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ABSTRACT

Understanding the content of user’s image posts is a partic-
ularly interesting problem in social networks and web set-
tings. Current machine learning techniques focus mostly on
curated training sets of image-label pairs, and perform im-
age classification given the pixels within the image. In this
work we instead leverage the wealth of information available
from users: firstly, we employ user hashtags to capture the
description of image content; and secondly, we make use of
valuable contextual information about the user. We show
how user metadata (age, gender, etc.) combined with image
features derived from a convolutional neural network can be
used to perform hashtag prediction. We explore two ways
of combining these heterogeneous features into a learning
framework: (i) simple concatenation; and (ii) a 3-way mul-
tiplicative gating, where the image model is conditioned on
the user metadata. We apply these models to a large dataset
of de-identified Facebook posts and demonstrate that mod-
eling the user can significantly improve the tag prediction
quality over current state-of-the-art methods.

Categories and Subject Descriptors

I.2.6 [Learning]: Connectionism and neural nets; I.5.1 [Models]:
Neural nets; I.5.4 [Applications]: Computer vision

Keywords

Social media, user modeling, deep learning, hashtagging,
large scale image annotation

1. INTRODUCTION
Hashtags (single words, abbreviations or word concate-

nations, prefixed by the # symbol) commonly accompany
online image content, most notably on social media plat-
forms. Far richer than conventional semantic labels, they
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provide an incredibly varied and nuanced method of describ-
ing images. Some hashtags describe precise labels (#puppy,
#craftbeer). Others contain information about the feelings
and intent of the user, e.g. reflecting happiness or sadness
(#awesome, #whyme), or refer to some event in the person’s
past, present or future (#happyhour, #babyshower). There
are also a wide variety of popular hashtags that convey ab-
stract ideas, and are not necessarily tied to particular im-
age content (#nofilter, #sundayfunday). Common hash-
tags that we reference in this paper are defined in Table 7.
Hashtags capture the ever-changing distribution of user in-
terests: new hashtags that have never occurred before are
constantly being created in response to recent events, prod-
ucts or newly famous people, some of which can become
popular very quickly. Finally, a given user, as well as hav-
ing particular biases of the kind of images they will upload,
also have biases of the kind of hashtags they choose to write.
Figure 1 shows examples of hashtagged images uploaded to
Facebook.

Modern systems for understanding web content make ex-
tensive use of machine learning methods for image recog-
nition. In particular, deep learning methods such as con-
volutional networks have become very popular due to their

#lmao

#notevenmad

#whatcanyoudo

#toqueseason

#camping

#vancouverisland

#puppy

#archer

#goodluckalgorithm

#notmymathin-

thebackground

#farm

#dog

#toronto

#craftbrew

#OCW2014

Table 1: Examples of hashtagged images. Images used with
owners permission.



impressive performance [7]. Training such models has typ-
ically depended on large sets of manually annotated data
(e.g. Imagenet [1]), which is time-consuming and arduous to
obtain. Further, such data ignores several aspects of image
understanding that are of particular interest to web users:
(i) their focus is on precise physical description so aspects
such as sentiment are not addressed; (ii) the data distribu-
tion differs from online data and it is also unlikely to adapt
quickly to changing user interests; and (iii) labels are inde-
pendent of the users who originally authored the images or
image posts (e.g. they are labeled by a Mechanical Turk
worker).

In this work, we consider the vast amount of image con-
tent on the web where users have provided hashtags as a
powerful, alternative training data source. In addition to
generating very large amounts of labeled data compared to
a manually curated set, we can also directly train on the
actual data we wish to capture, rather than one whose dis-
tribution differs from user’s interests. We thus define our
training task as follows: we wish to predict the hashtags
for a given image uploaded by a given user. The learning
techniques we employ thus contain feature representations
modeling both the image via pixels and the user in the form
of metadata. Our hypothesis is that the combination of
these sources provides useful information.

We consider several possible architectures based on em-
bedding models. Embeddings are vector representations of
images, metadata or text. Embedding models have been
successfully used in a variety of contexts such as large scale
image annotation [17], zero-shot learning of image categories
[2] and hashtag prediction for text posts [18]. An embedding
model maps inputs and hashtags into a common embedding
space. For a given input, hashtags are ranked according
to the dot product between hashtag embedding vectors and
the image embedding vector. For the image features, a pre-
trained convolutional neural network acts as a feature ex-
tractor, converting a raw input image into a concise image
descriptor. We present three different methods of embed-
ding inputs. The simplest method learns a linear mapping
from image descriptors to embedding space. We then intro-
duce two different methods of incorporating user metadata
into the embedding process: (i) simple concatenation; and
(ii) a 3-way multiplicative gating, where the image model is
conditioned on the user metadata. In our experiments we in-
corporate the user’s gender, age and city into the prediction.
Our proposed methods are general, robust and scalable. As
such, they can be combined with a variety of machine learn-
ing approaches and also deployed in large-scale real-world
situations.

Image hashtag prediction has a variety of applications.
For example, social media sites could use such a system
to recommend hashtags to users as they upload image con-
tent. They can also be used for image search or for recom-
mendation and ranking images based on content. Hashtags
can also fulfill other roles such as disambiguating synonyms
(e.g. jaguar #car vs jaguar #bigcat), or identifying enti-
ties (#nyc). In our experiments we apply our models to a
large dataset of de-identified Facebook posts and demon-
strate that modeling the image and user can significantly
improve the tag prediction quality over current state-of-the-
art methods.

2. RELATED WORK
As mentioned in Section 1, embedding models have been

used in a variety of domains. Of particular relevance to our
work is Wsabie, a supervised embedding approach that has
been used for large scale image annotation and NLP tasks
[17, 3]. Two of the models we present in Section 3 have a
linear embedding function based on the Wsabie model and
all our models are trained with the ranking loss presented
in this work.

The most sophisticated of our proposed embedding models
incorporates user information via a three-way tensor prod-
uct. Multiplicative three-way connections have been used
as a feature gating mechanism in restricted Boltzmann ma-
chines [15, 20, 9, 14]. More recently, this type of three-way
connection has been used to condition neural language mod-
els on other modalities [6]. This work is similar to ours in
that the tensor product is used to combine inputs from two
different domains.

Previous work [18, 5] has addressed the problem of hash-
tag prediction for text posts. The work of [18] is most similar
to our work since we both propose hashtag embedding mod-
els trained with a ranking loss. In addition to the obvious
difference in domains, our work differs in that we introduce
a novel method of incorporating user metadata into hashtag
prediction.

Many works have incorporated user modeling into ma-
chine learning methods for various applications, for exam-
ple by considering tensor factorisations for recommendation
using music tags [13], web pages [10], using age and gender
[4], location [21] and time [19]. However, we are not aware
of similar works for our particular application in the image
tagging domain.

3. HASHTAG EMBEDDING MODEL
We propose a hashtag embedding model that learns a

joint d-dimensional embedding space for hashtags and im-
age posts. Let y ∈ Y = {1, . . . , Y } denote an index into a
dictionary of possible hashtags. Let x ∈ R

n be an image
descriptor. The model is of the form:

f(x, y) = ΦI(x)
⊤ΦH(y)

where ΦI(x) : R
n → R

d is an image embedding function and
ΦH(y) : Y → R

d is a hashtag embedding function.
For a given image, x, possible hashtags, y, are ranked

according to f(x, y). We optimize precision at the top of
the ranked list using the WARP loss as described in section
3.4.

The hashtag embedding function is given by

ΦH(y) = Vy

Figure 1: Illustration of bilinear image embedding model.



Figure 2: How the user metadata is combined with the image
features in the user-biased model
.

where V ∈ R
Y ×d is the hashtag embedding matrix and Vi

indexes the ith row of V . Following [17], we constrain the
hashtag embedding matrix such that

‖Vi‖2 ≤ 1, i = 1, . . . , Y

This regularization technique helps prevent the model from
overfitting.

The image embedding function takes an image descriptor
as input and produces a d-dimensional embedding vector.
We use a pre-trained convolutional neural network [8] as
a feature extractor to obtain the image descriptor from the
raw image post. The convolutional network was trained sep-
arately on ∼1 million Facebook images. The network was
trained to classify 1000 different concepts which span mul-
tiple categories such as Object, Scenes, Actions, Food, Ani-
mals, etc. The image descriptors of dimensionality n = 4096
are extracted from the final fully connected layer of the net-
work, which has an architecture similar to that of [7].

We propose three different methods of embedding image
descriptors. The simplest model does not use any user in-
formation and embeds an image descriptor via a linear map-
ping. We also propose two different methods of incorporat-
ing user metadata into the embedding process. The user-
biased model introduces a user-dependent additive bias into
the image embedding function and the user-multiplicative
model has a user descriptor gate, via a multiplication opera-
tion, the image embedding function. We now describe each
of these models in detail.

3.1 Bilinear Model
The bilinear embedding model [17] does not incorporate

any user information into the image embedding function.
The image embedding function is a linear map of the form

ΦI(x) = Px

where P ∈ R
d×n is the image embedding matrix. As with

the hashtag embedding matrix, we constrain the norm of P :

‖Pi‖2 ≤ 1, i = 1, . . . n

to help prevent overfitting. The bilinear embedding model
is illustrated in Figure 1.

3.2 User-biased Bilinear Model
Assume now that we have information associated with the

users responsible for each image post. Let u ∈ R
m denote

a vector representation of a user. The user-biased model
gives a simple method for leveraging user information by
adding a user dependent bias term to the image embedding

Figure 3: How the user metadata is combined with the image
features in the user-multiplicative model.

function. In particular, the user-biased image embedding,
ΦI+U (x, u) : R

n × R
m → R

d, is defined as

ΦI+U (x, u) = Px+Qu

where Q ∈ R
d×m is the user embedding matrix. As in the

bilinear model, we regularize the model by constraining the
norms of P and Q:

‖Pi‖2 ≤ 1, i = 1, . . . , n

‖Qi‖2 ≤ 1, i = 1, . . . ,m

The user-biased embedding model is illustrated in Figure 2.

3.3 User-multiplicative Tensor Model
The user-multiplicative model provides a more sophisti-

cated method of incorporating user data into the image em-
bedding function by letting the user feature vector, u, gate
the image embedding. This allows every user vector to define
a different image embedding matrix. The matrix multipli-
cation from the bilinear and user-biased models is replaced
with a product between an image descriptor, a user descrip-
tor and an image embedding tensor.

Formally, let Z ∈ R
m×d×n denote the image embedding

tensor. Then, for a given user descriptor, u, the user-multiplicative
image embedding matrix is

P
u =

m
∑

i=1

uiZ
(i)

where ui is the ith component of u and Z(i) ∈ R
d×n is a

slice of the image embedding tensor specified by the ith in-
dex along the first dimension. The user-multiplicative image
embedding function is then

ΦI×U (x, u) = P
u
x

. The tensor Z has mdn parameters which is impractical
to train. We therefore constrain Z to have the following
factorized form:

Z =

K
∑

k=1

αk ⊗ βk ⊗ γk

where αk ∈ R
m, βk ∈ R

d, γk ∈ R
n where ⊗ is the tensor

outer product operation. K denotes the number of factors
and specifies the rank of Z. It is useful to represent the user
factors, embedding factors and image factors in matrix form



as α ∈ R
m×K , β ∈ R

d×K and γ ∈ R
n×K . In this constrained

form, Z has K(m+d+n) free parameters. Section A of the
appendix explains the 3-way multiplicative model in further
detail, including the gradient computations performed dur-
ing training.

As it is unclear how to choose an appropriate vector repre-
sentation for user information, we learn one instead. This is
done using a neural network which converts the user meta-
data to an appropriate vector prior to the α matrix in the
3-way connection. The full picture of this model is shown
in Figure 3. In our experiments we use a single layer neural
network with 24 hidden units (i.e. the user descriptor acted
upon by the 3-way connection is 24-dimensional) with Rec-
tified Linear Units [11]. The weights of this network, along
with the 3-way factors, are learned jointly. Adding this ex-
tra layer makes the model more powerful and also provides a
way of extracting concise user vectors from the hidden layer
activations, which could potentially be transferred to other
tasks, beyond the one considered in this paper.

3.4 Training Algorithm
We train our models by minimizing the weighted approximate-

rank pairwise (WARP) loss as described in [17]. The WARP
loss approximately optimizes precision at k using a negative
sampling technique. This type of loss is ideal for our task
since it easily scales to large hashtag vocabularies.

The algorithm proceeds as follows: At every iteration, we
sample a positive example, (x, y+). Up to 1000 negative
hashtags, y−, are then sampled in an attempt to find one
such that

f(x, y−) > f(x, y+)−m

where m specifies the margin. We then take a gradient step
to minimize

|m− f(x, y+) + f(x, y−)|+

Following [18], we set m = 0.1 in all our experiments.
We minimize the loss with parallel stochastic gradient de-

scent with the hogwild algorithm [12]. Weights were initial-
ized from a zero-mean Gaussian distribution with standard
deviation 0.001. The learning rate was initialized to 0.01
and was manually reduced by a factor of 10 when perfor-
mance stopped improving on a validation set. We used a
momentum constant of 0.9. We found training of the 3-way
connection was significantly improved by normalizing the
image descriptors to have L2 norm of 1 and so this step was
performed for all models.

4. EXPERIMENTS

4.1 Dataset
We evaluate our image embedding models on a large Face-

book dataset, consisting of 20 million public images up-
loaded by ∼10.4 million de-identified users. The images were
collected at random from uploads over a period of several
days in October 2014. The images were selected to have at
least one hashtag per image, but often had multiple hash-
tags. In total, the dataset contained ∼4.6 million distinct
hashtags. The mean number of hashtags per image was 2.7,

Meta data Possible values

Age 13− 114
Gender Male, Female, Unknown
Home City GPS coordinates
Country United States, Canada, Great Britain,

Australia, New Zealand

Table 2: Summary of user data

with a standard deviation of 3.1. A large fraction of hash-
tags describe the content of the image, with many synonyms
used (e.g. #cat, #catsofinstagram, #kitten). Others de-
scribe the sentiment of the user, being only loosely related
to the image content (e.g. #love, #happy, #blessed). An-
other group convey abstract ideas, generally unrelated to the
image content (#nofilter, #fundaysunday, #latergram).

Their distribution, shown in Figure 4, is far from uniform:
the top 10 hashtags account for 4% of the total; the top 100
for 11%, and 4 million of them appear less than 10 times
throughout the whole dataset. Given the difficulties of pre-
dicting very infrequent hashtags, we limit our vocabulary to
the top 10k most frequent hashtags. In our experiments,
we use two different versions of the dataset: natural and
balanced. In the former, we directly use the natural distri-
bution of the 10k most prevalent hashtags (shown in blue in
Figure 4). However, the uneven distribution means that the
few common hashtags will dominate any error measure, and
make it hard to predict infrequent hashtags. Furthermore,
many of the most common hashtags (e.g. #wcw, #tbt, #mcm)
have little to do with image content, so distract the models
from predicting image-relevant hashtags. To remedy this,
we create a balanced version of the dataset, where the 500
most common hashtags are downsampled to have the same
frequency as the 501st. The resulting distribution (shown in
red in Figure 4), is much closer to uniform and thus ame-
liorates both issues. Note that the images and users are
the same for both versions of the dataset; only the hashtag
distribution changes.

Each de-identified user had 4 pieces of metadata: age,
gender, country and city. The metadata is summarized in
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Method d K P@1 R@10 A@10

Freq. baseline - - 3.04% 5.63% 9.45%
Bilinear 64 - 7.37% 11.71% 18.69%
Bilinear 128 - 7.37% 11.69% 18.44%
Bilinear 256 - 6.75% 10.84% 17.25%
Bilinear 512 - 6.50% 10.83% 17.17%
User-biased 64 - 9.02% 13.63% 21.88%
User-biased 128 - 9.00% 13.67% 21.83%
User-biased 256 - 8.48% 13.03% 20.96%
User-biased 512 - 7.98% 12.51% 20.05%
3-way mult. 64 50 8.95% 13.66% 21.82%
3-way mult. 64 100 9.03% 13.81% 22.04%
3-way mult. 64 200 8.96% 13.81% 22.05%
3-way mult. 64 300 9.00% 13.74% 21.96%
3-way mult. 64 400 8.96% 13.65% 21.82%

Table 3: Prediction results for models trained on data with
a natural hashtag distribution.

Table 2. We restricted ourselves to images posted by users
from five populous English speaking countries to ensure that
the hashtags had a common underlying language. Imprecise
location information for each de-identified user took the form
of the GPS location of their home town/city1. The dataset
was split into disjoint training and test sets, with each user
only appearing in one of them (i.e. no overlap). The test
set was 100k images in size, with the remainder used for
training.

We construct a 10-dimensional user descriptor based on
the 4 pieces of metadata. One dimension represents age as
a continuous value, scaled to have value in [0, 1]. Another
dimension represents gender, recorded as -1 or 1 for females
and males respectively. An unknown gender is represented
by 0. The country of origin is encoded as a 1-hot 5d vector
for the five different countries. Finally, GPS coordinates are
converted to 3-dimensional Cartesian coordinates and scaled
to [0,1] range.

4.2 Results
We evaluate the embedding models described in Section

3 on both the natural and balanced versions of our dataset.
For all three models, we vary d, the dimensionality of the
embedding space to understand its effect on performance.
For the 3-way multiplicative model, we also vary the rank
K of the tensor factorization, which controls the number of
parameters in the embedding function ΦI×U . We include a
simple baseline that ignores the test image and ranks hash-
tags according to their natural distribution in the training
set.

The models are evaluated with three different metrics:
precision, recall and accuracy. These are defined as follows:
let Rank(x, u, k) denote the set of top k ranked hashtags by
the model for example (x, u) and let GroundTruth(x, u) de-
note the set of hashtags actually tagged by the user u for
the image x, then:

1I.e. the GPS coordinates of the town/city center associated
with the user’s profile, not the home address of the users, or
where the photo was taken.

Method d K P@1 R@10 A@10

Freq. baseline - - 0.07% 0.36% 0.64%
Bilinear 64 - 3.75% 6.04% 9.81%
Bilinear 128 - 3.73% 5.81% 9.48%
Bilinear 256 - 3.54% 5.57% 9.06%
Bilinear 512 - 3.26% 5.10% 8.38%
User-biased 64 - 3.85% 6.22% 10.34%
User-biased 128 - 3.78% 6.13% 10.06%
User-biased 256 - 3.70% 5.85% 9.50%
User-biased 512 - 3.49% 5.78% 9.64%
3-way mult. 64 50 4.29% 6.94% 11.26%
3-way mult. 64 100 4.25% 6.80% 10.96%
3-way mult. 64 200 4.65% 7.27% 11.77%
3-way mult. 64 300 4.34% 7.02% 11.37%
3-way mult. 64 400 4.25% 7.04% 11.46%

Table 4: Prediction results on the balanced hashtag distri-
bution.

Precision:

P@k =
1

N

N
∑

i=1

|Rank(xi, ui, k) ∩GroundTruth(xi, ui)|

|Rank(xi, ui, k)|

Where N is the number of test examples. We show P@1
(i.e. what fraction of the time did the top ranked hashtag
match one of the ground truth hashtags for the test image).

Recall:

R@k =
1

N

N
∑

i=1

|Rank(xi, ui, k) ∩GroundTruth(xi, ui)|

|GroundTruth(xi, ui)|

We show R@10 which gives a measure of the fraction of the
relevant hashtags for each test image are ranked in the top
10. Note that if the image has more than 10 ground truth
hashtags then this fraction will always be less than 1.

Accuracy:

A@k =

N
∑

i=1

I[Rank(xi, ui, k) ∩GroundTruth(xi, ui) 6= ∅]

N

where I[·] is an indicator function. This metric is useful
since it is largely indifferent to the number of ground truth
hashtags. We show the accuracy at 10 (A@10) which gives
a measure of how often at least one of the ground truth
hashtags appears in the top 10 ranked hashtags.

Table 3 shows test results for models on the natural ver-
sion of the dataset. Given that each image has 10k possible
hashtags, the absolute values for all three metrics are low
but, as the examples in Table 5 show, the quality of pre-
dicted hashtags is nevertheless reasonable. The predicted
hashtags convey relevant image content (#kayaking, #glasses),
social cues (#reunion, #party) and sentiment (#goodtimes,
#love). The results in the table show: (i) all models clearly
beating the frequency baseline; (ii) both models that incor-
porate user information significantly outperform the bilinear
model; (iii) the user-multiplicative model performs compara-
bly to the user-biased model; (iv) high values of the embed-
ding dimension d hurt performance, likely due to overfitting
and (v) the tensor rank K had little effort on performance.

Table 4 shows results from training on the balanced ver-
sion of the dataset. The flatter hashtag distribution has
higher entropy, relative to the natural version, making the
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(a) Models trained on natural hashtag distribution.
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(b) Models trained on balanced hashtag distribution.

Figure 6: Recall at 10 for different subsets of hashtags. Left: The 20 most frequent hashtags are shown. Middle: Top 20
hashtags which have highest recall for the bilinear model. Right: Top 20 hashtags which the difference in performance between
the bilinear model and the multiplicative model is greatest.

prediction task harder as evidenced by the significant re-
duction in frequency baseline performance. In these experi-
ments, the user-biased approach gives slight gains over bilin-
ear. But the user-multiplicative model significantly outper-
forms both, showing it is able to make effective use of the
user metadata. Examples of the predicted hashtags from
this model are shown in Figure 5. The predictions can be
seen to be far more varied and interesting than those from
the same model trained on the natural version of the dataset.
For example, very common hashtags such as #tbt, #wcw,
#mcm are ranked in the top 10 for almost every photo by
the model trained on the natural hashtag distribution. The
model trained on the balanced distribution produces less
frequent hashtags that are still relevant to the image.

Tables 3 and 4 show precision and recall values for im-
ages, averaged over all examples in the test set. Since some
hashtags are predicted more accurately than others, we also
show precision and recall values for individual hashtags. The
average precision and recall at k for a particular hashtag, y,

is defined as:

R@k(y) =

∑N

i=1 |Rank(xi, ui, k) ∩ {y}|
∑N

i=1 |GroundTruth(xi, ui) ∩ {y}|

P@k(y) =

∑N

i=1 |Rank(xi, ui, k) ∩ {y}|
∑N

i=1 |Rank(xi, ui, k)|

Figure 5a plots precision-recall curves for a subset of hash-
tags for the three models, trained on the natural distribu-
tion. Some hashtags are better predicted by the models
that leverage user information. For example, cities (#nyc,
#london, etc.) see a large boost in performance when user
information is incorporated into the model. Other hash-
tags that are not tied to specific image content but used
predominately by certain demographics also see gains from
the incorporation of user information. Hashtags such as
#100happydays, #wcw and #mcm likely fall into this cat-
egory. There are also a multitude of hashtags for which
the addition of user information makes negligible difference,
such as #nature or #sunset. These hashtags likely refer to
specific image content, thus the addition of user information
adds little signal.



Age Females Males

13-17

#mcm

#bestfriend

#love

#lovehim

#mce

#latepost

#bestfriends

#boyfriend

#loveher

#loveyou

#like

#lmp

#throwback

#squad

#wce

#throwback-

#thursday

#family

#workflow

#selfie

#wcm

43-47

#100happydays

#mcm

#love

#sisters

#cousins

#lovehim

#latergram

#loveher

#bff

#youcampperfect

#photoshop-

#express

#wcw

#goodtimes

#prouddad

#throwback-

#thursday

#selfie

#salute

#blessed

#zijasummit14

#familyfirst

Gender 15-17 years old 43-47 years old

Female

#wcw

#mcm

#bestfriend

#tb

#ss

#bestfriends

#throwback

#latepost

#like

#selfiesunday

#100happydays

#blessed

#goodtimes

#family

#love

#photogrid

#latergram

#cousins

#sundayfunday

#friends

Male

#wcw

#like

#throwback

#squad

#tb

#lmp

#mcm

#ss

#wce

#selfiesunday

#goodtimes

#blessed

#love

#family

#photoshop-

#express

#photogrid

#sundayfunday

#friends

#zijasummit14

#prouddad

Sydney Toronto

#melbourne

#sydney

#australia

#spring

#beach

#grandfinal

#sunshine

#sun

#nz

#newzealand

#bali

#happy

#nofilter

#wellington

#springbreak

#bondi

#afl

#thailand

#stkilda

#city

#toronto

#tbt

#canada

#vancouver

#fall

#throwback

#blessed

#ilovethiscity

#vancity

#vscocam

#tb

#cntower

#goodmorning

#hoco

#montreal

#wcw

#tdot

#lateupload

#downtown

#beautiful

Table 6: An exploration of our multiplicative model using three different probe images. Left: Hashtags most affected by
gender, for two different age groups. Left and right columns show hashtags predicted most frequently for female users relative
to male users, and vice-versa. Middle: Hashtags most affected by age, for female and male users. Left and right columns
show hashtags predicted most frequently for younger users relative to older users, and vice-versa. Right: Hashtags most
affected by location. Left and right columns show hashtags that are predicted most frequently for Sydney users relative to
Toronto users, and vice-versa.

Figure 5b plots precision-recall curves of a subset of hash-
tags for models trained on the balanced distribution. In this
case we see the user-multiplicative model performs much
better than the bilinear and user-biased models on most
hashtags.

Figure 6a and Figure 6b show Recall@10 for several hash-
tags from the three models trained on the natural and bal-
anced distributions respectively. In the leftmost plot we see
the recall values for the 20 most frequent hashtags. For
these very frequent hashtags, the models that incorporate
user information perform comparably to the bilinear model.
By comparing the leftmost plots in Figure 6a and Figure
6b we also see that the most frequent hashtags have much
higher recall values for models trained on the natural hash-
tag distribution than for the models trained on the balanced
distribution. The middle plot shows the top 20 hashtags for
which the bilinear model has the highest recall, i.e. the
hashtags that are predicted well without the aid of addi-
tional user information. Many of the hashtags with highest
recall (#belascothursdays, #litsunday, #acehollywood)
correspond to large event posters. Many different users
post the event image and hashtag the image with the event
name. Since the images and hashtags are nearly identical,
the model is able to achieve nearly perfect recall. The right-
hand plot shows the top 20 hashtags for which the difference
in performance between the bilinear model and the multi-
plicative model is greatest. In other words, these figures

show the hashtags whose accurate prediction relies most
heavily on user information. We see that for these hash-
tags, the user-biased model and user-multiplicative models
perform comparably when trained on the natural distribu-
tion. However, when trained on the balanced distribution,
the user-multiplicative model tends to outperform both the
bilinear and user-biased model.

4.3 Understanding User Information
There are many types of images for which certain hash-

tags tend to be used more frequently by specific demograph-
ics. For example, given a cityscape image, hashtags such
as #toronto and #canada are more likely to be used by
individuals living in Toronto. Table 6 explores the user-
multiplicative model to see which hashtags are most affected
by gender, age and location. Taking gender (left column) as
an example, this can be performed by the following proce-
dure: (i) given an initial probe image we find a set of close
neighbors2 in the test set using their d-dimensional image
descriptors. (ii) from this nearest-neighbor set we pick two
different subsets, one for for males and another for females,
whose age is constrained to be 13-17 (in the top row; age

2We average over a large set of similar images to ensure the
results are not specific to an individual image.



Input image Top 10 ranked hashtags

Natural Balanced

distribution distribution

#tbt

#squad

#family

#friends

#wcw

#homecoming

#goodtimes

#repost

#throwback

#party

#reunion

#goodtimes

#friends

#reunited

#drinks

#squad

#greatnight

#party

#drunk

#fridaynight

#nofilter

#fall

#autumn

#beautiful

#nature

#vscocam

#toronto

#100happydays

#sunshine

#home

#nature

#river

#peaceful

#lake

#sunny

#sunshine

#trees

#autumn

#sun

#beautifulday

#selfie

#nofilter

#tbt

#love

#wcw

#100happydays

#mcm

#cute

#beautiful

#happy

#selfie

#glasses

#nomakeup

#haircut

#smiles

#sundayselfie

#cutie

#nofilter

#selfies

#photoshop-

#express

#nofilter

#kingfire

#sunset

#fall

#tbt

#beautiful

#blessed

#nofilter-

#needed

#vscocam

#goodmorning

#nofilter-

#needed

#blueangels

#nofilter

#sky

#homesweethome

#godscountry

#farmlife

#sunrise

#countrylife

#clouds

#wcw

#tbt

#selfie

#folsom

#love

#beyond-

#wonderland

#sundayfunday

#family

#beach

#mcm

#beachday

#beach

#poolside

#beachlife

#funinthesun

#poolparty

#besties

#beachtime

#pooltime

#sandiego

#tbt

#kayaking

#nofilter

#sundayfunday

#mcm

#wcw

#family

#familytime

#latepost

#love

#kayaking

#pool

#poolside

#fishing

#funinthesun

#poolparty

#pooltime

#boating

#boatlife

#lakelife

Table 5: Top ranked hashtags from user-multiplicative
model for sample test images. Left column shows hashtags
predicted by model trained on the natural hashtag distribu-
tion. Right column shows hashtags from model trained on
the balanced hashtag distribution. Photos used with owner
permission.
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(a) Models trained on the natural hashtag distribution.
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(b) Models trained on the balanced hashtag distribution.

Figure 5: Precision-recall curves of a subset of hashtags.
Recall is plotted on the x-axis, precision on the y-axis.

43-47 for the bottom row). (iii) for each image in these two
subsets we compute their embedding (using their associated
metadata) and find the 10 closest hashtag embeddings. (iv)
we compute aggregate counts of hashtags for the male and
female subsets and display the hashtags where the difference
is greatest between the two. The middle and right columns
of the table also show how age (holding gender constant)
and location affect the hashtag distribution, respectively.

In many cases, the hashtags strongly associated with a
particular user attribute make intuitive sense. For exam-
ple, the hashtags #mcm, #lovehim and #boyfriend are more
frequently predicted for young female users than for young
male users. The hashtag #prouddad is more frequently pre-
dicted for older male users than for female users of the
same age. We also see that hashtags like #beach are pre-
dicted more often for Australian users than for those living
in Toronto, whereas hashtags like #cntower are predicted
more for Torontonians.

Figure 7 visualizes the learned user representation in our
multiplicative model for 10k users in the test set. The 24-d
user descriptors are mapped down to the 2D plane using the



(a) Age. (b) Gender.

(c) Country.
(d) Home city (restricted to
American users).

Figure 7: t-SNE visualization of user embeddings for 10K
different users. Each plot is color coded by a different di-
mension of the user meta data.

t-SNE algorithm [16]. Four different color codings are used
to show different user attributes. Clear structure is apparent
in many cases, for example, the radius from the origin seems
to correspond to increasing age.

5. CONCLUSIONS
We introduced a set of embedding models that predict

highly diverse and relevant hashtags for real-world Facebook
images. The simplest of these shows how image features de-
rived from a convolutional neural network can be used to
perform image hashtag prediction. We then showed how
user metadata could be combined with image features to
improve image hashtag prediction. The addition of user in-
formation gave a significant performance boost, particularly
when incorporated in a multiplicative fashion.

Particular care has to be taken when working on real
world datasets rather than curated ones. We addressed the
highly skewed hashtag distribution observed in our dataset
by downsampling the more frequent hashtags. We show that
this technique produces more varied hashtag predictions.

Our models produce hashtags that capture many subtle
social and sentiment of the images, and are far richer than
the precise semantic descriptions output by many current
recognition models. The resulting system is highly scalable
and could be used in a number of applications such as au-
tomated hashtag suggestion, image search or for recommen-
dation and ranking images based on content.
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APPENDIX

A. FACTORED 3-WAY GRADIENT COMPU-

TATIONS
The user-multiplicative model gates the image embedding

matrix by a user descriptor, u. The user conditioned image
embedding matrix is

P
u =

m
∑

i=1

uiZ
(i)

where Z(1), . . . , Z(m) are d× n matrices and ui indexes the
ith component of the user descriptor. Combining each of
the Z(i)’s into a tensor gives the image embedding tensor
Z ∈ R

m×d×n. To facilitate learning, Z is constrained to be
of the form

Z =
K
∑

i=1

αk ⊗ βk ⊗ γk

where αk ∈ R
m, βk ∈ R

d, γk ∈ R
n and the user factors,

embedding factors and image factors respectively. The pa-
rameter K specifies the number of factors.
Letting α ∈ R

m×K , β ∈ R
d×K and γ ∈ R

n×K denote the
factors in matrix form, the image embedding matrix can be
written as:

P
u =

m
∑

i=1

uiZ
(i)

=

m
∑

i=1

ui

(

K
∑

i=1

[αk]iβk ⊗ γk

)

=
K
∑

k=1

(

α
⊤

k u
)

βk ⊗ γk

= βdiag
(

α
⊤
u
)

γ
⊤

The user-multiplicative image embedding function can be
re-written as:

φI×U (x, u) = P
u
x = βdiag

(

α
⊤
u
)

γ
⊤
x

Recall from section 3.4 that in every iteration of training
a gradient step is taken to minimize

L = |m− f(x, u, y+) + f(x, u, y−)|

where f(x, u, y) = φI×U (x, u)
⊤φH(y) is a scoring function.

Expanding the loss we get:

L = |m− f(x, u, y+) + f(x, u, y−)|

= |m− φI×U (x, u)
⊤
φH(y+) + φI×U (x, u)

⊤
φH(y−)|

= |m− βdiag
(

α
⊤
u
)

γ
⊤
x(Vy+ − Vy−)|

The gradient of L with respect to the user factors, embed-
ding factors and image factors is:

∂L

∂αk

= −

(

m
∑

i=1

ui

)

βγ
⊤
x(Vy+ − Vy−)

∂L

∂β
= −diag(α⊤

u)γ⊤
x(Vy+ − Vy−)

∂L

∂γ
= −

(

βdiag(α⊤
u)
)

(

x(Vy+ − Vy−)
)

B. DICTIONARY OF COMMON HASHTAGS
Many of the hashtags referenced in this work have non

obvious meanings. Table 7 provides definitions of several of
the more frequent hashtags.

Hashtag Meaning

#tbt throw back thursday
#tb throw back
#mcm man crush monday
#mce man crush everyday
#wcw woman crush wednesday
#wce woman crush everyday
#ss selfie sunday
#rp repost
#lmp like my post

Table 7: Definition of common hashtags.
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