fulfilling E
[

|sk|
2
]

= 1; ∀k,

that is, transmit power is identical for all nodes and no power

control mechanisms are in place. Finally, n ∈ C
NBS denotes

zero-mean i.i.d. additive white Gaussian noise of variance

σ2, namely, n ∼ CN (0, σ2INBS
). Nodes operate at a central

frequency fc and are uniformly distributed in the served cell.

We also assume that full Channel State Information (CSI) is

available at the BS. We adopt a geometric channel model with

Lp scattering paths that is widely used in the literature (see

e.g., [16]). Hence, for each column in the channel matrix H

we have that

hk =
1

ρk

Lp
∑

l=1

αk,la(θk,l), (2)

with ρk accounting for the path-loss and shadow-fading

associated to the k-th node. Consequently, we have that ρk =
√

(1 + dηk)/10
βk
10 , where dk is the node-to-BS distance, η

denotes the path-loss exponent (typically, η ∈ [2, 6]); and

βk ∼ N (0, σ2
β) is the spatially-uncorrelated shadow-fading

coefficient, with σ2
β typically ranging from 6 dB (free-space

propagation) to 10 dB (indoor environments) [17]. Further,

the coefficient αk,l of (2) is the complex gain of the l-th
path, with E

[

|αk,l|
2
]

= 1; and θk,l ∼ N (θ̄k, σ
2
θ) denotes

the angle-of-arrival (AoA) of the l-th path of node k, with

θ̄k associated to the actual location of such node. Vector

a(θk,l) ∈ C
NBS×1 accounts for the antenna array response.

For a uniform linear array, it reads

a (θk,l) =
[

1, e−j 2π
λ

d sin(θk,l), . . . , e−j(NBS−1) 2π
λ

d sin(θk,l)
]T

,

where λ is the signal wavelength, and d is the distance

between antenna elements.

A. MULTIPLE-ACCESS AND DECODING STRATEGIES

Let K denote the set of K active users in the system. We

partition K into two disjoint subsets (clusters) K1 and K2

of cardinalities K1 and K2, and such that K = K1 + K2.

The subset K1 is decoded first. After detection, the received

signal associated to those users is reconstructed and its con-

tribution removed from y (i.e., via Successive Interference

Cancellation, SIC [2]). After this interference cancellation

step, the nodes in the K2 subset are finally decoded. For

a Linear Minimum Mean Square Error (LMMSE) receiver,

the optimal beamformers w
(1,2)
k ∈ C

NBS associated to an

1Of course, the same signal model is valid in a multi-user MIMO setting
transmitting according to a purely spatial multiplexing technique, where K

would be the total number of transmit antennas.
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arbitrary node k in K1 or K2 read, respectively (see Section

8.3.3 in [18]),

w
(1)
k = (HHH + σ2INBS

)−1hk, (3)

w
(2)
k = (H(K1)H

H
(K1)

+ σ2INBS
)−1hk, (4)

where matrix H(K1) contains all the columns of H except for

those corresponding to nodes from subset K1. Based on (3)

and (4), one can easily prove that the instantaneous SINR for

an arbitrary node in the first/second subsets read, respectively

(see further [18]):

γ
(1)
k = hH

n (H(k)H
H
(k) + σ2INBS

)−1hk, (5)

γ
(2)
k = hH

n (H(K1∪{k})H
H
(K1∪{k}) + σ2INBS

)−1hk. (6)

Finally, the instantaneous sum-rate R can be expressed as

R =
∑

k∈K

log2(1 + l̄kγ
(1)
k + lkγ

(2)
k ), (7)

where lk ∈ {0, 1} is an indicator variable such that lk = 0 if

node k belongs to subsetK1, and 1 otherwise; and l̄k , 1−lk
denotes the opposite of lk.

B. PRE-SORTING OF USERS

Prior to detection, we assume that users are sorted in such

a way that the spatial correlation for consecutive users (i.e.,

users with successive indices after pre-sorting) is high. The

rationale behind is as follows: when the spatial correlation

is high, it becomes harder for the MIMO system to sepa-

rate those users. Hence, consecutive users are likely to be

assigned to different clusters (i.e., if lk = 0 then lk+1 = 1).

This strategy introduces additional constraints in the cluster-

ing process that, as we discuss in Section V ahead, improve

the performance of the proposed data-driven approaches. For

single-scattering LOS scenarios (i.e., Lp = 1), this can

be readily accomplished by (i) estimating their respective

AoAs (e.g., by means of spectral estimation methods such

as minimum variance or MUSIC [19]); and (ii) sorting them

in ascending order of their AoAs. For the more general case

Lp > 1, one can first identify the two users out of the K
active users exhibiting the highest correlation by checking the

alignment of the vector channel responses (2) as in [6]; and

then subsequently include the user with the highest alignment

with the last one (that is, in a greedy manner).

III. FORMULATION AS A MULTI-LABEL
CLASSIFICATION PROBLEM
Our goal is thus to define a partition of the set K of K nodes

into two disjoint subsetsK1 andK2. such that the sum-rate of

a MIMO-NOMA system based on a LMMSE receiver with

SIC is maximized. In the sequel, we will refer to each of

those possible node partitions as a Clustering Solution (CS).

More formally, the optimization problem can be formulated

as follows:

max
{l1,... lK}

∑

k∈K
log2(1 + l̄kγ

(1)
k + lkγ

(2)
k ) (8)

s.t. lk ∈ {0, 1} for k = 1 . . .K

The task of selecting the optimal CS can be modeled as a

supervised learning problem. Specifically it can be cast into

a multi-label binary classification task where:

• The input is a vector t = [t1, . . . , tNf
]
T ∈ R

Nf×1 of fea-

tures formed by stacking the real and imaginary parts of

the entries in the channel matrix H, with Nf = 2KNBS.

• The output is a K × 1 binary vector l = [l1, . . . , lK ]
T

of labels where the kth element indicates the cluster the

kth user belongs to.

A. DESCRIPTION AND GENERATION OF THE TRAINING

DATASET

The training dataset comprises a total of Ntr examples

stacked in a training matrix T = [t1, . . . , tNtr
] ∈ R

Nf×Ntr

as an input, where the subscript denotes the example index.

And, as an output, a binary matrix L = [l1, . . . , lNtr
] ∈

N
K×Ntr which gathers the corresponding labels for each

example. The generation of the training dataset is given in

Algorithm 1.

Algorithm 1 Generation of the training dataset

1: Inputs: K, Ntr, η, σβ , σθ.

2: Generation of the channel matrices H in (1) for each of

the Ntr realizations of the system scenario (node loca-

tions and {dk}
K
k=1, {θ̄k}

K
k=1, path-loss, shadow-fading).

3: Computation of the corresponding sum-rate as per (7) for

each of the NCS = 2K clustering solutions.

4: Let the label of each example be the set of K binary

variables li, i = 1, . . . , NCS associated to the CS

yielding the highest sum-rate, which is determined via

exhaustive search.

To avoid significant bias in the training, features are nor-

malized prior to their use by the learning scheme, namely,

tij ← (tij − Ei[tij ]) / (maxi [tij ]−mini [tij ]), with Ei[·]
denoting the row-wise empirical average in matrix T.

B. ANALYSIS OF LABEL CORRELATIONS

Figure 1 below depicts the pair-wise Pearson correlation

coefficients between the labels of a training dataset generated

according to the above procedure (for the computations, the

binary labels were mapped onto the {−1, 1} set). As dis-

cussed in Section II-B, users are pre-sorted in an increasing

order of their angles of arrival (Lp = 1 case). Off-diagonal

elements in Fig. 1 (left) confirm that, for the K = 6 scenario,

label correlation is quite high for consecutive users (the ones

which are spatially closer), as conjectured in Section II. The

fact that correlation takes negative values indicates that in

roughly 45% of the cases, consecutive users are assigned to

different clusters. On the contrary, label correlation decreases

rapidly for non-consecutive ones. In Fig. 1 (right), we ob-

serve a stronger correlation for non-consecutive users since,

in a scenario with K = 9 users, they are spatially closer.

Such empirical observations substantiate the need for in-

troducing specific mechanisms to exploit correlation in the
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FIGURE 1. Matrix with pair-wise label correlation coefficients for a system
with K = 6 (top) and K = 9 (bottom) users sorted according to increasing
angles-of-arrival (NBS = 4 antennas) .

aforementioned single-label classification problems, as we

discuss next.

IV. CC-LIGHTGBM: CLASSIFIER CHAINS WITH LIGHT
GRADIENT BOOSTING MACHINE
In this section, we provide an overview of the two algorithms

that will be combined to solve our multi-label classification

problem efficiently. On the one hand, a Classifier Chain

(CC) will be adopted to exploit label correlation. On the

other, Gradient Boosted Decision Trees (GBDT) and, more

specifically, the LightGBM algorithm will be used to build

the K single-label binary classifiers.

A. CLASSIFIER CHAINS (CC)

The Classifier Chain model (CC) involves K binary classi-

fiers {C1, . . . , CK} linked along a chain. Each classifier Ck is

responsible for learning and predicting the binary association

of label lk given the original feature space t described in

Section III (i.e., entries in the channel matrix), augmented

by all prior binary relevance predictions in the chain, namely,

l1, . . . , lk−1, for k ≤ 2. The augmented feature space xk can

thus be defined as

xk =

{

t , k = 1

[tT , l1, . . . , lk−1]
T , k = 2, . . . ,K.

(9)

This augmented feature space will be used by each classifier

Ck in the chain in order to compute

p̂(xk) = Pr(lk = 1|xk), (10)

namely, the conditional probability of lk = 1 given xk. Using

this construction, label information is propagated among

classifiers and, hence, their correlation is explicitly taken

into account. Even if, on average, K/2 inputs are added to

each individual classifier, in general this is a small number

in comparison with the original number of features (Nf =
2KNBS). It is important to note that the K single-label

classification problems are solved sequentially and, thus,

the specific ordering of the chain may have a remarkable

impact on performance. Ensemble Chain Classifiers [8] allow

to perform an averaging over orderings and training data

subsets. However, for our scenario with pre-sorted users the

baseline CC yields excellent performance results (see Section

V ahead), which allows to avoid the additional computational

complexity that ensemble methods entail.

B. GRADIENT BOOSTING DECISION TREES (GBDT)

Here, we describe how to build each of the aforementioned

K single-label binary classifiers Ck. Decision trees (DT) are

known to be powerful tools for classification and regression

tasks. The main advantages are their low complexity once

trained/constructed, and their understandability from a hu-

man viewpoint (a sequence of split decisions). To construct

a DT, the root node is first divided (split) into two children

nodes as a function of a given feature in the augmented

feature space xk of (9) (e.g., xk,4 in Fig. 2, namely, the

fourth feature in xk), and a splitting point (equal to 10, in

this example) to be identified, see next paragraph. The entire

training dataset, which is initially associated to the root node,

is split accordingly: all records with e.g., xk,4 < 10 go to the

left node, otherwise to the right node. The process is iterated

with the children nodes. If a node does not split into further

nodes, then it is called a leaf node (grayed nodes in Fig. 2).

To grow a tree, the main tasks are thus: (i) to identify

the optimal feature to split a node; (ii) to determine the

splitting points, in particular for continuous features; and,

in leaf-wise (vs. level-wise) strategies, (iii) to decide which

node to split next. Tasks (i) and (ii) typically entail an

exhaustive search over features/splitting points for each node.

As for (iii), the goal when splitting a parent node is to

increase the homogeneity of the records in the children

nodes and, ultimately, in the leaves. This means that, in

classification problems, records in children nodes should

belong to fewer classes; and for regression ones, they should
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FIGURE 2. Sample decision tree for binary classification with J = 3 leaf nodes each associated to a disjoint region.

FIGURE 3. Gradient-boosting architecture for binary classification with M

base learners.

have similar output values. Typical homogeneity measures

include Gini gain (i.e., reduction of Gini Impurity Index) or

the Information Gain (namely, decrease of entropy) between

the parent and children nodes, for classification; or decrease

of variance/MSE-related measures, for regression (see e.g.,

[20]). Those measures help determine which node should

be split next, in general in a greedy manner (e.g, the node

resulting in the largest information gain). Node splitting stops

when the number of tree levels reaches a pre-defined maxi-

mum value, the number of records in a node is below some

threshold, or the records in a node are homogenous enough

(e.g., low impurity index). Leaf nodes, each accounting for a

disjoint region Rj of the feature space, determine the output

of the decision tree for any new example in the test dataset.

For classification, this is accomplished by taking the class

with the highest probability in that particular leaf/region (see

Fig. 2). For regression, on the contrary, the output associated

to each leaf is given by some average (e.g., mean, median) of

the output values of the examples in the training dataset.

Boosting is a method of converting an ensemble of weak

(or base) learners such as DTs into a strong learner. Sub-

sequent trees help classify observations that are not well

classified by the previous ones. And the prediction of the final

ensemble model is the weighted sum of the predictions made

by the DTs. In boosting, each new tree is a fit on a modified

version of the original data set. In Gradient Boosting Deci-

sion Trees (GBDT), this modified version follows from the

gradient of the loss function for the ensemble model.

To maximize binary classification accuracy, one needs to

minimize the cross-entropy loss (also referred to as log-loss

or deviance in the literature) for all the examples in the

training dataset, namely,

Lk =

Ntr
∑

i=1

Lk (lk,i, p̂(xk,i)) (11)

= −
Ntr
∑

i=1

lk,i · log (p̂(xk,i)) + (1− lk,i) · log (1− p̂(xk,i))

with xk,i denoting the i-th example of the augmented feature

space defined in (9); lk,i accounting for the k-th label asso-

ciated to the i-th example, as defined in Section IV-A; and

p̂(xk,i) standing for the a posteriori probability in (10). For

brevity, in the sequel we will omit the user/classifier index k
in the loss function and its parameters. A common approach

(see Fig. 3) is to build an ensemble model and train it to

compute the log-likelihood ratio, namely,

F (x) = log

(

Pr (l = 1|x)

Pr (l = 0|x)

)

= log

(

p̂(x)

1− p̂(x)

)

, (12)

such that the corresponding label can, in turn, be estimated

as l̂ = u (F (x)), with u(·) standing for the Heaviside

step function. A boosting strategy approximates F (x) by an

additive expansion of the form

F (x) =
M
∑

m=0

βmhm(x), (13)

where βm denotes the m-th expansion coefficient; and func-

tion hm(x) = h(x;am) is the corresponding base learner,

with am denoting its parameter set (optimal splitting features,

splitting points, average output value for each leaf, etc; see

Section IV-B). Notice that, despite that the resulting GBDT

solves a classification problem, the base learners hm(x) turn

out to be regression trees with real-valued outputs whose

summation yields2F (x). The coefficients βm and the param-

2Classification trees, each providing a prediction of p̂ cannot be added up
to get a useful quantity.
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eters am are jointly fit to the training data in a forward stage-

wise manner, as we explain next. Starting from an initial

guess F0(x), for m = 1, . . . ,M we thus have

Fm(x) = Fm−1(x) + βmhm(x), (14)

as Fig. 3 illustrates. For an arbitrary differentiable loss func-

tion L(l, F ), this problem can be approximately solved with

a two-step procedure [12]. First, function hm(x) is fit to

the current pseudo-residuals given by the gradient of the

preceding loss function Fm−1(x), namely,

rm,i = −

[

∂L(li, F (xi))

∂F (xi))

]

F (x)=Fm−1(x)

(15)

= li ·
e−Fm−1(xi)

1 + e−Fm−1(xi)
− (1− li)

eFm−1(xi)

1 + eFm−1(xi)
,

with i denoting the training example index. And where, in

the second equality, we have used the change of variables

p̂(x) = 1
1+e−F (x) resulting from equation (12). This step is

followed by a single parameter optimization for the step size

βm based on the general criterion L defined in (11). With

regression trees as base learners, as it follows from Section

IV-B, recursion (14) can be approximately (and efficiently)

computed region-wise [12] as

Fm(x) = Fm−1(x) +
J
∑

j=1

νm,j✶[x ∈ Rm,j ], (16)

where ✶[·] is the indicator function, Rm,j denotes the j-th
disjoint region of the m-the tree (base learner); and νm,j , the

output value associated to such disjoint region (leaf), is given

by

νm,j =

∑

xi∈Rm,j
rm,i

∑

xi∈Rm,j
(li − rm,i)(li − rm,i − 1)

. (17)

As for the initial guess F0(x), we let it be

F0(x) = argmin
ν

Ntr
∑

i=1

L(li, ν) = log

(

l̄

1− l̄

)

, (18)

where l̄ , 1
Ntr

∑Ntr

i=1 li can be interpreted as the a priori

equivalent to probability p̂(x) in (12) since, clearly, l̄ =
Pr (l = 1).

C. LIGHTGBM: A SCALABLE GBDT

One major difficulty with GBDTs is their limited scalability

when the feature dimension is high and/or the training dataset

is large. This stems from the fact that, for each feature, the re-

gression tree in each base learner needs to scan every example

of the dataset to estimate the information gain of all possible

split points. This, of course, is computationally intensive.

To alleviate this, LightGBM [13] introduces two novel tech-

niques, namely, (i) Gradient-based One-Side Sampling, by

which only examples in the dataset with larger gradients (and

just a fraction of those with smaller gradients) are used for the

information gain computations needed to grow the tree; and

(ii) Exclusive Feature Bundling, which reduces the number

Parameter Value

Size of the test dataset, Ntst 2000

Number of BS antennas, NBS 4

Number of scattering paths, Lp 1

Distance between antenna elements, d 0.5λ
Standard deviation of the noise, σ 1

Standard deviation of the Lognormal fading exponent, σα 7

Path-loss exponent, β 3.66

TABLE 1. Main parameters used in computer simulations.

of effective features by bundling together those which rarely

take non-zero values (i.e. are mutually exclusive). Besides,

LightGBM consumes very few memory resources compared

to other baseline classifiers in the literature [13].

V. COMPUTER SIMULATION RESULTS
In this section, we assess the performance of the pro-

posed CC-LightGBM scheme for a system scenario with

one multi-antenna Base Station and K single-antenna ter-

minals/users (uplink). The main parameters used for com-

puter simulations can be found in Table 1. For LightGBM,

we used Microsoft’s implementation as a Python library

(https://lightgbm.readthedocs.io). Performance is measured

in terms of (i) Sum-Rate Loss (SRL), that is, the loss (in

percentage) with respect to the sum-rate achievable by the

optimal clustering solution which is found via exhaustive

search; and (ii) Hamming Loss (HL) for multi-label prob-

lems, which can be defined as [9, Eq. (5)]

HL ,
1

NtstK

Ntst
∑

i=1

K
∑

k=1

✶

[

lk,i 6= l̂k,i

]

. (19)

The HL allows to evaluate, for each example in the test

dataset, the fraction of wrongly classified labels (users) to

the total number of labels3. Notice that the minimization of

the cross-entropy loss, the score function adopted in Section

IV-B for each individual classifier, along with the CC frame-

work results into the minimization of the HL.

A. PERFORMANCE OF CC-LIGHTGBM

First, in Fig. 4 we analyze the performance of the CC-

LightGBM as a function of the number of the base learners

(M ) used. This is accomplished for a range of learning

rates4 λr ∈ {0.1, 0.05, 0.01}, while keeping other hyper-

parameters to their default values. For an increasing M ,

the residuals to which subsequent learners are fit become

smaller. Consequently, the resulting regression tree is able to

generate increasingly complex decision regions. As a result,

the HL (i.e., the percentage of misclassified users) depicted

in Fig. 4b decreases and, hence, so does the SRL in Fig. 4a.

Interestingly enough, the SRL values are lower than those

3This different from the so-called 0/1 loss, where a prediction is deemed
to be correct if and only if all its label predictions are correct.

4After computing the optimal step size βm in (14), it is further shrunk
(multiplied) by a λr factor since, empirically, it was found that small values
(λr ≤ 0.1) lead to much smaller generalization error [12]
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of the HL (e.g., for M = 105, HL equals 0.13 whereas

SRL is close to 1%). This is due to the fact that, even if one

user/few users have not been assigned to the right cluster5, the

sum-rate for the wrong clustering solution can still be quite

high. The reason is two-fold: (i) the LMMSE receiver can

accommodate one extra user in a cluster at the expense of

some SINR penalty; and (ii) we have assumed that users in

the first subset can always be reliably decoded irrespectively

of their SINR (i.e., no error propagation among subsets).

Further, Fig. 4a reveals that the SRL reaches a floor, which

depends on the size of the training dataset as we discuss in the

next paragraph, when the number of classifiers is in the range

of 104 to 105. However, from Fig. 4c, the CPU time rapidly

increases beyond M = 104. Consequently, for this setting it

is advisable to use a number of base learners in the range of

M ∈ [104, 105]. Finally, we observe that lower values of the

learning rate λr result in a slower decrease of both the HL

and the SRL.

Complementarily, Fig. 5 depicts the SRL and HL as a

function of the number of examples in the training dataset

Ntr. As expected, larger training datasets result in lower

losses. Specifically, the SRL decreases from 4.9% to roughly

1.1% when the number of examples increases from 5 · 103 to

roughly 105. And, accordingly, the HL decreases from 0.21
to 0.135.

B. ALGORITHM BENCHMARKING

Next, we benchmark the proposed scheme with other ap-

proaches specifically tailored to multi-label classification

problems, namely,

• Multi-label k Nearest Neighbours (ML-KNN) [14]:

As its single-label counterpart, ML-KNN first identifies

the k nearest neighbours Nx in the training set for a

given (new) test example x. Then, it counts how many

times each label (user) can be found in Nx. Finally, a

decision is made on a per-label basis. Specifically, ML-

KNN lets the l-th label in the test example be equal

to 1 if its a posteriori probability given the number of

occurrences of such label in Nx is larger than that of

being equal to 0 (i.e., Maximum A Posteriori princi-

ple).The a posteriori probabilities can be estimated from

the training set (based on counting) and the Bayes rule.

• Multi-label Twin Support Vector Machine (ML-

TSVM) [15]: To capture the multi-label information

in the data, ML-TSVM builds a set of K proximal

hyperplanes (i.e., as many as labels/users) such that each

hyperplane is as close as possible to the instances in

the training set with the lth label, and as far as possible

from the others. The multiple non-parallel hyperplanes

can be found by solving a set of quadratic programming

problems. For simulations, we use a Gaussian (radial-

based) kernel function. The optimal hyperparameters,

namely, the variance of the Gaussian kernel ψ and the

5Notice that for HL = 0.13 and K = 10, roughly one user per example
is misclassified, on average.
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FIGURE 4. Performance of CC-LightGBM in terms of: (a) Sum-rate loss; (b)
Hamming loss; and (c) CPU time on a 1.8 GHz Intel Core i5 CPU with a 16 GB
1.6 GHz DDR3 RAM; as a function of the number of base learners M

(K = 10 users, Ntr = 105)

regularization parameter c ∈ R
+ were found via grid

search in the [2−6, 26] range.

We also consider three additional naive strategies as bench-

marks: (i) the so-called ’1010 strategy’, a low-complexity

approach in line with our discussions in Section II-B which

assigns consecutive users to clusters in an alternating manner

(i.e., alternatively, to cluster 1 or 0); (ii) ’random’ user

clustering; and (iii) ’CC-LightGBM wo/sort’, that is, CC-

LightGBM without user pre-sorting.

Figure 6 depicts the SRL as a function of the number of
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FIGURE 5. Performance of CC-LightGBM in terms of: (a) Sum-rate loss; and
(b) Hamming loss as function of the training size Ntr (K = 10 users,
M = 105 base learners).

active users. The proposed CC-LightGBM scheme clearly

outperforms all the benchmarks and naive strategies for the

whole range of K values. Moreover, the gap is wider when

the number of users is high. For K = 12 in particular,

CC-LightGBM exhibits a SRL as low as 2%, whereas the

loss for ML-KNN with an optimal number of neighbours

is roughly 12% (one order of magnitude higher) or 30.3%
for ML-TSVM (15 times higher). Such a large gain stems

from (i) the gradient-boosting mechanism embedded in CC-

LightGBM, that enhances accuracy in particular for largeM ;

and (ii) the fact that the classifier chain explicitly models

and leverages on inter-label (user) correlation, whereas this is

simply ignored by ML-kNN and ML-TSVM. Moreover, the

gain with respect to random user clustering is tremendous.

For K = 6 users, the sum-rate degradation for random

clustering is 20%; and forK = 12 users, it reaches 40%. The

explanation for this behaviour can be found in Fig. 7 below.

Even if the cost function in the optimization problem (9) is

multi-modal in all cases, the sum-rate difference between

maxima and minima is larger for increasing K (and so is

loss when performing a random selection). All the above,

of course, justifies the adoption of data-driven approaches to

solve the user clustering problem.

Again in Fig. 6, the gap between the CC-LightGBM

5 6 7 8 9 10 11 12 13
0

10

20

30

40

50

60

K

%

Sum-rate loss

CC-LightGBM ML-KNN (k = 3)

MLTSVM ML-KNN (k = 1)
Random 0101 strategy

CC-LightGBM wo/sort

FIGURE 6. Sum-rate loss performance of the various approaches for a
varying number of users.

Algorithm Training Complexity Test Complexity

ML-kNN O(NfN
2
tr +KkNtr) O(NfNtst +Kk)

MLTSVM O(KSNtr) O(KNfNtst)
CC-LightGBM O(KBM log

2
(L)Ntr) O(KM log

2
(L)Ntst)

Random −− O(Ntst)
0101 strategy −− O(Ntst)

TABLE 2. Computational complexities of CC-LightGBM and several
benchmarks.

curves with and without user pre-sorting evidences the gain

associated to the CC mechanism itself. Without pre-sorting,

labels/users are totally uncorrelated. Consequently, the esti-

mates from previously classified users provide no side in-

formation to be exploited by the CC. Specifically, for CC-

LightGBM wo/sort and K = 12 users, its SRL is roughly

9%, this meaning that the 7% extra gain should be attributed

to the CC mechanism.

Finally, the behaviour exhibited by the lazy ’0101’ strategy

deserves some explanations. For a reduced number of users,

its performance is comparable to that of the ML-TSVM or

ML-kNN approaches. For large K, on the contrary, the 0101

strategy performs as poorly as random clustering. Figure 7

provides some insights into such behaviour. Whereas for

K = 6 users the 0101..01 clustering solution or its symmetric

solution (see vertical dashed lines in the plots) often provide

the global maximum of the sum-rate various realizations, this

is no longer the case for K = 12 users. Hence, in this case,

there is no point in getting ’locked’ to a given solution. This

extent is further confirmed in the histogram of Fig. 8 where

the peaks associated to the 0101..01 and 1010..10 clustering

solutions for K = 6 (top) do not exist for K = 12 (bottom).
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FIGURE 7. Sum-rate associated to each clustering solution for several
examples/realizations (colors) and varying number of users: K = 6 (top),
K = 9 (middle) and K = 12 (bottom).

C. COMPUTATIONAL COMPLEXITY ANALYSIS

In Table 2, we report on the computational complexities

(for both the training and test phases) of the CC-LightGBM

scheme and those of the various benchmarks. For ML-kNN

in particular, the corresponding training and test complex-

ities can be found in [7], with k denoting the number of

nearest neighbours (a hyper-parameter) and Nf = 2KNBS

accounting for the number of features in the input vector (see

definition in Section III).

As for MLTSVM, in the training phase it needs to solve

K sub-quadratic programming problems (one for each label)

by using the successive over-relaxation (SOR) solver. The

complexity of the SOR solver is on the order of Ntr per

iteration. If S denotes the number of iterations of SOR, then

the complexity of solving the k-th subproblem is O(SNtr).
Therefore, the total training complexity of MLTSVM reads

O(KSNtr). The test complexity reduces to computing the
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FIGURE 8. Histogram of optimal clustering solutions for a varying number of
users: K = 6 (top), K = 9 (middle) and K = 12 (bottom).

distance of eachNf-dimensional instance to each constructed

hyperplane. Therefore, the test complexity of MLTSVM is

O(KNfNtst).

Next, let ftrain and ftest denote the training and test com-

plexities of LightGBM, respectively. According to [7], Clas-

sifier Chains have a computational complexity ofO(K ·ftrain)
for training and O(K · ftest) for testing. In those expressions,

B ≪ (Nf +K) stands for the number of bundles used by the

Exclusive Feature Bundling mechanism of LightGBM that,

as discussed in Section IV-B, is in charge of re-grouping

mutually exclusive features of the (Nf + K)-dimensional

augmented feature space. Next, we need to determine the

complexities of LightGBM in the training and test stages.

Let L denote the number of leaf nodes, then the depth of

the tree is on the order of log2(L) levels. In the training

phase, all the Ntr examples need to be assigned to one of

the leaves and, to that aim, the optimal splitting variables

(out of the B bundles) and splitting points must be found

via exhaustive search. Hence, the complexity of constructing
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one tree is O(NtrB log2(L)). Considering M trees, we have

that ftrain = O(NtrBM log2(L)) and, hence, the training

complexity of CC-LightGBM yields O(KBM log2(L)Ntr).
In the test phase, one just needs to determine the target leaf

node for each example in the dataset. This, on average, entails

log2(L) comparisons against the optimal splitting variables

and points identified in the training phase. Consequently,

the test complexity is much lower. Specifically, we have

that for a scenario with M weak learners, the computa-

tional complexity readsO(KM log2(L)Ntst). As for the two

naïve approaches (random and ’0101’ strategy), they only

have a test complexity and it can be easily shown to be

O(Ntst). Finally, since the complexity of pre-sorting the users

is negligible compared to training and test complexities,

CC-LightGBM and CC-LightGBM without sorting have the

same complexity.

We start by comparing the corresponding training com-

plexities. To that aim, it should be noticed from [21] that the

number of SOR iterations needed in MLTSVM is typically

on the order of Ntr. Consequently, the training complexity of

MLTSVM can be approximated by O(KN2
tr ). This means

that, unlike the ML-kNN and MLTSVM approaches, the

training complexity of CC-LightGBM grows linearly in (not

with the square of) the size of the training dataset. Note also

that, even if in Fig. 6 the number of trees was relatively

high (M = 104), it could be substantially reduced with a

moderate performance penalty. Specifically, for M = 100
(and K = 10, λr = 0.1) the SRL in Fig. 4 is still below

4%. In other words, for M = 100 CC-LightGBM would

still outperform the other two approaches. As for the test

complexity, ML-KNN exhibits the lowest one, followed by

MLTSVM and CC-LightGBM. The complexity of MLTSVM

vs. CC-LightGBM will ultimately depend on the specific

values of Nf and M log2(L) (see expressions in Table 2).

Nonetheless, for the parameter set we used in Section V-B

(i.e., Nf = 80 for K = 10, NBS = 4; and M = 104), the

CPU time that CC-LightGBM takes is substantially lower

than that of MLTSVM. This is mostly attributed to the fact

that the basic operation performed by the decision trees

of CC-LightGBM (comparison against splitting thresholds)

is less computationally intensive than the computation of

distances to hyperplanes which are required by MLTSVM.

Last, the complexities exhibited by the naïve approaches are,

unsurprisingly, the lowest ones. On the one hand, no training

is involved. On the other, the prediction cost per test example

is negligible and the overall cost scales linearly in the size of

the test dataset.

VI. CONCLUSIONS
In this paper, we have formulated user clustering in a

MIMO NOMA setting as a multi-label classification prob-

lem. To solve it, we have adopted a transformation learning

(data-driven) approach to avoid the exponential complexity

of exhaustive search methods. Specifically, we have used

a Gradient-Boosting Decision Tree (LightGBM) for each

single-label classifier coupled with a Classifier Chain (CC) to

account for label correlation stemming from user pre-sorting.

Computer simulation results reveal that, for a number of base

learners in the 104 − 105 range, the sum-rate and Hamming

losses of LightGBM can be minimized while avoiding a

rapid increase of CPU time. The proposed CC-LightGBM

scheme clearly outperforms all the benchmarks and naive

strategies for the whole range of the number of active users.

For K = 12 users in particular, its sum-rate loss is one order

of magnitude/15 times lower than that of the ML-kNN/ML-

TSVM algorithms, respectively. Moreover, the gain with re-

spect to random user clustering (and the lazy ’1010’ strategy

for large K) is tremendous. With respect to the case without

user pre-sorting, the CC mechanism achieves a 7% extra gain.

From the computational complexity analysis, we learnt that

the training complexity of CC-LightGBM grows linearly in

the size of the training dataset. As for the test phase, its

complexity is potentially higher than that of ML-KNN and

MLTSVM, yet this ultimately depend on the parameter set.

However, the actual CPU time is also affected by the fact that

the basic operation in CC-LightGBM is less computationally

intensive than those of the benchamrks.
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