
Executable Modeling of Deployment Decisions

for Resource-Aware Distributed Applications

Doctoral Dissertation by

Silvia Lizeth Tapia Tarifa

Submitted to the
Faculty of Mathematics and Natural Sciences at the University of Oslo

for the degree Philosophiae Doctor in Computer Science

Date of submission: February 2014
Date of public defense: May 2014

Precise Modeling and Analysis Group
Department of Informatics

University of Oslo
Norway

Oslo, February 2014

© Silvia Lizeth Tapia Tarifa, 2014

Series of dissertations submitted to the

Faculty of Mathematics and Natural Sciences, University of Oslo

No. 1484

ISSN 1501-7710

All rights reserved. No part of this publication may be

reproduced or transmitted, in any form or by any means, without permission.

Cover: Inger Sandved Anfinsen.

Printed in Norway: AIT Oslo AS.

Produced in co-operation with Akademika Publishing.

The thesis is produced by Akademika Publishing merely in connection with the

thesis defence. Kindly direct all inquiries regarding the thesis to the copyright

holder or the unit which grants the doctorate.

iii

Abstract

The increasing popularity of virtualized services and cloud computing, offering elastic
and scalable computing resources challenges software engineering methods by asking
a number of new questions: How can we integrate deployment-specific information
in the overall design of software applications? How can we express and compare
deployment decisions in the design phase, so that performance diagnosis can happen
early in the software development cycle? How do we design scalable applications?

This thesis proposes a methodology for the modeling and analysis of object-oriented
distributed applications that are able to adapt to changes in client traffic, so that they
can keep desired levels of performance. As a starting point for developing our method-
ology, we take Core ABS, an abstract, behavioral specification language that targets
the executable modeling of concurrent, distributed and object-oriented systems. We
extend Core ABS with deployment-specific information such as deployment archi-
tectures, flexible application-specific schedulers, deadlines at the application level,
resource management primitives, and user-defined resource costs. The extensions are
developed following conventions of formal methods, combining rigorous definitions
and formal semantics with a user-friendly Java-like syntax and tool support. By ex-
ploiting these language extensions, our methodology makes it possible to compare at
the modeling level how a software behaves under different deployment choices. Such
comparisons allow a better understanding of the trade-offs from different deployment
choices, consequently better design decisions for distributed applications can be made
early in the software development life cycle.

By integrating resource management and deployment decisions in the design phase,
our methodology has the potential to improve the software engineering process for
virtualized and scalable software applications running in the cloud, both with respect
to quality and with respect to development and deployment cost.

iv

v

Acknowledgments

I am deeply grateful for all those who made it possible for me to reach this point on
my academic path. Now I am at the end of my Ph.D. studies and I am certainly not
the same person as when I started. All these years in academia have helped me to
grow not only in knowledge but also in other aspects of my personal life.

I would like to express my deep gratitude to my main supervisor Einar Broch
Johnsen. I am grateful for his priceless time and help whenever I needed, constant
encouragement, patient guidance, fruitful discussions, constructive and constant co-
operations, optimism in reaching various deadlines, and for all the knowledge I have
learned from him. I am also grateful for his great friendship and for teaching me
various things of life, like to appreciate a good bottle of wine and a good cup of
coffee. I would also like to express my special thanks to Rudolf Schlatte for his con-
stant cooperation and active collaboration in various papers; we have shared a lot of
working and non-working time, and I am very grateful for that. I would also like to
thank Olaf Owe for his advice, support, wisdom, collaboration and knowledge, and
Martin Steffen for his interesting discussions, passionate teaching and help whenever
I needed.

I would like to offer my deep thanks to all my colleagues, ex-colleagues and good
friends in the PMA group. It has been a wonderful time together, both inside and
outside the office. I enjoyed the working environment and I always felt very welcome
in the PMA family. In particular, thanks to Crystal Chang Din for being a wonderful
office mate.

I am grateful for the assistance provided by the technical support and the admin-
istration staff at the Department of Informatics, University of Oslo. I would also like
to thank everybody involved in the HATS project, in particular Reiner Hähnle, Frank
de Boer and Elvira Albert. My thanks also go to all researchers and professors who
have crossed my path as friends and colleagues over the years, in particular Chris
George, Abigail Parisaca and Wilber Ramos.

I would also like to thank my parents, brothers and extended family. Words
cannot express how grateful I am to my parents Patricia Tarifa de Tapia and Walter
Tapia Salas, and to my brothers Fabricio Tapia Tarifa and Alex Tapia Tarifa. They
have always encouraged and supported my goals, and they have always been with
me despite the distance. Finally I would like to thank my friends for their company
during these years, in particular all my Peruvian friends in Europe, especially Liliana
Mamani and Jessica Vargas.

The work in this thesis has been done at the Department of Informatics of the
University of Oslo, supported by a grant from the Faculty of Mathematics and Natural
Science of the University of Oslo. Additional funding has been provided by the HATS
project and by the Department of Informatics.

vi

Contents

Abstract iii

Acknowledgments v

I Overview 1

1 Introduction 3

1.1 Motivation . 3

1.2 Research Questions . 5

1.3 Structure of this Thesis . 6

2 The ABS Language and its Underlying Concepts 9

2.1 Concurrent Languages . 9

2.2 Object-Oriented Languages and Concurrency 11

2.3 Formal Modeling Languages and Concurrency 14

2.4 The ABS Language . 15

2.4.1 The Functional and Imperative Layers of Core ABS 16

2.4.2 Design Choices of Core ABS . 17

2.5 The HATS Project . 18

3 Overview of the Research Papers 19

3.1 Paper 1: User-defined Schedulers and Real-Time 19

3.2 Paper 2: Deployment Architectures and Resource Consumption 20

vii

viii CONTENTS

3.3 Paper 3: Resource-Awareness and Cloud Infrastructures 22

3.4 Paper 4: Deployment Architectures and Worst-Case Cost Bounds . . . 23

3.5 Additional Publications . 23

4 Conclusions 27

4.1 Summary of Contributions . 27

4.2 Future Work . 30

II Research Papers 41

5 Paper 1: User-defined Schedulers and Real-Time 43

5.1 Introduction . 44

5.2 Real-Time ABS . 47

5.2.1 The Functional Level of Real-Time ABS 48

5.2.2 The Concurrent Object Level of Real-Time ABS 49

5.3 Scheduling Strategies in Real-Time ABS 52

5.3.1 General Scheduling Policies . 54

5.3.2 Conditional Scheduler . 56

5.3.3 Scheduling Annotations in Real-Time ABS 57

5.3.4 Monitors with Signal and Continue Discipline 57

5.4 Semantics . 59

5.4.1 Runtime Configurations . 59

5.4.2 A Reduction System for Expressions 61

5.4.3 A Transition System for Timed Configurations 62

5.5 Case Studies and Simulation Results 67

5.6 Conclusion . 69

6 Paper 2: Deployment Architectures and Resource Consumption 75

6.1 Introduction . 76

6.2 Modeling Timed Behavior in Real-Time ABS 78

6.2.1 The Functional Layer of Real-Time ABS 79

CONTENTS ix

6.2.2 The Imperative Layer of Real-Time ABS 82

6.2.3 Explicit and Implicit Time in Real-Time ABS 84

6.3 Modeling Deployment Architectures . 85

6.3.1 Deployment Components . 86

6.3.2 Resource Consumption . 88

6.3.3 The Deployment Layer of Real-Time ABS 89

6.4 Example: A Client-Server System . 90

6.5 Example: Implementing Object Migration to Mitigate Overload 93

6.6 Example: Load Balancing via Resource Transfer 96

6.7 Semantics . 99

6.7.1 Runtime Configurations . 99

6.7.2 The Timed Evaluation of Expressions 102

6.7.3 A Transition System for Timed Configurations 103

6.8 Related and Future Work . 109

6.9 Conclusion . 113

7 Paper 3: Resource-Awareness and Cloud Infrastructures 123

7.1 Introduction . 124

7.2 Abstract Behavioral Specification with Real-Time ABS 125

7.2.1 Modeling Timed Behavior in ABS 125

7.2.2 Modeling Deployment Architectures
in Real-Time ABS . 127

7.3 Resource Management and Cloud Provisioning 128

7.4 Case Study: The Montage Toolkit . 131

7.4.1 The Problem Description . 131

7.4.2 A Model of the Montage Workflow in Real-Time ABS 133

7.4.3 Simulation Results . 134

7.5 Related Work . 136

7.6 Conclusion . 138

x CONTENTS

8 Paper 4: Deployment Architectures and Worst-Case Cost Bounds145

8.1 Introduction . 146

8.2 A Language for Distributed Concurrent Objects 147

8.2.1 Operational Semantics . 151

8.3 Worst-Case Cost Bounds . 153

8.4 Deployment Components . 156

8.5 Simulation and Experimental Results 158

8.6 Related Work . 160

8.7 Discussion . 160

List of Figures

5 Paper 1: User-defined Schedulers and Real-Time 43

5.1 Syntax for the functional level of Real-Time ABS 47

5.2 Syntax for the concurrent object level of Real-Time ABS 50

5.3 Runtime syntax . 60

5.4 The evaluation of functional expressions 61

5.5 The semantics of Real-Time ABS . 63

5.6 The semantics of Real-Time ABS . 64

5.7 Functions controlling the advancement of time 65

5.8 A model of photo and video processing 66

5.9 Simulation results for Example 8 . 68

5.10 Extending Fig. 5.8 with an application-specific scheduler 69

5.11 Application-specific scheduling for the server example 70

6 Paper 2: Deployment Architectures and Resource Consumption 75

6.1 The Layers of the Real-Time ABS . 78

6.2 Syntax for the functional layer of Real-Time ABS 79

6.3 Syntax for the imperative layer of Real-Time ABS 84

6.4 Specification of resources and the interface of deployment components . 86

6.5 A deployment architecture in Real-Time ABS 88

6.6 Syntax extension for the deployment layer 89

6.7 A session-oriented server model in Real-Time ABS 91

xi

xii LIST OF FIGURES

6.8 Deployment environment and client model of the web shop example . . 92

6.9 Number of total requests and successful orders, depending on the num-
ber of clients and resources . 93

6.10 An agent which performs load balancing 94

6.11 Self-monitoring session objects . 95

6.12 Simulation results for the load balancing strategies 96

6.13 The telephony and SMS services . 97

6.14 The Handset class . 98

6.15 A resource reallocation strategy and deployment configuration 100

6.16 Simulation of “New Year’s Eve” behavior 101

6.17 Runtime syntax . 102

6.18 The evaluation of functional expressions 103

6.19 Semantics with deployment components and resource consumption (1) . 105

6.20 Semantics with deployment components and resource consumption (2) . 106

6.21 Functions controlling the advancement of time 110

7 Paper 3: Resource-Awareness and Cloud Infrastructures 123

7.1 Interaction between a client application and the cloud provider 129

7.2 The CloudProvider class in Real-Time ABS 130

7.3 The modules of the Montage case study 132

7.4 Montage abstract workflow . 133

7.5 CalcServer interface and class in Real-Time ABS 134

7.6 The ApplicationServer interface and class (abridged) 135

7.7 Montage: Execution costs and times of simulation 136

8 Paper 4: Deployment Architectures and Worst-Case Cost Bounds 145

8.1 ABS syntax for the functional level . 148

8.2 ABS syntax for the concurrent object level. 149

8.3 ABS Semantics . 153

8.4 Operational semantics for resource-constrained deployment components 158

LIST OF FIGURES xiii

8.5 Resource-aware assignment rule . 159

8.6 Final and peak memory use . 159

xiv LIST OF FIGURES

Part I

Overview

1

CHAPTER 1

Introduction

1.1 Motivation

Software engineering is the field of computer science that deals with the develop-
ment of software. The development of software follows a development life cycle model
composed of several phases, including requirement, design, implementation, integra-
tion and deployment. These phases can be interleaved to fit into traditional (e.g.,
waterfall), or iterative and incremental (e.g., Agile [1], RAD [14]) development meth-
ods [33,65].

Modeling and analysis are techniques used to specify and validate software appli-
cations so that stakeholders can better understand the system being developed even
from early phases in the development process. During the software development pro-
cess, models provide abstractions of the target applications and provide connections
between various phases, e.g., requirement and design.

Models typically cover [65] (1) an external perspective on the system to be devel-
oped, which describes its interaction with the system’s environment; (2) a behavioral
perspective, which describes the behavior of the system; and (3) a structural perspec-
tive, which describes the logical architecture of the system and the structure of the
data provided in the system. Object-oriented modeling techniques, such as UML [16],
usually capture both the behavioral and the structural architecture perspective in the
same model.

Ideally, an application’s system architecture model includes a set of principal de-
sign decisions made about the system in order to deliver a desired level of service
quality [66]. Part of these design decisions comprise general policies on how the
application will fulfill functional and non-functional requirements. Examples of non-
functional requirements for applications include an acceptable level of performance
in their services, dynamic adaptation of their service capacity to a variable number

3

4 1.1 Motivation

of users on-demand, adaptability to different computing infrastructures, and effective
usage of their resources (e.g., cpu, memory, bandwidth).

Application developers have made significant progress in modeling and analyzing
functional requirements and building architectures that meet them, but it is still a
challenge how to deal systematically with non-functional requirements when architect-
ing systems [19]. For example, different characteristics of the hardware infrastructure
which are decided during the deployment phase (e.g., the speed of the server and
the bandwidth of the network) influence how well an application is able to meet its
non-functional requirements related to performance. Looking at the current state
of software development literature, there is not a clear link between the deployment
phase and the early design of performance requirements [33, 65].

Unlike standalone applications which operate on single devices and in predictable
environments, distributed applications operate on heterogenous devices, possibly ge-
ographically spread, and interconnected by a communication network. Distributed
applications may serve an unknown number of end-users, consequently they can suf-
fer from unexpected changes in their workload. Deploying critical components of
a distributed application with possible heavy workloads on devices with limited re-
sources, could negatively impact the performance of the overall application as much
as an incorrect implementation of any of its critical functional requirements.

Traditional and iterative software development methods focus on performance
problems late in the software development process [12, 70]. These problems may be
so severe that they can require considerable changes in design at the software archi-
tecture level and, in the worst cases, they can even impact the requirement level [12].
The most common approach to meet performance requirements is empirical, based on
previous experiences, and applies methods such as testing, tuning, and diagnosis late
in the software development cycle, when the application under development can be
executed and measured [70]. Yet, it is not uncommon that companies discover that
the performance of their applications is below expectations once the applications are
in operation. To increase the chances of successfully meeting performance require-
ments, it is a hypothesis of this thesis that it is advantageous to include deployment
decisions in the design phase, to make performance diagnosis available early in the
software development cycle.

With the evolution of hardware virtualization, modern systems are increasingly be-
ing deployed on large-scale distributed systems offering virtualized scalable services,
such as cloud infrastructures. A cloud is a parallel and distributed system consisting
of a collection of interconnected and virtualized computers that are dynamically pro-
visioned and presented as one or more unified computing resources [20]. Clouds are
clearly the next-generation of computing resources, with data centers offering services
to software applications. Service provisioning in a cloud is based on negotiations be-
tween the service provider and consumers. These services are offered in a way which
makes it possible to virtualize the deployment of resources based on a pay-per-use

Chapter 1 Introduction 5

model that provides an elastic and scalable amount of resources on-demand in the
cloud [20].

To take advantage of the cloud’s elasticity and scalability, applications should be
able to observe and manage their resources; for example, they could adapt themselves
to changes in client traffic without compromising their desired level of performance
while respecting a cost budget. In this thesis we refer to applications with this kind
of abilities as resource-aware. Resource-aware applications pose interesting challenges
for software development methods. For resource-aware applications, the need to in-
clude deployment decisions in the design phase is even more crucial because resource
management is part of the application logic.

1.2 Research Questions

As discussed above, new business models in computing technology are appearing on
the market. Consequently, new challenges arise in software development methods,
such as the need to express and compare deployment decisions in the design phase.
These challenges make it natural to integrate new characteristics such as resource-
awareness in software applications to keep desired levels of performance.

Recent literature on software architectures defines deployment as various activities
that place a given software application on computing devices. Deployment happens
after the application has been designed, implemented, validated, and is ready for
operation [54, 66]. Software architects, who want to make appropriate final deploy-
ment decisions, need an effective deployment model with the following elements [66]:
(1) software system elements, their configuration and their parameters; (2) hardware
system elements, their configuration and their parameters; (3) any constraints on the
system’s elements and/or their parameters; and (4) formal definitions of the quality
of service dimensions. It would be useful to have these elements described in the
design phase, so that deployment decisions could be included early in the software
development process and the managements of resources could be integrated as part
of the global design of the application. The overall goal of this thesis is

to develop a methodology to express and compare different deployment
decisions for resource-aware distributed applications during the design phase.

To achieve this goal, this thesis will address the following specific research ques-
tions:

RQ1: How can we model deployment architectures for resource-aware distributed
applications?

6 1.3 Structure of this Thesis

RQ2: How can we express architectural decisions related to quality of service in
models of resource-aware distributed applications?

RQ3: How can we estimate and quantify quality of service in models of resource-
aware distributed applications?

RQ4: How can we compare the suitability of deployment architectures in models of
resource-aware distributed applications?

This thesis consists in a number of publications which describe research results
achieved in the direction of answering these questions. Moreover, the methodology
we are looking for should meet the following requirements:

Concurrent and distributed object-oriented framework. Object orientation
is the most popular programming and design paradigm. In fact, it is the leading
approach used in the software industry today. Object orientation provides good
structuring mechanisms and flexibility in applying changes to artifacts produced
during the software development process. The combination of object orientation
and concurrency is useful because it can increase responsiveness and throughput
of distributed applications. For the methodology presented in this thesis, it is
desirable to support concurrency and object orientation, in order to be close to
the mindset used in commercial and industrial software development.

Model-based approach. A model is mainly a representation of some aspects of
interest from a real-world application. Thus models contain less complexity
than real-world applications [13]. By decreasing the amount of complexity, we
may be able to more easily understand those aspects of interest, and to analyze
specific properties related to them. Therefore it is desirable for the methodology
presented in this thesis to be model-based.

Formality. Formal methods are important because they seek to increase the reliabil-
ity of systems by adding rigor to the design process [17]. For the methodology
presented in this thesis, it is desirable to have a design notation that offers preci-
sion, unambiguity, and abstractions based on a formal syntax and a well defined
semantics.

1.3 Structure of this Thesis

The rest of this thesis is structured as follows: Chapter 2 introduces the ABS language
and discusses its underlying concepts. ABS is a formal modeling language based on
a concurrent and distributed object-oriented framework. The methodology presented
in this thesis uses the ABS language. Chapter 3 gives a short summary of each of

Chapter 1 Introduction 7

the papers collected in this thesis. Chapter 4 concludes the thesis by answering the
research questions presented in this chapter and suggests some directions for future
research. Part II collects the full content of the research papers in the thesis.

8 1.3 Structure of this Thesis

CHAPTER 2

The ABS Language and its

Underlying Concepts

ABS [34,35,41] is an abstract behavioral specification language with a formal seman-
tics and a Java-like syntax. ABS targets the executable modeling of concurrent, dis-
tributed, and object-oriented systems. ABS adapts the concurrent model of the Creol
language [42, 45] and was developed and used by the European Project HATS [35]
(Highly Adaptable and Trustworthy Software using Formal Models). The modeling
language features developed in this thesis are presented as extensions of ABS.

In this chapter we discuss some basic concepts of concurrent object-oriented mod-
eling languages and then we position ABS in this context. For this purpose, Sec-
tions 2.1–2.3 introduce concurrent languages, object-oriented languages and formal
modeling languages, respectively. Section 2.4 introduces ABS specifically and Sec-
tion 2.5 explains how ABS fits into the context of HATS.

2.1 Concurrent Languages

Concurrent programs are present in a wide range of software applications. Concur-
rency is a property of systems in which several actions may be executed at the same
time. Concurrent programs are inherently more complex than sequential programs;
for example, race conditions can cause undesired behaviors in these kinds of pro-
grams. In concurrent programs, the goal is to have a number of processes (with
multiple threads of control), where each process is a sequential program, working and
cooperating together in a meaningful manner by communicating and synchronizing
with each other [8].

Communication is programmed using shared variables or message passing, depend-

9

10 2.1 Concurrent Languages

ing on the underlying architecture. In a shared memory setting, processes interact
through shared variables. In this setting, processes can concurrently access shared
variables, which may generate race conditions because the result of the execution can
depend on the speed or scheduling of the different processes; e.g., one process writes
to a variable that a second process reads, but the first process continues its execu-
tion and manages to change the value of the variable again before the second process
sees the results of the first change. In a distributed memory setting with networks of
machines, the interaction mechanism is message passing, where one process sends a
message that is received by another process [8].

Independent of the form of communication, processes need to synchronize. Cor-
rect synchronization coordinates concurrent activities so they can run efficiently, con-
sistently and predictably. We also need to take into consideration that too much
coordination reduces concurrency and too little leads to undesired behaviors [71].

Two different kinds of process synchronization mechanisms are mutual exclusion
and condition synchronization. Mutual exclusion ensures that statements in different
processes do not execute at the same time. Critical sections contain shared compo-
nents and use mutual exclusion to protect these shared components. As examples of
shared components we have variables, objects, etc. Condition synchronization occurs
whenever one process needs to wait for another. In this case, condition synchronization
delays processes until certain conditions are true [8]. Mutual exclusion and condition
synchronization may be implemented using locks, semaphores, or monitors [8].

Processes in distributed programs usually execute on different processors. In a
distributed program, communication channels are typically the shared component. In
this case processes must communicate using the channels in order to interact, and
the main concern is interprocess communication. The main interaction models for
distributed programs are remote procedure calls (RPC), rendezvous, and message
passing [8].

RPC and rendezvous are operations with a two-way communication flow. In these
operations the thread of control is transferred with the call (from the caller to the
callee and then back to the caller), and the caller activity is blocked until the return
values from the call have been received. Conceptually RPC creates a new process for
handle each call. In contrast rendezvous uses an existing process to handle the calls
(this is sometimes called extended rendezvous) [8].

In contrast to RPC and rendezvous, message passing uses a one-way communica-
tion flow and does not transfer control between the communicating parties. Message
passing can be synchronous and asynchronous. When message passing is synchronous,
the sender and the receiver must both be ready to transfer the message, and the sender
will not continue its execution until the receiver has received the message. A call in
this case can be captured by first sending an invocation message and then receiving
a reply message, where the calling process is blocked between the two synchronized

Chapter 2 The ABS Language and its Underlying Concepts 11

messages (this is sometimes called simple rendezvous). For distributed systems, this
form of synchronization may easily result in unnecessary delays due to the blocking of
internal activity in the processes, when for example, the sender waits for the receiver
to be ready for communication [8, 40].

When message passing is asynchronous, the emission of messages is always possi-
ble, regardless of when the receiver accepts the message. In this case the sender can
continue its execution and does not need to block [8]. This approach is well-known
from the Actor model [2]. However, basic actors do not distinguish between reply
messages and invocation messages [40], so two-way communication must be encoded
if needed.

2.2 Object-Oriented Languages and Concurrency

Object orientation is an important paradigm that is combined with concurrency in
programming languages such as Java and C♯. In particular for distributed systems,
object orientation is claimed to be one of the best programming techniques, superior
to other programming styles [18]. In the object-oriented programming style, a system
is described as a collections of objects [7]. The concept of objects was introduced
by Ole-Johan Dahl and Kristen Nygaard in Simula 67, a language for both process
description and programming with discrete event simulation [27,28].

The major concepts and principles of object orientation can be summarized as
follows [7, 18, 28, 59, 71]: Objects are self-contained units that have their own local
data and operations acting on these data. Objects are run-time instances of classes
and communicate by sending messages to each other. Classes with attributes (local
data) and methods (operations) are the main units for describing and structuring
programs. Classes act as program patterns that provide initial values to the attributes
and implement the behavior of the methods. Messages are requests from a sender to
a receiver to execute a method. Interfaces expose the behaviors implemented in the
methods, so that objects can send requests to execute them. Classes implement one
or more interfaces. Encapsulation is a way of hiding and restricting the direct access
to the data contained in the attributes of classes and objects. Subtype polymorphism
and dynamic dispatch allow interfaces to be implemented by different classes. Finally,
inheritance allows a class to be defined as an extension of another by reusing existing
implementations, leading to more concise programs. An object-oriented language
includes most of all of these features, but there are variants. For example, classes
may be replaced by object cloning and inheritance by delegation (e.g, Self [22]).

Considering the initial idea of object orientation introduced in Simula 67, it is nat-
ural to think that concurrency could be introduced by letting objects execute their
actions in parallel. In this context, the objects would act as concurrent processes,
and distribution would be obtained when objects run in parallel and interact by re-

12 2.2 Object-Oriented Languages and Concurrency

mote method calls. However this is not how most programming languages integrate
concurrency and object orientation [7, 18, 71]. Processes and objects are in principle
independent of each other and interact when processes invoke methods contained in
objects [71]. For example, both objects and threads can be dynamically created in
Java, and objects in Java are shared components in the sense of Section 2.1 and can
be accessed concurrently by separate threads. Consequently race condition problems
emerge when, for example, two threads executing methods in the same object, write
non-deterministically in the same variables. Unless concurrency, synchronization and
communication are carefully integrated in the language, a concurrent and distributed
object-oriented language can be difficult to use.

Discussions about how languages integrate concurrency and object orientation can
be found in [7,68,71]. Based on these references, the rest of this section presents dif-
ferent ways of combining concurrency and object orientation. The topics and the
presentation follow a similar structure as the one presented by Wyatt et al. [71].

Process management. Concurrent object-oriented languages use different approaches
for creating, activating and destroying processes.

• Process creation. Most concurrent object-oriented languages use one of two
approaches to start multiple processes or threads. In the first approach, pro-
grammers use special mechanisms for spawning threads. For example, Java
has a class Thread in the package java.lang. Programmers use instances of
this class to explicitly create new threads in Java. In this approach, it is the
responsibility of the programmer to explicitly implement and control the con-
current activity. Programmers use low-level synchronization mechanisms such
as synchronized blocks, locks, monitors and semaphores to implement mutual
exclusion and condition synchronization [8].

In the second approach, threads may be created automatically at message recep-
tion, like in the Actor model [2]. In this case the threads are encapsulated within
objects. In this approach, the semantics of the language is the one creating and
controlling the concurrent activity and guaranteeing mutual exclusion.

• Process termination. Processes may be terminated explicitly or implicitly after
a message has been processed. When process termination is implicit, processes
terminate after replying to a message. This is similar to the concept of RPC ex-
plained in Section 2.1. When process termination is explicit, programmers need
to explicitly decide when to terminate the processes, otherwise the processes
continue to execute after replying to messages and are available to respond to
other messages.

• Process activation. Processes may be activated when they are created, or remain
suspended until they receive a message. The first method causes more paral-

Chapter 2 The ABS Language and its Underlying Concepts 13

lelism because it lets processes run without messages. Most object-oriented
languages wait for messages to arrive before they activate processes. However
some languages have processes which are automatically activated; e.g., the run
method in active object languages such as Creol [40, 42,45].

Communication features. In concurrent object-oriented languages, objects com-
municate by sending messages to each other.

• Synchronization. Communication in object-oriented languages is either syn-
chronous or asynchronous.

As explained in Section 2.1, synchronous communication requires the sender
and the receiver to agree on the message transmission.

Asynchronous communication eliminates this synchronization and can increase
concurrent activity. With asynchronous communication, processes can continue
executing without waiting for an answer to their messages. Here if a reply is
needed, it must be programmed explicitly.

In eager invocation, asynchronous communication [42] is extended with a “mail-
box” using future variables [29]. In this case the sender continues executing and
the future variable or mailbox acts as a placeholder for the result. The sender
executes until it needs to access the future variable. If the result has been re-
turned at this point, the sender continues, if not it blocks and waits for the result.
Futures decrease the waiting for a reply and thereby increase concurrency.

• Message acceptance and message processing. Objects receive and process mes-
sages implicitly or explicitly. In the implicit case, messages are accepted auto-
matically. Some priority can be added to the messages if needed. Objects may
process messages in the order they are received, non-deterministically, or by the
priority assigned to them. In the explicit case, the objects control when they
receive and how they process messages.

Inheritance. A class can inherit methods and attributes from the classes in a class
hierarchy, which facilitates code reuse among classes. In this case subclasses
often behave as specialized versions of their parents.

Approaches to inheritance vary from fully static to fully dynamic. In the dy-
namic case, the run-time system determines the appropriate method definition
to activate (so-called late binding or dynamic dispatch). In a concurrent object-
oriented environment, this late binding may be a problem because there is a
potential for conflicts among inherited methods and synchronization require-
ments [31,32,57].

14 2.3 Formal Modeling Languages and Concurrency

In the static case, the code of the method is copied at compilation time. This
is simple and efficient but wastes run-time memory by replicating code. Addi-
tionally there are combined approaches that try to compensate for the problems
and disadvantages of the purely dynamic or static approaches.

We have seen that concurrency can be combined with object orientation in several
ways, depending on whether processes and objects are seen as distinct concepts or
unified into so-called concurrent objects. Furthermore, we have seen that there are
choices with respect of how processes interact and synchronize.

2.3 Formal Modeling Languages and Concurrency

Models are widely used in software development mainly to understand existing systems
that need to be replaced or redesigned and improved, or to design new systems. Magee
& Kramer [53] define a model as a simplified representation of the real world and, as
such, a model only includes those aspects of the real-world system that are relevant
to the problem at hand. When modeling concurrent and distributed systems, the idea
is to understand and design the desired behavior of real concurrent and distributed
programs. So the models abstract much of the details of the actual implementation of
these programs and typically focus on the synchronization aspects of the concurrent
behavior.

Formalisms for modeling and understanding concurrent systems constitute an ac-
tive research field, and new formalisms are frequently proposed and tested. The reason
for introducing new formalisms is to increase expressiveness in the sense of making a
concurrent model easy to understand and to show that it behaves correctly; i.e., new
formalisms aim at reducing complexity related to concurrent behavior in the models.
These formalisms include process algebras [37, 53,58], Petri nets [39], labelled transi-
tion systems [11], Actor models [2], distributed objects [21,42], action systems [10,60],
rewriting logic [55], etc.

In the field of process algebra and labelled transition systems, researchers have
built tools that support automatic verification techniques using, for example, bisim-
ulation checking, refinement and model checking. These tools can guarantee the cor-
rectness of models with finite state, but it is hard to model control flow that depends
on data and these approaches are challenged by the state space explosion generated
when composing various processes. These limitations make these formalisms hard to
apply to real systems.

When modeling is combined with the object-oriented approach, it is possible to
come closer to the initial idea of objects proposed by Dahl and Nygaard [27, 59]
where objects simulate interacting real-world entities. In this context, objects are

Chapter 2 The ABS Language and its Underlying Concepts 15

independent units interacting by means of method calls [21, 42, 45]. With respect to
the analysis, distributed objects combined with the characteristics of Actors make it
possible to use techniques for compositional reasoning [30] on more complex models
closer to real-world systems.

The formalisms presented above focus on the description of functional require-
ments of systems ignoring non-functional requirements such as performance, which
depends on time and on the underlying infrastructure, as discussed in Chapter 1. In
response to time-dependent requirements, there have been efforts dedicated to real-
time specifications, including extensions of the formalisms listed above, such as timed
automata [52] and linear hybrid automata [36] which also generate state space ex-
plosion. However there is not much research addressing non-functional requirements
involving more specific descriptions of underlying infrastructures, here as an example
in this direction, Verhoef et al. [67] shows an extension of VDM++ for the deployment
of embedded real-time systems.

2.4 The ABS Language

ABS is an acronym for Abstract Behavioral Specification. ABS is a modeling language
for the development of executable distributed object-oriented models. The kernel of
the language is called Core ABS [41]. The main characteristics of Core ABS can be
listed as follows [34, 35, 41]: (1) it has a formal syntax and semantics, (2) it has a
clean integration of concurrency and object orientation based on concurrent object
groups (COGs) [41, 63], and permits synchronous as well as asynchronous communi-
cation [29, 42] akin to Actors [2] and Erlang processes [9], (3) it offers a wide variety
of complementary modeling alternatives in a concurrent and object-oriented frame-
work that integrates algebraic datatypes, functional programming and imperative
programming, (4) compared to object-oriented programming languages, it abstracts
from low-level implementation choices such as data structures, and (5) compared to
design-oriented languages like UML diagrams, it models data-sensitive control flow
and it is executable. ABS is supported by code generators into, e.g., Java, Scala,
and Maude [26]. For the work in this thesis, the Maude back-end of ABS has been
extended to experiment with the language extensions and to perform simulations of
examples.

In addition, ABS supports the modeling of variability in software product line
engineering [23, 25, 61, 62] through delta-oriented specifications and feature models.
Unlike most object-oriented languages, ABS does not support class inheritance and
method overloading, instead code reuse is achieved by applying delta-oriented pro-
gramming techniques [24, 62]. However, as delta-oriented modeling techniques has
not directly been used in this thesis, this topic will not be further discussed.

ABS also provides explicit and implicit time-dependent behavior [15] and the mod-

16 2.4 The ABS Language

eling of deployment variability [6, 43, 44, 47, 48, 51]. These extensions are part of the
contributions of this thesis, consequently they are covered in detail in the papers
collected in Part II of the thesis. The rest of this section will focus on the layered
architecture of Core ABS.

2.4.1 The Functional and Imperative Layers of Core ABS

Core ABS combines a functional and an imperative layer [34,35,41].

The functional layer. The functional layer of Core ABS is used to model com-
putations on the internal data of the imperative layer. It allows modelers to abstract
from implementation details of imperative data structures at an early stage in the
software design and thus allows data manipulation without committing to a low-level
implementation choice. The functional layer combines a simple language for para-
metric algebraic data types (ADTs) and a pure first-order functional language with
definitions by case distinction and pattern matching. Core ABS includes a library with
four predefined datatypes, Bool, Int, String and Unit, and parametric datatypes such
as lists, sets, maps, etc. The predefined datatypes come with arithmetic and compar-
ison operators, and the parametric datatypes have built-in standard functions. The
type Unit is used as a return type for methods without explicit return value. All other
types and functions are user-defined.

The imperative layer. The imperative layer of Core ABS allows modelers to ex-
press cooperation between concurrent objects through communication and synchro-
nization. The imperative layer combines a simple imperative language, concurrent
object groups (COGs) [41,63] and asynchronous communication [29,42].

The concurrency model of Core ABS consists of a two-tiered model where the up-
per tier is based on the Actor model [2] with asynchronous communication [42] and
no shared state, while the lower tier uses concurrent object groups (COGs) and coop-
erative scheduling with synchronous and asynchronous communication. Using COGs,
a program’s components are represented as objects or as groups of objects, and the
behavior of the overall system results from the collaboration and interaction between
the COGs. In Core ABS, COGs communicate and synchronize using asynchronous
method calls and futures [29]. By using futures, it is always possible for an object
to call a method from another object in a different COG, continue with its execution
and then resynchronize later on the result, whenever it is needed. As discussed in Sec-
tion 2.2, this synchronization technique reduces the waiting for replies and increases
concurrency. In addition, asynchronous communication between COGs contributes to
represent the interaction in a natural manner and closer to real-world systems. In the
lower tier of Core ABS, synchronous method calls within a COG represent sequential

Chapter 2 The ABS Language and its Underlying Concepts 17

execution of code, which means that the caller is blocked and execution continues in
the callee until control is returned. Asynchronous method calls within a COG create
a new process that executes the code of the callee method, while the execution of the
caller continues. Multitasking in COGs is not preemptive (decided by a scheduler).
On the contrary, it is explicitly decided in the model when control can be transferred
to another process (so-called cooperative scheduling). In ABS, a process may suspend,
allowing another pending process to be activated. However, the suspending process
does not signal a particular other process, instead the selection of the new process is
left to the scheduler. In between the explicit scheduling points, only one process is
active inside a COG, which means that race conditions are avoided.

2.4.2 Design Choices of Core ABS

Based on the discussion of choices for language design in Section 2.2, we can summarize
the design choices of Core ABS as follows:

Process management. Processes in Core ABS are encapsulated within COGs.
The semantics of Core ABS guarantees mutual exclusion. Processes are created
automatically at method call reception and they terminate after they finish the
execution of the method call. Core ABS combines active and reactive behavior
of objects, which means that if an object has a run method, it is automatically
activated. Inside COGs, process may suspend, allowing other pending processes
to be activated.

Communication features. Core ABS allows synchronous and asynchronous com-
munication. Synchronous communication within a COG represents sequential
execution of code. Asynchronous communication within a COG creates a new
process that executes the code of the callee method. Asynchronous communi-
cation between COGs is based on the Actor model [2] and uses futures [29].
Method calls in Core ABS are accepted automatically. The cooperative sched-
uler inside COGs non-deterministically decides the order in which method calls
are processed.

Inheritance. Core ABS does not support class inheritance and method overloading.

Note: The details of the sequential execution of code inside a COG is orthogonal to
the methodology presented in this thesis. Although the simulation tool, implementing
most of the proposed extensions of this methodology, supports groups of objects, the
papers in this thesis focus on single object COGs (i.e., concurrent objects) to simplify
the presentation.

18 2.5 The HATS Project

2.5 The HATS Project

HATS stands for Highly Adaptable and Trustworthy Software using Formal Models
and was a project supported by the EU’s 7th Framework Program. The main idea
behind the HATS project was to develop a formal method for the design, analysis,
and implementation of highly adaptable software systems that are characterized by a
high degree of trustworthiness [35]. As the technical core for supporting this formal
methodology, HATS developed and used ABS. ABS is not only a modeling notation,
it also has a tool suite that helps to automate the software engineering process. An
overview of the tool suite is given in [69].

One of the challenges in the HATS project was to make ABS well-suited for the for-
mal modeling of variability in software product lines. One dimension of this challenge
was a configurable deployment architecture which in part inspired the work presented
in this thesis. The methodology that HATS proposed includes an integration of low-
level concepts such as system time, resource-restrictions, latency, and scheduling at
the level of the ABS language. This integration is related to the contributions of this
thesis and will be presented in the rest of this thesis.

CHAPTER 3

Overview of the Research Papers

The research contributions of this thesis are presented in four papers which are briefly
summarized in this chapter. The full content of the papers appears in Part II, as
in their original publications, but have been reformatted to fit the structure of this
thesis. The language that is used and extended in the papers is Core ABS. Paper 1
extends Core ABS with real-time in order to express explicit time dependent behav-
ior using a dense time domain (resulting in the language Real-Time ABS), and with
application-level scheduling policies. Paper 2 integrates deployment architectures for
CPU resources and Real-Time ABS. Paper 3 presents a case study that models virtu-
alized services and distributed applications using Real-Time ABS and its integration
with deployments architectures. Paper 4 combines deployment architectures, cost
estimation based on worst-case cost analysis for memory usage and Core ABS. Ad-
ditionally, Section 3.5 lists other publications, to which the author of this thesis has
contributed during her Ph.D. studies, and which are not presented as part of this
thesis, but are related to the overall goal presented in Section 1.2.

3.1 Paper 1: User-defined Schedulers

for Real-time Concurrent Objects

Authors: Joakim Bjørk, Frank S. de Boer, Einar Broch Johnsen, Rudolf Schlatte
and Silvia Lizeth Tapia Tarifa.

Publication: Journal of Innovations in Systems and Software Engineering, 2013 [15].

Summary: This paper presents an approach to express and analyze application-
specific scheduling decisions during the software design phase. For this purpose, the
paper introduces Real-Time ABS, a high-level modeling language for real-time con-

19

20 3.2 Paper 2: Deployment Architectures and Resource Consumption

current objects with user-defined schedulers and deadlines for method calls.

Real-Time ABS extends the syntax and semantics of Core ABS with time-dependent
behavior. In this paper, the Real-Time ABS extension allows models to incorporate
explicit manipulation of time from a dense time domain, which may be used to repre-
sent execution time inside methods. The local passage of time is expressed in terms
of durations (as in, e.g., UPPAAL [52]), but in Real-Time ABS durations may either
suspend a process or block an object for a certain amount of time.

Real-Time ABS also extends the syntax and semantics of Core ABS with dead-
lines for method calls and with the ability to refine the non-deterministic per-object
scheduler by allowing each concurrent object to embody its own user-defined schedul-
ing policy for its process queue. To be able to express user-scheduling policies, we lift
run-time processes to the level of the modeling language.

By expressing per-object scheduling policies at the software modeling level, we
may analyze and resolve deployment requirements related to performance at design
time. For example, we may use deadlines associated to method calls to measure and
compare the performance of the same model using different user-defined scheduling
policies such as, first in first out, earliest deadline first, shortest job first, conditional
scheduling depending on the size of the process queue, etc.

This paper also reports results obtained from a tool that implements Real-Time
ABS extending the Maude interpreter of Core ABS. This tool can be used for sim-
ulation and measurements of Real-Time ABS models. Finally this paper presents a
series of examples showing how to express user-defined schedulers in Real-Time ABS
and results from running the examples in the tool.

3.2 Paper 2: Integrating Deployment

Architectures and Resource Consumption

in Timed Object-Oriented Models

Authors: Einar Broch Johnsen, Rudolf Schlatte and Silvia Lizeth Tapia Tarifa.

Publication: Research Report 438, Department of Informatics, University of Oslo,
February 2014. Submitted to the Journal of Logic and Algebraic Programming, in
second round revision [51]. This work improves and unifies results from three confer-
ence papers [43,44,48].

Summary: This paper presents a complete formal syntax and semantics that inte-
grates Real-Time ABS with (1) primitives for expressing deployment infrastructures,
(2) primitives for resource management, and (3) the ability to express user-defined

Chapter 3 Overview of the Research Papers 21

execution costs that capture resource consumption of executable models. The under-
lying deployment infrastructure of the targeted system is part of the system model,
but defaults are provided which allow the modeler to ignore the deployment aspects
of the model if desired.

In this paper, the syntax and semantics of Real-Time ABS allows explicit and im-
plicit manipulation of time. In addition to the explicit manipulation of time explained
in Paper 1, the execution time can also be expressed implicitly. In this case time can
be observed by measurements of the executing model. In this way, executable models
could for example, compare time values or monitor a system’s response time.

To model deployment infrastructures, we introduce the concept of deployment
components [44]. A deployment component captures a location in a deployment ar-
chitecture and is a resource-restricted execution context for a set of concurrent object
groups (COGs) focusing on processing resources. A deployment component also con-
trols how much computation can occur in this set of COGs between observable points
in time. Deployment components may be dynamically created and are parametric
in the amount of processing resources they provide to their objects. To simplify the
presentation, this paper focuses on single object COGs.

To express resource management, we introduce primitives that allow an object to
observe the execution capacity of its current deployment component and the average
load of its deployment component over time. With this information, objects can
detect and predict poor performance. We also introduce primitives that allow objects
to request additional execution capacity from other deployment components and to
migrate between deployment components.

To model resource consumption, we introduce user-defined costs. In our semantics,
each computation step has an associated cost which is specified by a user-defined cost
expression or by a default value.

The proposed approach of this paper, that uses these extensions, can be charac-
terized by having a separation of concerns between execution cost, expressed in the
model, and execution capacity, expressed in the deployment component. This sep-
aration of concerns makes it easy to compare timing and performance for different
deployments of a system already during the design phase (rather than to assume that
this relationship is fixed in terms of, e.g., specified execution times).

The explicit representation of deployment architectures and resource consumption
allows application-level measurement of response time and the modeling of resource
management using load balancing strategies expressed in software models in a very nat-
ural and flexible way. In addition, performance analysis may be applied by comparing
deployment possibilities that vary in, for example, the deployment infrastructure, the
execution capacity, the client traffic, the resource management strategy, etc.

The semantics presented in this paper has been used to extend the ABS tool suite,

22 3.3 Paper 3: Resource-Awareness and Cloud Infrastructures

in particular the Maude interpreter for Real-Time ABS. This paper also includes a
number of examples with simulation results concerning performance evaluation.

3.3 Paper 3: Modeling Resource-Aware

Virtualized Applications for the Cloud

in Real-Time ABS

Authors: Einar Broch Johnsen, Rudolf Schlatte and Silvia Lizeth Tapia Tarifa.

Publication: Formal Methods and Software Engineering. Proceedings of the 14th
International Conference on Formal Engineering Methods, ICFEM 2012 [50]

Summary: This paper shows how our approach with deployment components in
Real-Time ABS [51] (presented in Paper 2) may be used to model virtualized systems
in a cloud environment. The models consist of a cloud provider which offers billable
services to a client application. The client application is a scientific application that
concurrently processes and merges heavy graphics for scientific purposes.

The model of the cloud provider is composed of dynamically created virtual ma-
chines which are modeled using deployment components with given CPU capacities.
The communication interface of the cloud provider allows a client application to create
machines with a desired execution capacity, acquire machines to start task executions,
release machines and finally get the accumulated usage cost.

The client application is a model of the Montage toolkit [38]. Montage is a portable
software toolkit for generating science-grade mosaics by composing multiple astronom-
ical images. Montage is a good candidate for cloud deployment because it manipulates
a high volume of data and because it can be configured to have a partially ordered
workflow with highly parallelizable tasks.

We analyze the behavior of the whole system by means of simulations using the
extended ABS tool suite. We compare and validate our results with previous results
obtained for the Montage toolkit using a specialized simulation tool. We also show
new results comparing different machine allocations strategies at the client application
level.

Chapter 3 Overview of the Research Papers 23

3.4 Paper 4: Simulating Concurrent Behaviors

with Worst-Case Cost Bounds

Authors: Elvira Albert, Samir Genaim, Miguel Gómez-Zamalloa, Einar Broch Johnsen,
Rudolf Schlatte and Silvia Lizeth Tapia Tarifa

Publication: Proceedings of the 17th International Symposium on Formal Methods,
FM 2011 [6]

Summary: This paper presents the formal syntax and semantics of an integration
that shows how Core ABS extended with deployment components can be combined
with symbolic upper bounds for estimating memory consumption.

As explained in Paper 2, a deployment component imposes resource-restrictions
on the concurrent execution of objects deployed on it. The main idea of the approach
proposed in this paper is to apply static worst-case cost analysis to the sequential
parts of a model and as a result to get estimations of resource consumption, for which
practical cost analysis methods exist, while in the concurrent part of the model to
use simulations measuring the resource consumption inside deployment components.
How resources are assigned and consumed inside a deployment component depends
on a cost model which abstracts from the allocation and deallocation of resources. In
this paper we propose a generic cost model and integrate it in the semantics of the
language. Following this idea, the working example consider a cost model for memory
consumption as an instance of the generic approach.

This paper also reports results obtained from a prototype tool that implements the
semantics presented in this paper and from the COSTABS tool [3] that automatically
calculates the upper cost bounds for sequential code written in ABS. These tools
can be used for simulations and measurements. This paper also presents results from
applying these tools to the example of the paper.

3.5 Additional Publications

This section lists other publications to which the author of this thesis has contributed
during her Ph.D. research, but which are not directly included as part of this thesis.
These papers are related to the goal of this thesis or correspond to shorter and/or
preliminary versions of the work reported in this thesis.

• Title: Formal Modeling and Analysis of Resource Management for
Cloud Architectures: An Industrial Case Study Using Real-Time ABS.

24 3.5 Additional Publications

Authors: Elvira Albert, Frank S. de Boer, Reiner Hähnle, Einar Broch Johnsen,
Rudolf Schlatte, Silvia Lizeth Tapia Tarifa and Peter Y. H. Wong

Publication: Journal of Service Oriented Computing and Applications [5]

• Title: A Formal Model of Object Mobility in Resource-Restricted Deployment
Scenarios.

Authors: Einar Broch Johnsen, Rudolf Schlatte and Silvia Lizeth Tapia Tarifa

Publication: Proceedings of the 8th International Symposium on Formal As-
pects of Component Software, FACS 2011 [48]

• Title: Modeling Application-Level Management of Virtualized Resources in
ABS.

Authors: Einar Broch Johnsen, Rudolf Schlatte and Silvia Lizeth Tapia Tarifa

Publication: Formal Methods for Components and Objects, 10th International
Symposium, FMCO 2011 [47]

• Title: A Formal Model of User-Defined Resources in Resource-Restricted De-
ployment Scenarios.

Authors: Einar Broch Johnsen, Rudolf Schlatte and Silvia Lizeth Tapia Tarifa

Publication: Proceedings of the 2nd International Conference on Formal Ver-
ification of Object Oriented Software, FoVeOOS 2011 [49]

• Title: Integrating Aspects of Software Deployment in High-Level Executable
Models.

Authors: Einar Broch Johnsen, Rudolf Schlatte and Silvia Lizeth Tapia Tarifa

Publication: Proceedings for the Norsk Informatikk Konferanse, NIK 2011 [46]

• Title: Validating Timed Models of Deployment Components with Parametric
Concurrency.

Authors: Einar Broch Johnsen, Olaf Owe, Rudolf Schlatte and Silvia Lizeth
Tapia Tarifa

Publication: Proceedings of the 1st International Conference on Formal Ver-
ification of Object-Oriented Software, FoVeOOS 2010 [44]

• Title: Dynamic Resource Reallocation between Deployment Components.

Authors: Einar Broch Johnsen, Olaf Owe, Rudolf Schlatte and Silvia Lizeth
Tapia Tarifa

Publication: Proceedings of the 12th International Conference on Formal En-
gineering Methods, ICFEM 2010 [43]

Chapter 3 Overview of the Research Papers 25

• Title: Models of Rate Restricted Communication for Concurrent Objects.

Authors: Rudolf Schlatte, Einar Broch Johnsen, Fatemeh Kazemeyni and Sil-
via Lizeth Tapia Tarifa

Publication: Electronic Notes in Theoretical Computer Science, Volume 274,
2011 [64]

26 3.5 Additional Publications

CHAPTER 4

Conclusions

This chapter returns to the research questions formulated in Section 1.2 and discusses
them in connection with the contributions of this thesis. This chapter also suggests
directions for future work.

4.1 Summary of Contributions

Resource-aware distributed applications in the terminology of this thesis are applica-
tions that are able to, e.g., adapt themselves to changes in client traffic by balancing
their service performance and cost. It is a hypothesis of this thesis that it is an ad-
vantage to make deployment decisions early in the development of applications, and
that this is specially important for resource-aware applications. To make model-based
deployment decisions for resource-aware distributed applications, a software architect
needs to be able to model deployment infrastructures and then express different de-
ployment decisions together with the model of these distributed applications. In such
settings, the analysis activity focuses on evaluating which of the deployment scenarios
fits better with respect to a desired level of service quality and reasonable costs. In
order to make a quantitative evaluation of performance, software architects could, for
example, measure the response time of method calls, measure resource usage (e.g.,
cpu, memory) simulating normal and overloaded client scenarios, etc.

Let us consider some examples of design decisions related to performance and
resource-awareness. Resource-aware distributed applications could monitor the state
of the resources provided by their infrastructure; with this information, they are able
to react better and to control scenarios where there is a risk of reaching unacceptably
long response times. These kind of applications could also implement user-defined
load balancers which are in charge of recovering from low performance scenarios.
Possible resource balancer strategies could be temporary object migration to physical

27

28 4.1 Summary of Contributions

devices with low workload or on-demand resource provisioning on virtual and elastic
infrastructures such as the ones offered by clouds. Both strategies contribute to a
more effective usage of resources.

The rest of this section explains how the methodology presented in this thesis and
based on the ABS language, addresses design decisions related to performance and
resource-awareness by answering the research questions formulated in Section 1.2.

RQ1: How can we model deployment architectures for resource-aware

distributed applications?

The methodology proposed in this thesis uses deployment components to model
deployment architectures in ABS. Deployment components and their formal
syntax and semantics are explained in detail in Paper 2. Examples of how de-
ployment components are used to express deployment architectures can be found
in Papers 2, 3 and 4. Paper 2 and Paper 3 focus on deployment architectures
depicting processing resources while Paper 4 integrates deployment components
with a proposed cost model for memory resources in the semantics of the lan-
guage. Particularly, Paper 3 shows an example modeling an elastic and scalable
deployment architecture.

RQ2: How can we express architectural decisions related to quality of

service in models of resource-aware distributed applications?

The methodology proposed in this thesis offers the possibility to express design
decisions related to quality of service as follows: Paper 1 explains how user-
defined schedulers can be integrated into the syntax and semantics of ABS and
used to control process selection inside concurrent objects. Paper 2 explains
how resource management primitives integrated into the syntax and semantics
of ABS can be used for monitoring and changing the state of deployment com-
ponents and also consider object migration between deployment components
as a way to adjust load. Resource management primitives and user-defined
schedulers can be used independently (as shown in the different examples of Pa-
pers 1, 2 and 3) or combined together when modeling load-balancing strategies
for improving performance. Both extensions make it easier for the modeler to
express resource-awareness.

RQ3: How can we estimate and quantify quality of service in models of

resource-aware distributed applications?

The methodology proposed in this thesis allows the estimation and quantifica-
tion of quality of service as follows: Deadlines to method calls and cost associ-
ated to pieces of code are integrated in the semantics of ABS as explained in
Papers 1 and 2. The examples in Paper 1 use this integration together with du-
rations, representing the explicit passage of time inside methods, to measure the

Chapter 4 Conclusions 29

number of missed deadlines under different user-defined schedulers for activat-
ing processes inside concurrent objects. Paper 2 uses this integration together
with deployment components in different ways, which are demonstrated in three
examples. The first example measures the number of successful requests (the
method calls accepted by the service) and successful responses (the calls suc-
cessfully executed without missing the deadline) under two different assumptions
about client behavior and with varying amounts of resources in the deployment
components. The second example measures the number of successful responses
(the call successfully executed without missing the deadline) using different load
balancing strategies and with varying amounts of resources in the deployment
components. The third example measures the response time of method calls
when either applying or not applying a given load balancing strategy. The case
study in Paper 3 demonstrates this integration and deployment components to
measure resource usage and response time varying the number of virtual de-
vices. Paper 4 uses deployment components with a cost model for memory
resources and static cost analysis to measure resource usage varying the amount
of resources in the deployment components.

RQ4: How can we compare the suitability of deployment architectures

in models of resource-aware distributed applications?

By extracting and organizing the different measurements that were recorded dur-
ing simulations of different deployment scenarios, it is possible to compare how
the same functional model could behaves under different deployment choices.
In our work, we have opted for presenting these comparisons visually, using
graphics to make it easy to compare the different deployment decisions. Paper 1
shows an example that compares how a functional model performs with different
user-defined schedulers. Paper 2 shows examples that compare how a functional
model performs with different deployment architectures, how a functional model
performs with different load balancing strategies and how the performance of
a model improves when it administrates its own resources. Paper 3 includes a
case study in which the simulation results show how a functional model performs
when it is deployed in architectures containing different amounts of virtual ma-
chines. It also shows results about how much the usage of these architectures
costs (e.g., deployment models with more virtual machines are faster but more
expensive). Consequently, it is possible to compare performance versus cost. Fi-
nally, Paper 4 shows an example that compares how a functional model performs
when varying amounts of resources in its deployment architecture.

By analyzing the measurements obtained from the simulations of models of resource-
aware distributed applications, software architects may be able to acquire a better
understanding of the trade-offs from the different deployment scenarios and may be
able to make better design decisions for these kinds of applications during the de-

30 4.2 Future Work

sign phase. Software architects may also be able to better predict and control the
performance, scalability and cost of the targeted resource-aware application.

The modeling and analysis of design decisions for resource-aware distributed ap-
plications is an interesting problem. The methodology proposed in this thesis sup-
ports these activities by including a way to express and control application-specific
information such as time-sensitive behaviors, user-defined schedulers, deadlines to
an application’s different services, the resource cost of an application’s services, and
deployment-specific information for resource usage.

The methodology proposed in this thesis also meets the requirements stated in
Section 1.2. We now revisit these requirements and their rationale:

Concurrent and distributed object-oriented framework. Since the method-
ology proposed in this thesis extends Core ABS, this methodology uses a con-
current and distributed object-oriented framework. We believe that an object-
oriented approach can make our methodology easier to use for software devel-
opers.

Model-based approach. The methodology proposed in this thesis extends a mod-
eling language with design-time deployment decisions. We believe a model-based
approach is specially important for resource-aware applications which dynami-
cally control their own deployment infrastructure.

Formality. The methodology proposed in this thesis extends a formal language and
the considered extensions are also formally defined by means of a formal syntax
and semantics that supports rigorous and formal analysis.

4.2 Future Work

In this section we identify some possible extensions and future research directions of
the methodology proposed in this thesis. The collected papers in this thesis focus on
processing and memory resources. One possible extension would be to look at other
kind of resources such as bandwidth and electric power. It would also be interesting
to lift resources to the level of the modeling language in order to support user-defined
resources. In this context, resources could be modeled by means of user-defined cost
models which specify how resources are both allocated and consumed. Moreover, the
integration of multiple kinds of resources in the same deployment architecture could
be useful to analyze more complex scenarios.

This thesis has focused on how to express and formalize resource-aware applica-
tions deployed on virtualized infrastructures. The analysis activity has mostly been in
terms of simulations. Given that our proposed methodology has a formal semantics,

Chapter 4 Conclusions 31

it seems possible that this methodology can be extended to support stronger analysis
techniques, such as deductive verification.

Another line of future work, in the direction of formal analysis methods, is to
look at the guarantee of contractual obligations related to performance when invok-
ing methods. One possibility would be to associate preconditions and postconditions
to interfaces and let these act as contracts [56] specifying aspects of service level agree-
ments (SLAs). As proposed by the EU FP7 project Envisage [4], it would be useful
to integrate a way of representing SLAs in the ABS language, so models of virtu-
alized services could include contracts that guarantee desired levels of performance.
In this way, the methodology proposed in this thesis could serve as a foundation for
formalizing performance aspects of SLAs.

Looking at language design issues, the proposed methodology in this thesis is
built on top of the ABS language. ABS has a particular design with respect of how it
integrates object orientation and concurrency. It would be interesting to investigate if
this methodology could be easily integrated with other object-oriented and concurrent
languages which are based on different design choices with respect to concurrency and
object orientation, such as thread-based languages.

Another interesting topic would be to investigate how to model and analyze other
non-functional requirements related to deployment, for example, security and fault-
tolerance. In this case the first steps could include, for example, to find suitable
abstractions to represent these requirements at the abstraction level of the modeling
language [19].

32 4.2 Future Work

Bibliography

[1] Pekka Abrahamsson, Nilay Oza, and Mikko T. Siponen. Agile software devel-
opment methods: A comparative review. In Agile Software Development, pages
31–59. Springer, 2010.

[2] Gul A. Agha. ACTORS: A Model of Concurrent Computations in Distributed
Systems. The MIT Press, Cambridge, Mass., 1986.

[3] Elvira Albert, Puri Arenas, Samir Genaim, Miguel Gómez-Zamalloa, and Ger-
mán Puebla. COSTABS: a cost and termination analyzer for ABS. In Oleg
Kiselyov and Simon Thompson, editors, Proceedings of the ACM SIGPLAN
2012 Workshop on Partial Evaluation and Program Manipulation, PEPM 2012,
Philadelphia, Pennsylvania, USA, January 23-24, 2012, pages 151–154. ACM,
2012.

[4] Elvira Albert, Frank de Boer, Reiner Hähnle, Einar Broch Johnsen, and Cosimo
Laneve. Engineering Virtualized Services. In Proceedings of the 2nd Nordic
Symposium on Cloud Computing and Internet Technologies (NordiCloud 2013),
pages 59–63. ACM, 2013.

[5] Elvira Albert, Frank S. de Boer, Reiner Hähnle, Einar Broch Johnsen, Rudolf
Schlatte, S. Lizeth Tapia Tarifa, and Peter Y. H. Wong. Formal modeling and
analysis of resource management for cloud architectures. an industrial case study
using Real-Time ABS. Journal of Service-Oriented Computing and Applications,
2013. To appear.

[6] Elvira Albert, Samir Genaim, Miguel Gómez-Zamalloa, Einar Broch Johnsen,
Rudolf Schlatte, and S. Lizeth Tapia Tarifa. Simulating concurrent behaviors
with worst-case cost bounds. In Michael Butler and Wolfram Schulte, editors,
Proceedings of the 17th International Symposium on Formal Methods (FM 2011),
volume 6664 of Lecture Notes in Computer Science, pages 353–368. Springer, June
2011.

[7] Pierre America. Issues in the design of a parallel object-oriented language. Formal
Aspects of Computing, 1(4):366–411, 1989.

33

34 BIBLIOGRAPHY

[8] Gregory R. Andrews. Foundations of Multithreaded, Parallel, and Distributed
Programming. Addison Wesley, 2000.

[9] Joe Armstrong. Programming Erlang: Software for a Concurrent World. Prag-
matic Bookshelf, 2007.

[10] Ralph-Johan Back and Kaisa Sere. Stepwise refinement of action systems. Struc-
tured Programming, 12(1):17–30, 1991.

[11] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT
Press, 2008.

[12] Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta Simeoni.
Model-based performance prediction in software development: A survey. IEEE
Transactions on Software Engineering., 30(5):295–310, 2004.

[13] Sami Beydeda, Matthias Book, and Volker Gruhn. Model-Driven Software De-
velopment. Springer, 2005.

[14] Paul Beynon-Davies, Chris Carne, Hugh Mackay, and Douglas Tudhope. Rapid
Application Development (RAD): An empirical review. European Journal of
Information Systems, 8(3):211–223, 1999.

[15] Joakim Bjørk, Frank S. de Boer, Einar Broch Johnsen, Rudolf Schlatte, and
S. Lizeth Tapia Tarifa. User-defined schedulers for real-time concurrent objects.
Innovations in Systems and Software Engineering, 9(1):29–43, 2013.

[16] Grady Booch, James Rumbaugh, and Ivar Jacobson. Unified Modeling Lan-
guage User Guide, The (2Nd Edition) (Addison-Wesley Object Technology Se-
ries). Addison-Wesley Professional, 2005.

[17] Howard Bowman and John Derrick. Issues in formal methods (chapter 3). In
H. Bowman and J. Derrick, editors, Formal Methods for Distributed Processing, A
Survey of Object-oriented Approaches, pages 18–35. Cambridge University Press,
2001.

[18] Manfred Broy. Distributed concurrent object-oriented software. In Olaf Owe,
Stein Krogdahl, and Tom Lyche, editors, From Object-Orientation to Formal
Methods, volume 2635 of Lecture Notes in Computer Science, pages 83–95.
Springer, 2004.

[19] Manfred Broy and Ralf Reussner. Architectural concepts in programming lan-
guages. IEEE Computer, 43(10):88–91, 2010.

[20] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and
Ivona Brandic. Cloud computing and emerging IT platforms: Vision, hype, and

BIBLIOGRAPHY 35

reality for delivering computing as the 5th utility. Future Generation Computer
Systems, 25(6):599 – 616, 2009.

[21] Denis Caromel and Ludovic Henrio. A Theory of Distributed Object. Springer,
2005.

[22] Craig Chambers, David Ungar, Bay-Wei Chang, and Urs Hölzle. Parents are
shared parts of objects: Inheritance and encapsulation in self. Lisp and Symbolic
Computation, 4(3):207–222, 1991.

[23] Dave Clarke, Nikolay Diakov, Reiner Hähnle, Einar Broch Johnsen, Ina Schaefer,
Jan Schäfer, Rudolf Schlatte, and Peter Y. H. Wong. Modeling spatial and tem-
poral variability with the HATS abstract behavioral modeling language. In Marco
Bernardo and Valérie Issarny, editors, Proc. 11th Intl. School on Formal Methods
for the Design of Computer, Communication and Software Systems (SFM 2011),
volume 6659 of Lecture Notes in Computer Science, pages 417–457. Springer,
2011.

[24] Dave Clarke, Michiel Helvensteijn, and Ina Schaefer. Abstract delta modeling. In
Eelco Visser and Jaakko Järvi, editors, Proc. Ninth International Conference on
Generative Programming and Component Engineering, (GPCE’10), pages 13–22.
ACM, 2010.

[25] Dave Clarke, Radu Muschevici, José Proença, Ina Schaefer, and Rudolf Schlatte.
Variability modelling in the ABS language. In Bernhard K. Aichernig, Frank S.
de Boer, and Marcello M. Bonsangue, editors, Proc. 9th Intl. Symposium on
Formal Methods for Components and Objects (FMCO’10), volume 6957 of Lecture
Notes in Computer Science, pages 204–224. Springer, 2012.

[26] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-
Oliet, José Meseguer, and Carolyn L. Talcott, editors. All About Maude - A High-
Performance Logical Framework, How to Specify, Program and Verify Systems in
Rewriting Logic, volume 4350 of Lecture Notes in Computer Science. Springer,
2007.

[27] Ole-Johan Dahl. The Roots of Object-orientation: The Simula Language.
In Manfred Broy and Erns Denert, editors, Software Pioneers, pages 78–90.
Springer, 2002.

[28] Ole-Johan Dahl, Bjørn Myhrhaug, and Kristen Nygaard. Simula 67, common
base language. Technical Report S-2, Norsk Regnesentral (Norwegian Computing
Center), Oslo, Norway, may 1968.

[29] Frank S. de Boer, Dave Clarke, and Einar Broch Johnsen. A complete guide
to the future. In Rocco de Nicola, editor, Proc. 16th European Symposium on

36 BIBLIOGRAPHY

Programming (ESOP’07), volume 4421 of Lecture Notes in Computer Science,
pages 316–330. Springer, March 2007.

[30] Crystal Chang Din, Johan Dovland, Einar Broch Johnsen, and Olaf Owe. Ob-
servable behavior of distributed systems: Component reasoning for concurrent
objects. Journal of Logic and Algebraic Programming, 81(3):227–256, 2012.

[31] Johan Dovland, Einar Broch Johnsen, and Olaf Owe. Reasoning about asyn-
chronous method calls and inheritance. In Chunming Rong, editor, Proceedings
of the Norwegian Informatics Conference (NIK’04), pages 213–224. Tapir Aca-
demic Publisher, November 2004.

[32] Szabolcs Ferenczi. Guarded methods vs. inheritance anomaly: Inheritance
anomaly solved by nested guarded method calls. ACM SIGPLAN Notices,
30(2):49–58, February 1995.

[33] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software
Engineering. Prentice Hall PTR, 2nd edition, 2002.

[34] Reiner Hähnle. The abstract behavioral specification language: A tutorial intro-
duction. In Formal Methods for Components and Objects, volume 7866 of Lecture
Notes in Computer Science, pages 1–37. Springer, 2013.

[35] Reiner Hähnle, Michiel Helvensteijn, Einar Broch Johnsen, Michael Lienhardt,
Davide Sangiorgi, Ina Schaefer, and Peter Y. H. Wong. Hats abstract behavioral
specification: The architectural view. In Bernhard Beckert, Ferruccio Damiani,
FrankS. Boer, and MarcelloM. Bonsangue, editors, Formal Methods for Compo-
nents and Objects, volume 7542 of Lecture Notes in Computer Science, pages
109–132. Springer, 2013.

[36] Thomas A. Henzinger. The theory of hybrid automata. In Proceedings, 11th
Annual IEEE Symposium on Logic in Computer Science, LICS ’96, pages 278–
292. IEEE Computer Society, 1996.

[37] C. A. R. Hoare. Communicating sequential processes. Prentice-Hall, Inc., 1985.

[38] Joseph C. Jacob, Daniel S. Katz, G. Bruce Berriman, John Good, Anastasia C.
Laity, Ewa Deelman, Carl Kesselman, Gurmeet Singh, Mei-Hui Su, Thomas A.
Prince, and Roy Williams. Montage: a grid portal and software toolkit for
science-grade astronomical image mosaicking. International Journal of Compu-
tational Science and Engineering, 4(2):73–87, July 2009.

[39] Kurt Jensen and Lars Michael Kristensen. Coloured Petri Nets: Modelling and
Validation of Concurrent Systems. Springer, 2009.

BIBLIOGRAPHY 37

[40] Einar Broch Johnsen, Jasmin Christian Blanchette, Marcel Kyas, and Olaf
Owe. Intra-object versus inter-object: Concurrency and reasoning in Creol. In
Proc. 2nd Intl. Workshop on Harnessing Theories for Tool Support in Software
(TTSS’08), volume 243 of Electronic Notes in Theoretical Computer Science,
pages 89–103. Elsevier, 2009.

[41] Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte, and Martin
Steffen. ABS: A core language for abstract behavioral specification. In Bern-
hard Aichernig, Frank S. de Boer, and Marcello M. Bonsangue, editors, Proc.
9th International Symposium on Formal Methods for Components and Objects
(FMCO 2010), volume 6957 of Lecture Notes in Computer Science, pages 142–
164. Springer, 2011.

[42] Einar Broch Johnsen and Olaf Owe. An asynchronous communication model
for distributed concurrent objects. Software and Systems Modeling, 6(1):35–58,
March 2007.

[43] Einar Broch Johnsen, Olaf Owe, Rudolf Schlatte, and S. Lizeth Tapia Tarifa.
Dynamic resource reallocation between deployment components. In J. S. Dong
and H. Zhu, editors, Proceedings of the 12th International Conference on Formal
Engineering Methods (ICFEM’10), volume 6447 of Lecture Notes in Computer
Science, pages 646–661. Springer, November 2010.

[44] Einar Broch Johnsen, Olaf Owe, Rudolf Schlatte, and S. Lizeth Tapia Tarifa. Val-
idating timed models of deployment components with parametric concurrency. In
B. Beckert and C. Marché, editors, Proceedings of the 1st International Confer-
ence on Formal Verification of Object-Oriented Software (FoVeOOS’10), volume
6528 of Lecture Notes in Computer Science, pages 46–60. Springer, 2011.

[45] Einar Broch Johnsen, Olaf Owe, and Ingrid Chieh Yu. Creol: A type-safe object-
oriented model for distributed concurrent systems. Theoretical Computer Science,
365(1–2):23–66, November 2006.

[46] Einar Broch Johnsen, Rudolf Schlatte, and S. Lizeth Tapia Tarifa. Integrating
aspects of software deployment in high-level executable models. In Proceedings
of the Norwegian International Conference - Information Technology (NIK’11).
Tapir Akademisk Forlag, 2011.

[47] Einar Broch Johnsen, Rudolf Schlatte, and S. Lizeth Tapia Tarifa. Modeling
application-level management of virtualized resources in ABS. In Bernhard Beck-
ert, Ferruccio Damiani, Frank S. de Boer, and Marcello M. Bonsangue, editors,
Formal Methods for Components and Objects, 10th International Symposium
(FMCO2011), volume 7542 of Lecture Notes in Computer Science, pages 89–108.
Springer, 2011.

38 BIBLIOGRAPHY

[48] Einar Broch Johnsen, Rudolf Schlatte, and S. Lizeth Tapia Tarifa. A formal model
of object mobility in resource-restricted deployment scenarios. In Farhad Arbab
and Peter Ölveczky, editors, Proceedings of the 8th International Symposium on
Formal Aspects of Component Software (FACS 2011), volume 7253 of Lecture
Notes in Computer Science, pages 187–204. Springer, 2012.

[49] Einar Broch Johnsen, Rudolf Schlatte, and S. Lizeth Tapia Tarifa. A formal
model of user-defined resources in resource-restricted deployment scenarios. In
Bernhard Beckert, Ferruccio Damiani, and Dilian Gurov, editors, Proceedings
of the 2nd International Conference on Formal Verification of Object-Oriented
Software (FoVeOOS’11), volume 7421 of Lecture Notes in Computer Science,
pages 196–213. Springer, 2012.

[50] Einar Broch Johnsen, Rudolf Schlatte, and S. Lizeth Tapia Tarifa. Modeling
resource-aware virtualized applications for the cloud in Real-Time ABS. In Toshi-
aki Aoki and Kenji Tagushi, editors, Proceedings of the 14th International Con-
ference on Formal Engineering Methods (ICFEM’12), volume 7635 of Lecture
Notes in Computer Science, pages 71–86. Springer, November 2012.

[51] Einar Broch Johnsen, Rudolf Schlatte, and S. Lizeth Tapia Tarifa. Integrat-
ing deployment architectures and resource consumption in timed object-oriented
models. Research Report 438, Department of Informatics, University of Oslo,
February 2014.

[52] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell.
International Journal on Software Tools for Technology Transfer, 1(1–2):134–152,
1997.

[53] Jeff Magee and Jeff Kramer. Concurrency: state models & Java programs. John
Wiley & Sons, Inc., 1999.

[54] Sam Malek, Nenad Medvidović, and Marija Mikic-Rakic. An extensible frame-
work for improving a distributed software system’s deployment architecture.
IEEE Transactions on Software Engineering, 38(1):73–100, 2012.

[55] José Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96:73–155, 1992.

[56] Bertrand Meyer. Design by contract. the eiffel method. In Technology of Object-
Oriented Languages, 1998. TOOLS 26. Proceedings, page 446. IEEE Computer
Society Press, 1998.

[57] Giuseppe Milicia and Vladimiro Sassone. The inheritance anomaly: ten years af-
ter. In Proceedings of the 2004 ACM Symposium on Applied Computing (SAC’04),
pages 1267–1274. ACM Press, 2004.

BIBLIOGRAPHY 39

[58] Robin Milner. A Calculus of Communicating Systems. Springer, 1982.

[59] Olaf Owe, Stein Krogdahl, and Tom Lyche. A biography of Ole-Johan Dahl. In
Olaf Owe, Stein Krogdahl, and Tom Lyche, editors, From Object-Orientation to
Formal Methods, volume 2635 of Lecture Notes in Computer Science, pages 1–7.
Springer, 2004.

[60] Luigia Petre and Kaisa Sere. Coordination among mobile objects. In Paolo
Ciancarini and Alexander L. Wolf, editors, Proceedings of the Third International
Conference onCoordination Languages and Models (COORDINATION’99), vol-
ume 1594 of Lecture Notes in Computer Science, pages 227–242. Springer, 1999.

[61] Ina Schaefer. Variability modelling for model-driven development of software
product lines. In David Benavides, Don S. Batory, and Paul Grünbacher, edi-
tors, Proc. Fourth International Workshop on Variability Modelling of Software-
Intensive Systems (VaMoS’10), volume 37 of ICB-Research Report, pages 85–92.
Universität Duisburg-Essen, 2010.

[62] Ina Schaefer and Ferruccio Damiani. Pure delta-oriented programming. In Pro-
ceedings of the Second International Workshop on Feature-Oriented Software De-
velopment, FOSD 2010, pages 49–56. ACM, 2010.

[63] Jan Schäfer and Arnd Poetzsch-Heffter. JCoBox: Generalizing active objects to
concurrent components. In European Conference on Object-Oriented Program-
ming (ECOOP 2010), volume 6183 of Lecture Notes in Computer Science, pages
275–299. Springer, June 2010.

[64] Rudolf Schlatte, Einar Broch Johnsen, Fatemeh Kazemeyni, and Silvia Lizeth
Tapia Tarifa. Models of rate restricted communication for concurrent objects.
Electronic Notes in Theoretical Computer Science, 274:67–81, 2011.

[65] Ian Sommerville. Software Engineering (7th Edition). Pearson Addison Wesley,
2004.

[66] Richard N. Taylor, Nenad Medvidović, and Eric M. Dashofy. Software
Architecture-Foundations, Theory, and Practice. Wiley, 2010.

[67] Marcel Verhoef, Peter Gorm Larsen, and Jozef Hooman. Modeling and validat-
ing distributed embedded real-time systems with VDM++. In Jayadev Misra,
Tobias Nipkow, and Emil Sekerinski, editors, Proceedings of the 14th Interna-
tional Symposium on Formal Methods (FM’06), volume 4085 of Lecture Notes in
Computer Science, pages 147–162. Springer, 2006.

[68] Peter Wegner. Design issues for object-based concurrency. In M. Tokoro, O. Nier-
strasz, and P. Wegner, editors, Object-Based Concurrent Computing, volume 612

40 BIBLIOGRAPHY

of Lecture Notes in Computer Science, pages 245–256. Springer Berlin Heidelberg,
1992.

[69] Peter Y. H. Wong, Elvira Albert, Radu Muschevici, José Proença, Jan Schäfer,
and Rudolf Schlatte. The ABS tool suite: modelling, executing and analysing
distributed adaptable object-oriented systems. STTT, 14(5):567–588, 2012.

[70] Murray Woodside, Greg Franks, and Dorina C. Petriu. The future of software
performance engineering. In 2007 Future of Software Engineering, FOSE ’07,
pages 171–187. IEEE Computer Society, 2007.

[71] Barbara B. Wyatt, Krishna Kavi, and Steve Hufnagel. Parallelism in object-
oriented languages: A survey. IEEE Software, 9(6):56–66, 1992.

Part II

Research Papers

41

CHAPTER 5

Paper 1: User-defined Schedulers for

Real-Time Concurrent Objects ∗

Authors: Joakim Bjørk, Frank S. de Boer, Einar Broch Johnsen, Rudolf Schlatte
and Silvia Lizeth Tapia Tarifa.

Publication: Journal of Innovations in Systems and Software Engineering, Volume 9,
Issue 1, pages 29–43. Springer, 2013.

Abstract: Scheduling concerns the allocation of processors to processes, and is tra-
ditionally associated with low-level tasks in operating systems and embedded devices.
However, modern software applications with soft real-time requirements need to con-
trol application-level performance. High-level scheduling control at the application
level may complement general purpose OS level scheduling to fine-tune performance
of a specific application, by allowing the application to adapt to changes in client traf-
fic on the one hand and to low-level scheduling on the other hand. This paper presents
an approach to express and analyze application-specific scheduling decisions during
the software design stage. For this purpose, we integrate support for application-level
scheduling control in a high-level object-oriented modeling language, Real-Time ABS,
in which executable specifications of method calls are given deadlines and real-time
computational constraints. In Real-Time ABS, flexible application-specific schedulers
may be specified by the user, i.e., developer, at the abstraction level of the high-level
modeling language itself and associated with concurrent objects at creation time.
Tool support for Real-Time ABS is based on an abstract interpreter that supports
simulations and measurements of systems at the design stage.

∗This research is partly funded by the EU project FP7-231620 HATS: Highly Adaptable and
Trustworthy Software using Formal Models (http://www.hats-project.eu).

43

44 5.1 Introduction

5.1 Introduction

The scheduling problem concerns the allocation of available processors to unfinished
processes. This is a non-trivial problem as processes in general are dynamically cre-
ated, have possibly conflicting needs, and their execution time depends on the size of
their input. Operating systems usually use heuristics to guess the optimal ordering of
their processes, called scheduling policies. Despite many years of research on optimiz-
ing scheduling policies at the level of operating systems, scheduling is largely beyond
the control of most existing high-level modeling and programming languages, whose
purpose is to relieve the software developer from implementation and deployment de-
tails by means of suitable abstractions. However, in general-purpose programming,
software engineers increasingly need to express and control not only functional cor-
rectness but also quality of service in their designs. On the other hand, operating
systems by their very nature do not consider the specific requirements of different
applications and this can greatly affect application-level performance. For optimal
use of both hardware and software resources, we therefore cannot avoid leveraging
scheduling and performance related issues from the underlying operating system to
the software engineering level, which necessitates timed semantics for general-purpose
modeling and programming languages [27]. Today, domain-specific languages for
cyber-physical systems with soft (or firm) real-time requirements start to provide
cooperative, non-preemptive scheduling with deadlines at the application level [38].
Furthermore, emerging support for reflection in middleware allows applications to
dynamically control the creation of virtual processors and to define user-level sched-
ulers [8]. Flexible application-specific schedulers are needed in new application do-
mains with soft real-time requirements, such as multimedia streaming. To fully exploit
increasing platform virtualization, a major challenge in software engineering is to find
a balance between these two conflicting requirements of abstraction and deployment
control.

This paper presents Real-Time ABS, a high-level abstract behavioral specifica-
tion language for modeling distributed systems, which supports the integration of
realizable abstractions of requirements related to deployment, e.g., scheduling and
deadlines. We achieve this by modeling the components of the distributed system as
loosely interacting concurrent objects. Concurrent objects are similar to the Actor
model [1] and Erlang [6] processes in that they represent a unit of distribution; i.e.,
their interaction does not transfer control. Each concurrent object has a queue of
method activations (stemming from method calls), among which at most one may be
executing at any time. This model of computation is currently attracting interest due
to its potential for distribution on multicore platforms, for example in terms of Scala
actors [19], concurrent object groups in Java [36], Kelim lightweight threads [39], and
concurrent Creol objects in Java [30].

An important aspect of the concurrent object model in Creol [25] and ABS [24]

Chapter 5 Paper 1: User-defined Schedulers and Real-Time 45

is that the scheduling of method activations from an object’s queue is cooperative
but non-deterministic. The cooperative scheduling is non-preemptive, but a method
activation may yield control at explicitly declared points in its execution, leaving the
object idle. When the object is idle, scheduling is non-deterministic in the sense that
any enabled method activation may resume its execution. In Real-Time ABS, we
extend this computation model with real-time and with the ability to refine the non-
deterministic per-object scheduler by allowing each concurrent object to embody its
own scheduling policy, tailored towards attaining its quality of service. These high-
level scheduling policies provide run-time adaptability, which is beyond the state-of-
the-art fixed-priority scheduling in operating systems. Thus, we both leverage and
generalize scheduling issues from the operating system to the application level. Our
approach is based on a two-level scheduling scheme (e.g., [12,35,40]). At the top level,
objects on virtual servers decide on the scheduling of requests by encapsulating an
application-level scheduling policy. However, these virtual servers may be realized in
terms of one or several virtual or physical machines. The bottom level scheduling,
which decides on the arbitration between the virtual servers, is not adressed in this
paper.

By expressing per object scheduling policies at the software modeling level, quality-
of-service and deployment requirements may be analyzed and resolved at design
time. For example in a real-time setting, we must guarantee a maximum on average
response-time (end-to-end deadlines) or a minimum on the level of system throughput.
The main technical contributions of this paper are

• a real-time object-oriented modeling language associating schedulers with con-
current objects and deadlines with method calls, and its formal semantics;

• user-defined schedulers expressed at the abstraction level of the modeling lan-
guage; and

• tool support based on an abstract interpreter.

The formal semantics of Real-Time ABS rigorously defines the real-time behavior of a
system of concurrent objects. However, the expressivity of the Real-Time ABS mod-
eling language means that models in Real-Time ABS are out of scope for automata-
based model-checking techniques for full state-space exploration (such as, e.g., Up-
paal [26]). Based on the formal semantics, we have therefore implemented a prototype
abstract interpreter for Real-Time ABS in Maude [14], an executable rewriting logic
framework which also supports real-time rewriting logic [31, 32]. Technically, user-
defined schedulers are achieved by allowing a degree of reflection in the language,
such that the runtime representation of the process queue of objects is lifted into
an expression inside the modeling language itself. The abstract interpreter is not
bound to any particular hardware or deployment platform; instead, its architecture
is directly based on the concepts of Real-Time ABS. The abstract interpreter can

46 5.1 Introduction

be used for both systematic simulation and measurement of Real-Time ABS models.
Systematic simulations allow us to simulate different runs for our executable models,
even before creating a detailed implementation of the software. As for measurements,
profiling techniques for Real-Time ABS can be used to, e.g., find bottlenecks, data
and communication intensity, maximum queue sizes, race conditions, etc.

Related Work. Real-Time ABS is a real-time extension of ABS [24], which simpli-
fies Creol [9,25] by, e.g., ignoring class inheritance. This journal paper integrates and
extends two previous papers on timed concurrent objects by the authors [7, 10], and
additionally introduces the concept of user-defined per object schedulers. A discrete
time Creol interpreter was proposed in [7], in which the passage of time is indirectly
observable by comparing observations of a global clock. In contrast, duration state-
ments and deadlines for method calls were introduced and formalized with a real-time
semantics in [10], without a language interpreter. In this paper, we follow the latter
approach at the level of the surface syntax, additionally introduce duration guards
which complement duration statements, and develop an abstract interpreter for the
resulting language.

An encoding of real-time concurrent objects into timed automata was proposed
in [10]. This encoding follows the approach of task automata [18], which allows
schedulability analysis in Uppaal [26] by means of the Times Tool [3]. Complementing
this work, we develop an abstract interpreter based on the formal semantics of real-
time concurrent objects as proposed in this paper, by integrating the real-time model
of Real-Time Maude [31, 32] with the Maude interpreter for ABS developed in the
EU FP7 project HATS: Highly Adaptable and Trustworthy Software using Formal
Models. Real-Time ABS provides a much more expressible language than that of, for
example, the Times Tool. This additional expressive power is needed for the high-
level description of complex data-intensive systems of real-time concurrent objects
enhanced with user-defined schedulers, which is proposed in this paper.

Scheduling has been studied extensively in many different research communities,
including real-time [13, 16], parallel algorithms [5, 23], operating systems [22], mea-
surement and modeling [20], and job scheduling [15]. These communities have mostly
worked independently with somewhat different concerns, and with little cooperation.
Traditional approaches to schedulability analysis, especially in operations research,
can handle only a restricted range of events, e.g., periodic ones that are generated
with fixed inter-arrival times. In this paper we integrate application-level scheduling
of non-uniform dynamically created processes with an executable high-level real-time
modeling language.

The state of the art in parallel and distributed programming is the multi-threading
paradigm, as in Java and the pthread library (usually in C++). Despite its popu-
larity, multi-threading has some generally recognized drawbacks; for example, shared
memory access between threads makes it not suitable for programming distributed

Chapter 5 Paper 1: User-defined Schedulers and Real-Time 47

Syntactic categories.

T in Ground Type

A in Type

x in Variable

e in Expression

b in Bool Expression

v in Value

d in DurationExpr

br in Branch

p in Pattern

Definitions.

T ::= B | I | D | D〈T 〉

A ::= N | T | N〈A〉

Dd ::= data D[〈A〉] = [Cons];
Cons ::= Co[(A)]

F ::= def A fn[〈A〉](A x) = e;
e ::= b | d | x | v | Co[(e)] | fn(e) | case e {br}

| if e then e else e | this

| destiny | deadline

v ::= Co[(v)] | null

br ::= p ⇒ e;
p ::= _ | x | v | Co[(p)]

Figure 5.1: Syntax for the functional level of Real-Time ABS. Terms e and x denote
possibly empty lists over the corresponding syntactic categories, and square brackets
[] optional elements.

applications. In addition, as the thread of execution travels across object boundaries
(through synchronous method calls), there is no natural borderline to decompose a
program for distributed deployment. New programming languages, e.g., Scala and
Erlang (as described in [19] and [28], respectively), employ new paradigms that are
fundamentally different from and alleviate some of the shortcomings of mainstream
languages like Java, but still provide very limited control to influence the underlying
scheduling policy. Some amount of controllability is achieved by Real-Time Specifica-
tion for Java (RTSJ) [17] which allows assigning priorities to Java threads which can
be used by a Fixed Priority Scheduler in the JVM. Schoeberl shows how a system-
wide fixed priority scheduler can be defined inside Java itself [37]. Erlang has an
efficient scheduler which improves the execution performance, but lacks proper lan-
guage support to influence the scheduling policy. We are not aware of languages which
support per-object user-defined schedulers at the abstraction level of the high-level
programming or modeling language, as proposed in Real-Time ABS.

5.2 Real-Time ABS

Real-Time ABS is a high-level modeling language for real-time concurrent objects with
user-defined schedulers. This section presents the integration of real-time and concur-
rent object-oriented modeling in Real-Time ABS. Section 5.3 presents the integration
of local schedulers into the language.

Real-Time ABS consists of a functional level and a concurrent object level. A
Real-Time ABS model defines interfaces, classes, datatypes, and functions, and a

48 5.2 Real-Time ABS

main block to configure the initial state. Objects are dynamically created instances
of classes; their attributes are initialized to type-correct default values (e.g., null for
object references), but may be redefined in an optional method init. Datatypes and
functions are specified at the functional level, this allows a model to abstract from
concrete imperative data structures inside the concurrent objects.

The concurrent object level focuses on the concurrency, communication, and syn-
chronization aspects of a model, given in terms of interacting, concurrent objects. In
Real-Time ABS, every concurrent object has its own queue of processes correspond-
ing to the method activations. All objects are executing concurrently and each object
executes one process at a time; in the sequel we refer to this process as the active
process of the object.

5.2.1 The Functional Level of Real-Time ABS

The functional level of Real-Time ABS is used to model data manipulation in an
intuitive way, without committing to specific low-level imperative data structures
at an early stage in the software design. The functional level defines user-defined
parametric datatypes and functions, as shown in Fig. 5.1. The ground types T consist
of basic types B such as Bool and Int, as well as names D for datatypes and I for
interfaces. In general, a type A may also contain type variables N (i.e., uninterpreted
type names [33]). In datatype declarations Dd, a datatype D has a set of constructors
Cons, which have a name Co and a list of types A for their arguments. Function
declarations F have a return type A, a function name fn, a list of parameters x
of types A, and a function body e. Expressions e include Boolean expressions b,
variables x, values v, the self-identifier this, constructor expressions Co(e), function
expressions fn(e), and case expressions case e {br}. The expression destiny refers to
the concurrent object level and denotes the future in which the return from the current
method activation shall be stored [9]. The expression deadline refers to the timed
aspect of a model and denotes the relative deadline of the current method activation.
Values v are constructors applied to values Co(v) or null (omitted from Fig. 5.1 are
values of basic types such as String or the rational numbers Rat). Case expressions
have a list of branches p ⇒ e, where p is a pattern. Branches are evaluated in the
listed order. Patterns include wild cards _, variables x, values v, and constructor
patterns Co(p). For simplicity, Real-Time ABS does not currently support operator
overloading.

Example 1 (Dense Time in Real-Time ABS). We consider a dense time model rep-
resented by a type Duration that ranges over non-negative rational numbers and is
used for time intervals, e.g. deadlines and computation costs. To express infinite (or
unbounded) durations, there is a term InfDuration such that for all other durations
d1, d2, d1 + d2 is smaller than InfDuration.

Chapter 5 Paper 1: User-defined Schedulers and Real-Time 49

data Duration = Duration(Rat) | InfDuration;

Predicates are defined in the obvious way, shown here are a unary predicate isInfinite

and the binary less-than-or-equal relation lte on Durations.

def Bool isInfinite(Duration d) =
case d { InfDuration => True; _ => False;};

def Bool lte(Duration d1, Duration d2) =
case d1 {

InfDuration => d2 == InfDuration;
Duration(v1) => case d2 {

InfDuration => True;
Duration(v2) => v1 ≤ v2;

};
};

Two Duration values can be added together. Since there is no operator overloading in
ABS, we define the addition of durations as a function add:

def Duration add(Duration d1, Duration d2) =
case d1 {

InfDuration => InfDuration;
Duration(v1) => case d2 {

InfDuration => InfDuration;
Duration(v2) => Duration(v1 + v2);

};
};

The operators ≤ and + are used for comparison and addition in the underlying datatype
of rational numbers.

5.2.2 The Concurrent Object Level of Real-Time ABS

The concurrent object level of Real-Time ABS is used to specify concurrency, com-
munication, and synchronization in the system design. The syntax of the concurrent
object level is given in Figure 5.2. An interface IF has a name I and method signa-
tures Sg. A class CL has a name C, interfaces I (specifying types for its instances),
class parameters and state variables x of type T , and methods M (The attributes of
the class are both its parameters and state variables). A method signature Sg declares
the return type T of a method with name m and formal parameters x of types T .
M defines a method with signature Sg, local variable declarations x of types T , and
a statement s. Statements may access attributes of the current class, locally defined
variables, and the method’s formal parameters. A program’s main block is a method
body {T x; s}. There are no type variables at the concurrent object level of Real-Time
ABS.

50 5.2 Real-Time ABS

Syntactic categories.

C, I, m in Name

g in Guard

s in Stmt

a in Annotation

Definitions.

IF ::= interface I { [Sg] }

CL ::= [[a]] class C [(T x)] [implements I] { [T x;] M}

Sg ::= T m ([T x])
M ::= [[a]] Sg {[T x;] s }

a ::= Deadline: d | Cost: d | Critical: b

| Scheduler : e | a, a

g ::= b | x? | duration(d, d) | g ∧ g

s ::= s; s | skip | if b { s } [else { s }] | while b { s }

| return e[[a]] x = rhs | suspend | await g

| duration(d, d)
rhs ::= e | new C (e) | e.get | o!m(e)

Figure 5.2: Syntax for the concurrent object level of Real-Time ABS.

Annotations in Real-Time ABS are used to extend a model with information to
control the quantitative properties of the model, while maintaining a separation of
concerns with the qualitative behavior of the model. Annotations a are optional and
may be associated with class and method declarations, new objects, and method calls
as follows. For class declarations and object creation, the annotation Scheduler: e
may be used to override a default scheduling policy with a user-defined policy e.
User-defined scheduling policies are explained in Section 5.3.

For method declarations, the annotation Cost: d may be used to override a default
cost estimate for the method activation. Cost estimates are functions which depend
on the arguments to method calls, so d is an expression over the formal parameters
x of the method and will be evaluated for the actual parameter values to the call.
For the purposes of this paper the cost estimate is assumed to be of type Duration,
but one could also consider, e.g., memory or other resources. (Observe that cost
expressions are estimations (i.e., they are specified as part of the design and not
measured at runtime). We do not consider how to find good cost estimations in this
paper. However, a companion tool COSTABS may in many cases automatically assist
in inferring cost annotations for methods in Real-Time ABS models [2].) The cost
provides a heuristics which may be used for the scheduling of method activations.
Method declarations without cost annotations get a default of no cost.

For method calls, we consider two annotations. The annotation Deadline: d
is of type Duration and provides a deadline for the method return. The deadline
specifies the relative time before which the corresponding method activation should
finish execution. The annotation Critical: b specifies the perceived level of criticality
of the method activation: True indicates that the method activation is hard and
should be given priority [11]. In contrast, missed deadlines for soft method activations

Chapter 5 Paper 1: User-defined Schedulers and Real-Time 51

are logged but do not influence scheduling. This way, the caller may decide on the
deadline and criticality for the call. Calls without annotations get default values:
infinite deadline and soft criticality.

Right hand side expressions rhs include object creation new C(e), method calls
[o]!m(e) and [o.]m(e), future dereferencing x.get and pure expressions e. Method
calls and future dereferencing are explained below.

Statements are standard for sequential composition s1; s2, and skip, if, while,
and return constructs. Assignments may be given optional annotations as explained
above. The statement suspend unconditionally suspends the active process of an
object by adding it to its queue from which subsequently an enabled process is taken
for execution. In await g, the guard g controls suspension of the active process
and consists of Boolean conditions b and return tests x? (see below). Just like pure
expressions e, guards g are side-effect free. If g evaluates to false, the executing process
is suspended, i.e., added to the object’s queue, and another process is taken from the
queue for execution. By means of a user-defined scheduling policy enabled processes
can be selected for execution from the object’s queue.

Communication in Real-Time ABS is based on asynchronous method calls, de-
noted by assignments f = o!m(e) to future variables f . (Local calls are written
this!m(e).) After making an asynchronous method call x := o!m(e), the caller may
proceed with its execution without blocking on the method reply. Here x is a fu-
ture variable, o is an object expression, and e are (data value or object) expressions
providing actual parameter values for the method invocation. The future variable x
refers to a return value which has yet to be computed. There are two operations on
future variables, which control synchronization in Real-Time ABS. First, the guard
await x? suspends the active process unless a return to the call associated with x has
arrived, allowing other processes in the object to execute. Second, the return value is
retrieved by the expression x.get, which blocks all execution in the object until the
return value is available. In Real-Time ABS, it is the decision of the caller whether
to call a method synchronously or asynchronously, and when to synchronize on the
return value of a call. Standard usages of asynchronous method calls include the
statement sequence x := o!m(e); v := x.get which encodes a blocking call, abbrevi-
ated v := o.m(e) (often referred to as a synchronous call), and the statement sequence
x := o!m(e); await x?; v := x.get which encodes a non-blocking, preemptible call,
abbreviated await v := o.m(e). As usual, if the return value of a call is of no interest,
the call may occur directly as a statement o!m(e).

Time. In Real-Time ABS, the local passage of time is explicitly expressed using
duration statements and duration guards. The statement duration(b, w) expresses
the passage of time, given in terms of an interval between the best case b and the
worst case w duration (assuming b ≤ w), and blocks the whole object. The guard
duration(b, w), when used inside an await statement expresses the suspension time
of the process in terms of a similar interval, and lets other processes of the object

52 5.3 Scheduling Strategies in Real-Time ABS

run in the meantime. Note that time can also pass during synchronization with a
method invocation; this can block one process (via await f?) or the whole object
(via x = f .get). All other statements (normal assignments, skip statements, etc.)
do not cause time to pass.

Inside a method body, the read-only local variable deadline refers to the re-
maining permitted execution time of the current method activation, which is initially
given by a deadline annotation at the method call site or by default. We assume
that message transmission is instantaneous, so the deadline expresses the time until
a reply is received; i.e., it corresponds to an end-to-end deadline. If declared, an inte-
ger variable value may be assigned a value to express the relative importance of the
current method activation with respect to other method activations executing in the
object [11]. (By default, the method activation is unimportant and has value zero.)

5.3 Scheduling Strategies in Real-Time ABS

Scheduling refers to the way processes are assigned to run on the available processors of
a runtime system. We here present the general notions of process scheduling, following
Buttazzo [11], and relate these to the context of concurrent objects in Real-Time ABS.
A processor is assigned to various concurrent processes according to a predefined
criterium which is called a scheduling policy. The realization of a scheduling policy as
an algorithm which, at any time, determines the order in which processes are executed
is called a scheduling algorithm or scheduler. The problem in our context is to define a
scheduling algorithm to select the next process among an object’s method activations
when the object is idle. For this purpose, we shall represent (runtime) processes as a
datatype in Real-Time ABS in such a way that we can express scheduling algorithms
as functions inside the language.

Processes. Real-time systems are characterized by computational activities with
timing constraints that must be met in order to achieve the desired behavior. A
typical timing constraint on a process is the deadline, which represents the time before
which the process should complete its execution. Depending on the consequence of
a missed deadline, a process is usually called hard if a completion after its deadline
can cause catastrophic consequences on the system and soft if missing its deadline
decreases the performance of the system but does not jeopardize the system’s correct
behavior. In general, real-time processes are characterized by a number of well-known
parameters. In the context of Real-Time ABS models, these parameters are either
part of the specification supplied by the modeler, or else measured at runtime:

• Arrival Time r (measured at runtime): the time when a process becomes ready
for execution.

Chapter 5 Paper 1: User-defined Schedulers and Real-Time 53

• Computation Time c (specified together with the method definition): the time
needed by the object to execute the process without interruption,

• Relative Deadline d (specified at method call site): the time before which a
process should be completed to avoid damage or performance degradation. It is
specified with respect to the arrival time.

• Start Time s (measured at runtime): the time at which a process starts its
execution.

• Finish Time f (measured at runtime): the time at which a process finishes its
execution.

• Criticality crit (specified at method call site): a parameter related to the con-
sequence of missing a deadline (hard or soft).

• Value v (specified / set during process execution): a value representing the
relative importance of a process with respect to other processes.

The following further parameters can be calculated from the parameters above:

• Absolute Deadline (D): similar to the relative deadline, but with respect to time
zero (i.e., D = r + d).

• Response Time (R): the difference between the finish time and the arrival time
(i.e., R = f − r).

• Lateness (L): the possible delay of the process completion with respect to the
absolute deadline (i.e., L = f − D). Note that if the completion happens before
the deadline then L is negative.

• Tardiness (E) or exceeding time: the time a process stays active after its dead-
line (i.e., E = max(0, L)).

• Laxity (X): the maximum time a process can delay its activation to complete
within its deadline (i.e., X = r − c).

These parameters can be used to define different scheduling policies, scheduling algo-
rithms, as well as for performance evaluation; e.g., the lateness can be used to observe
the optimality of a given scheduling policy or algorithm.

54 5.3 Scheduling Strategies in Real-Time ABS

Processes in Real-Time ABS. Based on the above parameters, we define datatypes
for time Time, process identifiers Pid, and processes Process as follows:

data Time = Time(Rat);
data Pid ;
data Process = Proc(Pid pid, String m, Time r, Duration c,

Duration d, Time s, Time f, Bool crit, Int v);

Here, m represents the method name associated with the process, r represents the
arrival time recorded when the method is bound, c represents the computation time
or cost (the cost heuristics is an optional annotation to method declarations), d the
relative deadline (an optional annotation of the method call), s the starting time, f

the finishing time, crit the criticality (an optional annotation of the method call) and
v the value representing the relative importance of the process (this is an assignable
local variable in the process). pid is a token identifying the underlying process and
does not have a syntax defined at the language level; this ensures that user-defined
scheduling algorithms can under no circumstance choose a non-existing process to
be run. For two Time values t1 and t2, denote by t1 ≤ t2 their comparison defined
by comparing their rational arguments, and by t1 − t2 their subtraction which is of
type Duration. For easier readability, we also define observer functions for the process
parameters, e.g. for the process name:

def String name(Process p) =
case p {

Proc(_,m,_,_,_,_,_,_,_) => m;
};

The observer functions for process id, arrival time, cost, deadline, value, etc. are
defined in the same way and are used in defining the scheduling policies. The lifting
of runtime method activations into the datatype Process is explained in Section 5.4.1.

5.3.1 General Scheduling Policies

During the modeling of software systems, it is important to consider which scheduling
policy will provide the best application-level performance for the corresponding sys-
tem. There is no universal ”best” scheduling policy, and it is possible to both define
new scheduling policies and to combine different scheduling policies. In Real-Time
ABS, a scheduler algorithm is a function which, given a non-empty list of processes,
returns the next process to be executed. Some examples of schedulers in Real-Time
ABS are given below.

Example 2. The default scheduler, which selects the first process in the list for exe-
cution, is defined as follows:

def Process default (List<Process> l) = head(l);

Chapter 5 Paper 1: User-defined Schedulers and Real-Time 55

Example 3. Many well-known scheduling policies fit into a general pattern: they
define a total ordering of processes depending on some ordering predicate. Such sche-
duling policies can be realized in Real-Time ABS using a pattern consisting of a func-
tion scheduler which takes a non-empty list of processes and returns the best process
according to a comparison function comp implementing the ordering predicate. A
helper function schedulerH compares the best process found so far to the remaining
list of processes.

def Process scheduler (List<Process> l) = schedulerH(head(l), tail(l));

def Process schedulerH(Process p1, List<Process> l1) =
case l1 {

Nil => p1;
Cons(p2,l2) =>

if (comp(p1, p2))
then schedulerH(p1,l2)
else schedulerH(p2,l2)

};

In order to realize a specific scheduling policy, we follow the pattern above and
replace comp(p1,p2) with a suitable comparison function for the desired policy (since
Real-Time ABS does not support first-class function arguments, we open-code the
concrete algorithm).

• Earliest deadline first (edf) is a dynamic scheduling policy that selects processes
according to their absolute deadline. Processes with earlier deadlines will be
executed with a higher priority.

The scheduling function edf(l) is obtained by using the following comparison
function:

def Bool comp_edf(Process p1, Process p2) = lte(deadline(p1), deadline(p2));

• First in, first out (fifo) selects processes according to their arrival order. The
scheduling function fifo(l) uses the following comparison function:

def Bool comp_fifo(Process p1, Process p2) = arrival(p1) ≤ arrival(p2);

• Fixed priority (fp) selects the process with the greatest fixed assigned priority
from the process queue. In our setting, it is natural to fix the priority of processes
depending on the name of the activated methods. Let fp(l) be the scheduler
defined as above, but using the following comparison function:

def Bool comp_fp(Process p1, Process p2) = weight(name(p1)) ≥ weight(name(p2));

def Int weight(String s) =
case s {

"method1" => v1;
"method2" => v2; ...

};

56 5.3 Scheduling Strategies in Real-Time ABS

• Dynamic priority (dp) is similar to fp but the priority is not fixed. Rather,
the priority depends on the v (value) attribute of the processes, which can be
modified by the process itself during execution. dp(l) is the scheduler defined as
above using the following comparison function (where lower value gives higher
priority):

def Bool comp_dp(Process p1, Process p2) = value(p1) ≤ value(p2);

• Shortest job first (sjf) selects the process with the least remaining computation
time (cost) from the queue. Let sjf(l) be the scheduler defined as above, which
uses the following comparison function:

def Bool comp_sjf(Process p1, Process p2) = lte(cost(p1), cost(p2));

Different scheduling policies may be combined. This may be illustrated by the
following example.

Example 4 (Combined sjf and dp). We consider a combination of sjf and dp, where
the process with the lowest cost is selected among the processes with the highest priority.
In this case, we define a filter highPri and call sjf on the filtered list of processes:

def List<Process> highPri(List<Process> l1, List<Process> l2) =
case l2 {

Nil => l1;
Cons(h,t) =>

if (l1 == Nil)
then highPri(Cons(h,Nil),t)
else if (comp_dp (head(l1),h))

then if (value(head(l1)) == value(h))
then highPri(Cons(h,l1), t)
else highPri(l1,t)

else highPri(Cons(h,Nil),t)
};

def Process sjfdp(List<Process> l) = sjf(highPri(Nil,l));

5.3.2 Conditional Scheduler

Here we show how to define a scheduler which changes the priority of a set of processes
depending on the length of the process queue.

Example 5. We consider an object which has a set of processes to be scheduled by
some scheduling algorithm scheduler. Some of these processes, e.g., a load balancer,
need to have high priority when there is congestion inside the object. Let l be a non-
empty process queue, n an integer representing the queue length limit (i.e., the process
priority changes when the size of the queue l grows beyond n), and let ccp denote

Chapter 5 Paper 1: User-defined Schedulers and Real-Time 57

the set of method names for the processes with conditionally changing priority. Let
filter be a function which filters processes with names contained in ccp from the
process queue l.

def Process condScheduler(List<Process> l, List<String> ccp, Int n) =
if (length(l) ≤ n || filter(ccp,l) = Nil)
then scheduler(l)
else scheduler(filter(ccp,l))

Note that the list ccp of method names as well as the the queue length limit n are
highly application dependent. In fact, these parameters of the scheduling function
can be state dependent in Real-Time ABS.

5.3.3 Scheduling Annotations in Real-Time ABS

In Real-Time ABS, there are three levels at which the scheduling policy of a concurrent
object can be determined. There is a default system-level scheduling policy, as defined
in Example 2. This default scheduling policy may be overridden for all instances of
a class by providing a scheduling annotation for the class definition. This class-level
scheduling policy may in turn be overridden for a specific instance by a scheduling
annotation at the object creation statement. In this way, different instances of a class
may have different scheduling policies, for example to improve the performance for
different application specific user scenarios. In a scheduling annotation, the keyword
queue is used to refer to the ABS datatype representation of the runtime process
queue of the scheduled object. Additional formal parameters of a scheduling function
are bound to object attributes. This means that the object state can influence the
scheduling, Example 9 in Section 5.5 gives an example.

5.3.4 Monitors with Signal and Continue Discipline

A monitor [4, 21] is a high-level synchronization mechanism which protects shared
state by only allowing access to the shared state through a given set of methods.
The defining characteristic of a monitor is that its methods are executed with mutual
exclusion; similar to processes in a Real-Time ABS object, at most one process may
be executing at any time inside the monitor. Monitors use condition variables to delay
processes until the monitors’s state satisfies some Boolean condition. This condition
variable is also used to awaken a delayed process when the condition becomes true.
The value of a condition variable is associated with a fifo queue of delayed processes.
Processes which are blocked on condition variables get awakened by a signal call.

In Real-Time ABS, objects may be regarded as abstract monitors without the
need for explicit signaling, which is guaranteed by the semantics and need not be the

58 5.3 Scheduling Strategies in Real-Time ABS

responsibility of the modeler. However, the order in which processes are activated
in the process queue of a Real-Time ABS object does not guarantee a fifo ordering
of the queue. When explicit signaling is desired, monitors with different signaling
disciplines can be encoded. We now show how such an ordering may be explicitly
enforced independent of the scheduling policy of the object (following [25]), and then
how this synchronization code can be simplified by specifying a fifo scheduling policy
for the object.

Example 6. Consider a class implementing a general monitor with the signal and
continue discipline [4]; for simplicity the example is restricted to one condition vari-
able. Without any assumption about the scheduling strategy for the process queue of the
monitor, we need to introduce synchronization code to ensure that suspended processes
are activated following a fifo ordering. This can be achieved using a triple 〈s, d, q〉 of
natural numbers; where s represents available signals to the condition variable, d the
number of the delayed process in the queue of the condition variable, and q the number
of delayed processes that have been reactivated.

interface Monitor {
Unit wait();
Unit signal();
Unit signalAll();

}

class MonitorImp() implements Monitor {
Int s = 1;
Int d = 0;
Int q = 0;

Unit wait() {
Int myturn = d+1;
d = d+1;
await (s>0 ∧ q+1==myturn);
s=s−1;
q=q+1;

}

Unit signal() {
if (d>q) {

s=s+1;
}

}

Unit signalAll() {
s=d−q;

}
}

Example 7. By ensuring a fifo scheduling policy for the monitor object, the synchro-
nization code of Example 6 can be significantly simplified. Let l represent the length
of the queue of waiting processes and s the number of available signals as before.

Chapter 5 Paper 1: User-defined Schedulers and Real-Time 59

[Scheduler: fifo(queue)]
class SimpleMonitorImp() implements Monitor {

Int s = 1;
Int l = 0;

Unit wait() {
l = l+1;
await s>0;
s=s−1;
l=l−1;

}

Unit signal() {
if (l>0) {

s=s+1;
}

}

Unit signalAll() {
s = l;

}
}

This is an example of how a specific scheduling policy can influence object execu-
tion semantics.

5.4 Semantics

This section presents the operational semantics of Real-Time ABS as a transition
system in an SOS style [34]. Rules apply to subsets of configurations (the standard
context rules are not listed). For simplicity we assume that configurations can be
reordered to match the left hand side of the rules (i.e., matching is modulo associativity
and commutativity as in rewriting logic [29]). A run is a possibly nonterminating
sequence of rule applications. When auxiliary functions are used in the semantics,
these are evaluated in between the application of transition rules in a run.

5.4.1 Runtime Configurations

The runtime syntax is given in Fig. 5.3. We extend expressions e with the runtime
syntax case2 v {br}, statements with duration2(d, d), and values v with identifiers
for objects and futures. For simplicity, we assume that all class and method decla-
rations, as well as assignments for object creation and method calls are annotated
as explained in Section 5.2 (i.e., the compiler inserts defaults and orders annotations
where appropriate).

60 5.4 Semantics

e ::= case2 v {br} | . . .
v ::= o | f | . . .
s ::= duration2(d1, d2) | . . .

cn ::= ǫ | obj | msg | fut | cn cn
tcn ::= cn clock(t)
fut ::= f | fut(f, v)

σ ::= x 	→ v | σ ◦ σ
obj ::= ob(o, e, σ, pr, q)
pr ::= {σ|s} | idle

msg ::= m(o, v, f, d, c, t)
q ::= ǫ | pr | q ◦ q

Figure 5.3: Runtime syntax; here, o and f are object and future identifiers, d and c
are the deadline and cost annotations.

Configurations cn are sets of objects, invocation messages, and futures. A timed
configuration tcn adds a global clock clock(t) to a configuration (where t is a value of
type Time). The global clock is used to record arrival and finishing times for processes.
Timed configurations live inside curly brackets; thus, in {cn}, cn captures the entire
runtime configuration of the system. The associative and commutative union operator
on (timed) configurations is denoted by whitespace and the empty configuration by ε.

An object obj is a term ob(o, e, σ, pr, q) where o is the object’s identifier, e is an ex-
pression of type Process representing a scheduling policy, σ a substitution representing
the object’s fields, pr is an (active) process, and q a pool of processes. A substitution σ
is a mapping from variable names x to values v. For substitutions and process pools,
concatenation is denoted by σ1 ◦ σ2 and q1 ◦ q2, respectively.

In an invocation message m(o, v, f, d, c, t), m is the method name, o the callee, v
the call’s actual parameter values, f the future to which the call’s result is returned, d
and c are the provided deadline and cost of the call, and t is a time stamp recording the
time of the call. A future is either an identifier f or a term fut(f, v) with an identifier
f and a reply value v. For simplicity, classes are not represented explicitly in the
semantics, but may be seen as static tables of object layout and method definitions.

Processes and Process Lifting. A process {σ|s} consists of a substitution σ
of local variable bindings and a list s of statements, or it is idle. By default, the
local variables of a process include the variables method of type String, arrival of
type Time, cost of type Duration, deadline of type Duration, start of type Time,
finish of type Time, critical of type Bool, value of type Int, and destiny of
type Name. Consequently, we can define a function lift which transforms the runtime
representation of a process into the Real-Time ABS datatype of processes and a
function select which returns the process corresponding to a given process identifier

Chapter 5 Paper 1: User-defined Schedulers and Real-Time 61

[[b]]σ = b

[[x]]σ = σ(x)
[[v]]σ = v

[[Co(e)]]σ = Co([[e]]σ)
[[deadline]]σ = σ(deadline)

[[fn(e)]]σ =

{

[[efn]]x�→v if e = v

[[fn([[e]]σ)]]σ otherwise

[[case e {br}]]σ = [[case2 [[e]]σ {br}]]σ

[[case2 t {p ⇒ e; br}]]σ =

{

[[e]]σ◦match(p,t) if match(p, t) �= ⊥

[[case2 t {br}]]σ otherwise

Figure 5.4: The evaluation of functional expressions.

in a process queue, as follows:

lift({σ|s}) = Proc(σ(destiny), σ(method), σ(arrival), σ(cost), σ(deadline),
σ(start), σ(finish), σ(crit), σ(value))

select(pid, ε) = idle

select(pid, {σ|s} ◦ q) =

{

{σ|s} if σ(destiny) = pid

select(pid, q) otherwise

The value of destiny is guaranteed to be unique, and is used to identify processes at
the Real-Time ABS level.

5.4.2 A Reduction System for Expressions

The strict evaluation [[e]]σ of functional expressions e, given in Fig. 5.4, is defined
inductively over the data types of the functional language and is mostly standard,
hence this subsection only contains brief remarks about some of the expressions. Let
σ be a substitution which binds the name deadline to a duration value. For every
(user-defined) function definition

def T fn(T x) = efn ,

the evaluation of a function call [[fn(e)]]σ reduces to the evaluation of the corresponding
expression [[efn]]x �→v when the arguments e have already been reduced to ground terms
v. (Note the change in scope. Since functions are defined independently of the context
where they are used, we here assume that the expression e does not contain free
variables and the substitution σ does not apply in the evaluation of e.) In the case
of pattern matching, variables in the pattern p may be bound to argument values in
v. Thus the substitution context for evaluating the right hand side e of the branch
p ⇒ e extends the current substitution σ with bindings that occurred during the

62 5.4 Semantics

pattern matching. Let the function match(p, v) return a substitution σ such that
σ(p) = v (if there is no match, match(p, v) = ⊥).

5.4.3 A Transition System for Timed Configurations

Evaluating Guards. Given a substitution σ and a configuration cn, we lift the eval-
uation function for functional expressions and denote by [[g]]cn

σ a evaluation function
which reduces guards g to data values (the state configuration is needed to evaluate
future variables). Let [[g1 ∧ g2]]cn

σ = [[g1]]cn
σ ∧ [[g2]]cn

σ , [[duration(b, w)]]cn
σ = [[b]]σ ≤ 0,

[[x?]]cn
σ = true if [[x]]σ = f and fut(f, v) ∈ cn for some value v (otherwise f ∈ cn and

we let [[x?]]cn
σ = false), and [[b]]cn

σ = [[b]]σ.

Auxiliary functions. If T is the return type of a method m in a class C, we let
bind(m, o, v, f, d, b, t) return a process resulting from the activation of m in the class
of o with actual parameters v, callee o, associated future f , deadline d, and criticality
b at time t. If binding succeeds, this process has a local variable destiny of type
fut〈T 〉 bound to f , the method’s formal parameters are bound to v, and the reserved
variables deadline and critical are bound to d and b, respectively. Furthermore,
arrival is bound to t and cost to [[e]]x �→v (or to the default 0 if no annotation is
provided for the method). The function atts(C, v, o) returns the initial state of an
instance of class C, in which the formal parameters are bound to v and the reserved
variables this is bound to the object identity o. The function init(C) returns an
activation of the init method of C, if defined. Otherwise it returns the idle process.
The predicate fresh(n) asserts that a name n is globally unique (where n may be an
identifier for an object or a future).

Transition rules transform state configurations into new configurations, and are
given in Fig. 5.5 and Fig. 5.6. We denote by a the substitution which represents the
attributes of an object and by l the substitution which represents the local variable
bindings of a process. In the semantics, different assignment rules are defined for side
effect free expressions (Assign1 and Assign2), object creation (New-Object), method
calls (Async-Call), and future dereferencing (Read-Fut). Rule Skip consumes a skip

in the active process. Here and in the sequel, the variable s will match any (possibly
empty) statement list. We denote by idle a process with an empty statement list.
Rules Assign1 and Assign2 assign the value of expression e to a variable x in the local
variables l or in the fields a, respectively. Rules Cond1 and Cond2 cover the two cases
of conditional statements in the same way. (We omit the rule for while-loops which
unfolds into the conditional.)

Scheduling. Two operations manipulate a process pool q; pr ◦ q adds a process pr
to q and q \pr removes pr from q. If q is a pool of processes, σ a substitution, t a time
value, and cn a configuration, we denote by ready(q, σ, cn) the subset of processes
from q which are ready to execute (in the sense that the processes will not directly

Chapter 5 Paper 1: User-defined Schedulers and Real-Time 63

(Skip)

ob(o, p, a, {l | skip; s}, q)
→ ob(o, p, a, {l | s}, q)

(Suspend)

ob(o, p, a, {l | suspend; s}, q)
→ ob(o, p, a, idle, {l | s} ◦ q)

(Tick)

0 < d ≤ mte(cn)

{cn} → {adv(cn, d)}

(Activation)

q′ = bind(m, o, v̄, f, d, b, t) ◦ q

ob(o, p, a, pr, q) m(o, v̄, f, d, b, t)
→ ob(o, p, a, pr, q′)

(Read-Fut)

f = [[e]]a◦l

ob(o, p, a, {l | x = e.get; s}, q) fut(f, v)
→ ob(o, p, a, {l | x = v; s}, q) fut(f, v)

(Await1)

[[e]]cn
a◦l

{ob(o, p, a, {l | await e; s}, q) cn}

→ {ob(o, p, a, {l | s}, q) cn}

(Assign1)

x ∈ dom(l)

ob(o, p, a, {l | x = e; s}, q)
→ ob(o, p, a, {l[x 	→ [[e]]a◦l] | s}, q)

(Await2)

¬[[e]]cn
a◦l

{ob(o, p, a, {l | await e; s}, q) cn}

→ {ob(o, p, a, {l | suspend; await e; s}, q) cn}

(Assign2)

x �∈ dom(l)

ob(o, p, a, {l | x = e; s}, q)
→ ob(o, p, a[x 	→ [[e]]a◦l], {l | s}, q)

Figure 5.5: The semantics of Real-Time ABS (1).

suspend or block the object [25]).

Scheduling is captured by the rule Schedule, which applies when the active process
is idle and schedules a new process for execution if there are ready processes in the
process pool q. We utilize a scheduling policy as explained in Section 5.3: in an
object ob(o, p, σ, idle, q), p is an expression representing the user-defined scheduling
policy. This policy selects the process to be scheduled among the ready processes of
the pool q.

In order to apply the scheduling policy p, which is defined for the datatype Process
in Real-Time ABS, to the runtime representation q of the process pool, we lift the
processes in q to values of type Process. Let the function liftall recursively transform
a pool q of processes to a value of type List〈Process〉 by repeatedly applying lift to
the processes in q. The process identifier of the scheduled process is used to select the
runtime representation of this process from q.

Note that in order to evaluate guards on futures, the configuration cn is passed
to the ready function. This explains the use of brackets in the rules, which ensures
that cn is bound to the rest of the global system configuration. The same approach
is used to evaluate guards in the rules Await1 and Await2 below.

64 5.4 Semantics

(Schedule)

q′ = ready(q, a, cn) pr = select(pid, q)
q′ �= ∅ pid = [[procid(p)]]a[queue �→liftall(q′)]

{ob(o, p, a, idle, q) cn}

→ {ob(o, p, a, pr, (q \ pr)) cn}

(New-Object)

an = Scheduler: p′ fresh(o′)
pr = init(C) a′ = atts(C, [[e]]a◦l, o′, c)

ob(o, p, a, {l|[an] x = new C(e); s}, q)
→ ob(o, p, a, {l|x = o′; s}, q)

ob(o′, p′, a′, pr, ∅)

(Duration1)

d1 = [[e1]]a◦l d2 = [[e2]]a◦l

ob(o, p, a, {l | duration(e1, e2); s}, q)
→ ob(o, p, a, {l | duration2(d1, d2); s}, q)

(Duration2)

d1 ≤ 0

ob(o, p, a, {l | duration2(d1, d2); s}, q)
→ ob(o, p, a, {l | s}, q)

(Async-Call)

fresh(f) an = Deadline: d,

Critical: b

ob(o, p, a, {l | [an] x := e!m(e); s}, q) clock(t)
→ ob(o, p, a, {l | x := f); s}, q) clock(t)

m([[e]]a◦l, [[e]]a◦l, f, d, b, t) f

(Return)

f = l(destiny)

ob(o, p, a, {l | return(e); s}, q)
clock(t) f

→ ob(o, p, a, {l | finish = t}, q)
clock(t) fut(f, [[e]]a◦l)

(Cond2)

¬[[e]]a◦l

ob(o, p, a, {l|if e {s1} else {s2}; s}, q)
→ ob(o, p, a, {l|s2; s}, q)

(Cond1)

[[e]]a◦l

ob(o, p, a, {l|if e {s1} else {s2}; s}, q)
→ ob(o, p, a, {l|s1; s}, q)

Figure 5.6: The semantics of Real-Time ABS (2).

Rule Suspend suspends the active process to the process pool, leaving the active
process idle. Rule Await1 consumes the await g statement if g evaluates to true in the
current state of the object, rule Await2 adds a suspend statement in order to suspend
the process if the guard evaluates to false.

In rule Activation the function bind(m, o, v̄, f, d, c, b, t) binds a method call to
object o in the class of o. This results in a new process {l|s} which is placed in
the queue, where l(destiny) = f , l(method) = m, l(arrival) = t, l(cost) = c,
l(deadline) = d, l(start) = 0, l(finish) = 0, l(crit) = b, l(value) = 0, and where
the formal parameters of m are bound to v.

Durations. A statement duration(e1, e2) is reduced to the runtime statement
duration2(d1, d2), in which the expressions e1 and e2 have been reduced to duration
values. This statement blocks execution on the object until the best case execution
time has passed; i.e., until at least the duration d1 has passed. Remark that time

Chapter 5 Paper 1: User-defined Schedulers and Real-Time 65

mte(cn1 cn2) = min(mte(cn1), mte(cn2))

mte(ob(o, p, a, pr, q)) =

{

mte(pr) if pr �= idle
mte(q) if pr = idle

mte(q1, q2) = min(mte(q1), mte(q2))

mte({l|s}) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

w if s = duration2(b, w); s2

mte(g) if s = await g; s2

0 if s is enabled
∞ otherwise

mte(g) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

max(mte(g1), mte(g2)) if g = g1 ∧ g2

w if g = duration(b, w)
0 if g evaluates to true
∞ otherwise

adv(cn1 cn2, d) = adv(c1, d) adv(c2, d)
adv(ob(o, p, a, pr, q), d) = ob(o, p, a, adv(pr, d), adv(q, d))
adv((q1, q2), d) = adv(q1, d), adv(q2, d)
adv({l|s}, d) = {l[deadline 	→ l(deadline) − d]|adv(s, d)}

adv(s, d) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

duration2(b − d, w − d) if s = duration2(b, w)
await adv(g, d) if s = await g

adv(s1, d) if s = s1; s2

s otherwise

adv(g, d) =

⎧

⎪

⎨

⎪

⎩

adv(g1, d) ∧ adv(g2, d) if g = g1 ∧ g2

duration(b − d, w − d) if g = duration(b, w)
g otherwise

Figure 5.7: Functions controlling the advancement of time. Trivial cases for terms
msg, fut have been omitted.

cannot pass beyond duration d2 before the statement has been executed (see below).

Method Calls. Rule Async-Call sends an invocation message to [[e]]a◦l with the
unique identity f of a new future (since fresh(f)), the method name m, and parameter
values v. The identifier of the new future is placed in the configuration, and is bound
to a return value in Return. The annotations are used to provide a deadline and a
criticality which are passed to the callee with the invocation message. (The global
clock provides a time stamp for the call.) Rule Return places the evaluated return
expression in the future associated with the destiny variable of the process, and ends
execution after recording the time of process completion in the finish variable. Rule
Read-Fut dereferences the future fut(f, v). Note that if the future lacks a return
value, the reduction in this object is blocked.

Object creation. Rule New-Object creates a new object with a unique identi-
fier o′. The object’s fields are given default values by atts(C, [[e]]a◦l, o′, c), extended

66 5.4 Semantics

interface Server {
Bool request(String job, Rat bc, Rat wc);

}

data Log = Log(String job, Time completiontime, Duration jobdeadline);

[Scheduler: sjf(queue)]
class ServerImp implements Server {

List<Log> history = Nil;

[Cost: Duration(wc)]
Bool request(String job, Rat bc, Rat wc) {

duration(bc,wc);
history = Cons(Log(job, now, deadline),history);
return (durationValue(deadline) > 0);

}
}

interface Client { }

class ClientImp (String job, Int cycles, Int frequency, Duration bc, Duration wc,
Duration limit, Server s) implements Client {

Int replies = 0;
Int successes = 0;

Unit run() { await duration(frequency,frequency);
[Deadline: limit]
Fut<Bool> res = s!request(job, durationValue(bc),durationValue(wc));
cycles = cycles − 1;
if (cycles>0){

this!run();
}
await res?;
replies = replies + 1;
Bool result = res.get;
if (result){

successes = successes+1;
}

}
}

{
// Main block:
Server s = new ServerImp();
Client photo = new ClientImp("Photo",10,15, Duration(2),Duration(2),Duration(40),s);
Client video = new ClientImp("Video",4,40, Duration(15),Duration(15),Duration(80),s);
...

}

Figure 5.8: A model of photo and video processing. The server class as shown uses
sjf (shortest job first) scheduling.

Chapter 5 Paper 1: User-defined Schedulers and Real-Time 67

with the actual values e for the class parameters (evaluated in the context of the
creating process) and o′ for this. In order to instantiate the remaining attributes,
the process pr is active (we assume that this process reduces to idle if init(C) is un-
specified in the class definition, and that it asynchronously calls run if the latter is
specified). The object gets the scheduler in the annotation an (which is copied from
the class or system default if a scheduler annotation is not provided).

Time advance. Rule Tick specifies how time can advance in the system. We adapt
the approach of Real-Time Maude [31,32] to Real-Time ABS and specify a global time
which advances uniformly throughout the global configuration cn, combined with two
auxiliary functions: adv(cn, d) specifies how the advance of time with a duration
d affects different parts of the configuration cn, and mte(cn) defines the maximum
amount that global time can advance. At any time, the system can advance by
a duration d ≤ mte(cn). However, we are not interested in advancing time by a
duration 0, which would leave the system in the same state.

The auxiliary functions adv and mte are defined in Fig. 5.7. Both have the whole
configuration as input but consider mainly objects since these exhibit time-dependent
behavior. The function mte calculates the maximum time increment such that no
“interesting” occurrence (i.e., worst-case duration expires, duration guard passes) will
be missed in any object. Observe that for statements which are not time-dependent,
the maximum time elapse is 0 if the statement is enabled, since these statements are
instantaneous, and infinite if not enabled, since time may pass when the object is
blocked. Hence, mte returns the minimum time increment that lets an object become
“unstuck”, either by letting its active process continue or enabling one of its suspended
processes. The function adv updates the active and suspended processes of all objects,
decrementing all deadline values as well as the values in duration statements and
duration guards at the head of the statement list in processes.

5.5 Case Studies and Simulation Results

A tool for Real-Time ABS is implemented, extending the existing ABS interpreter
and tool chain. The parser, type-checker, and code generator have been implemented
in Java using the JastAdd toolkit. Real-Time ABS models run on top of the Maude
rewrite engine [14], with a model-independent interpreter almost directly implement-
ing the semantics of Sec. 5.4. Code editing is supported in either the Emacs editor
or the Eclipse integrated development environment, both of which support the ABS
language after installing a plugin.

The examples below are based on the common scenario of a server receiving a
series of method calls from an environment over time. These method calls result in
method activations which have associated deadlines and costs. The examples further
demonstrate the use of the Real-Time ABS tool.

68 5.5 Case Studies and Simulation Results

0

15

30

45

60

0 100 200 300 400 500

D
e
a
d

li
n

e
 m

is
s
e
s

Time

sjf edf fifo

Figure 5.9: Simulation results for Example 8: Comparison of the number of missed
deadlines with respect to time for fifo, edf, and sjf schedulers.

Example 8. Consider the ABS model of a service, which is used by clients by calling
the request method of a Server object (Fig. 5.8). For simplicity, we abstract from
the specific functionality of our service (e.g., resizing photos or video of varying sizes)
and let the request method of a server have a certain duration instead which is
given as a parameter to the method. This duration reflects the cost of execution of
the service in terms of its inputs best case bc and worst case wc execution time. A
request to the server is successful (captured by the return value of the method) if it can
be handled within the deadline which is given as an annotation at the call site in the
ClientImp implementation.

The class ClientImp takes a number of jobs and dispatches them with a certain fre-
quency to the server’s request method with the given deadline. The class ServerImp

contains a field history that is recording the scheduling sequence of the jobs and
their lateness. The number of received and successful responses to request calls are
recorded in the two variables replies and successes in the ClientImp class.

We simulate the model with a usage scenario in which objects for photo clients and
video clients send a total of 70 jobs to the server. Approximately 70% of the jobs are
cheap (i.e., processing photo) and 30% are expensive (i.e., processing video). In order
to avoid infinite runs in the simulations, executions are set to stop at a given time
limit. This allows us to observe the model’s behavior up to a certain point in time.
Figure 5.9 shows the number of failures to request calls (i.e., the missed deadlines)
with respect to time and compares the performance of three different schedulers fifo,
edf, and sjf, where sjf scheduler gives a better performance with respect to the other
two schedulers.

Chapter 5 Paper 1: User-defined Schedulers and Real-Time 69

// A scheduler which switches strategy based on the length of the queue
def Process lengthsensitive(Int limit, List<Process> l) =

if (length(l)<limit)
then sjf(l)
else fifo(l);

[Scheduler: lengthsensitive(limit,queue)]
class ServerImp (Int limit) implements Server {

... // (implementation unchanged)
}

Figure 5.10: The model from Fig. 5.8, with an application-specific scheduler which
adapts to server load.

Example 9. In the previous example, the sjf algorithm performed best overall, but
this came at the cost of penalizing expensive jobs, who got a large portion of the total
deadline misses. We now modify the model with an application-specific scheduler that
can be parameterized to balance overall performance and fairness between large and
small jobs.

Fig. 5.10 shows the modifications made to the model from Fig. 5.8. The new
scheduler lengthsensitive switches between sjf and fifo behavior as the length of
the process queue crosses a specified threshold. Note that the cutoff value limit is
taken from the object state and is passed in as a second parameter to the scheduler.
This shows how the state of an object can influence its scheduling decisions.

Switching between fifo and sjf represents a tradeoff between favoring short and
long jobs in our usage scenario. The new limit parameter to the class ServerImp

lets the modeler influence the ratio of deadline misses, and hence QoS, for each job
type. Fig. 5.11 presents simulation results for varying cutoff points. We record results
and show deadline misses as percentage of overall submitted jobs for large and small
jobs separately. It can be seen that for limit ≤ 6, the system performs identically
to a system using sjf scheduling. For limit ≥ 15, the behavior is the same as fifo.
The limit parameter can thus be used to influence overall quality of service, and to
dynamically adjust an object’s behavior for changing workloads. Note that we simulate
with a constant value for limit, but it is straightforward to, e.g., model a monitor
object running in parallel with the server that adjusts this parameter at runtime to
adjust scheduling behavior based on performance measuring.

5.6 Conclusion

Whereas scheduling has traditionally been studied in the context of operating sys-
tems, modern software applications with soft real-time requirements need flexible

70 5.6 Conclusion

0

25

50

75

100

6 7 8 9 10 11 12 13 14 15

D
e
a
d

lin
e
 m

is
s
e
s
 (
%

)

Queue length for switching from sjf to fifo

Photo Video Overall

Figure 5.11: Application-specific scheduling for the server example: a conditional
scheduler switches between fifo and sjf behavior, depending on object state and server
load.

application-specific schedulers to control application-level performance. This paper
has presented Real-Time ABS, a real-time object-oriented modeling language in which
user-defined schedulers may be associated with concurrent objects and deadlines with
method calls. We have defined a formal semantics for Real-Time ABS and shown how
user-defined schedulers may be expressed at the abstraction level of the modeling lan-
guage and integrated in the formal semantics. A tool based on an abstract interpreter
has been implemented for Real-Time ABS, which can be used for simulation and
measurements for Real-Time ABS models. A series of examples demonstrate model-
ing with user-defined schedulers in Real-Time ABS and the use of this tool. Recent
complementary work has shown how schedulability analysis for Real-Time ABS can
be done by means of an encoding into timed automata [10] and how cost estimates
for methods in Real-Time ABS can be inferred using the COSTABS tool [2]. The
integration of this work in our tool is currently underway.

Bibliography

[1] Agha, G.A.: ACTORS: A Model of Concurrent Computations in Distributed
Systems. The MIT Press, Cambridge, Mass. (1986)

[2] Albert, E., Arenas, P., Genaim, S., Gómez-Zamalloa, M., Puebla, G.: Cost analy-
sis of concurrent OO programs. In: Proc. 9th Asian Symposium on Programming
Languages and Systems (APLAS 2011), Lecture Notes in Computer Science, vol.
7078, pp. 238–254. Springer (2011).

[3] Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: TIMES - a
tool for modelling and implementation of embedded systems. In: Proc. 8th
Intl. Conf. on Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS 2002), Lecture Notes in Computer Science, vol. 2280, pp. 460–464.
Springer (2002)

[4] Andrews, G.R.: Foundations of Multithreaded, Parallel, and Distributed Pro-
gramming. Addison-Wesley (1999)

[5] Angerer, C.M., Gross, T.R.: Static analysis of dynamic schedules and its ap-
plication to optimization of parallel programs. In: Proc. 23rd Languages and
Compilers for Parallel Computing (LCPC 2010), Lecture Notes in Computer Sci-
ence, vol. 6548, pp. 16–30. Springer (2010)

[6] Armstrong, J.: Programming Erlang: Software for a Concurrent World. Prag-
matic Bookshelf (2007)

[7] Bjørk, J., Johnsen, E.B., Owe, O., Schlatte, R.: Lightweight time modeling in
Timed Creol. Proc. 1st Intl. Workshop on Rewriting Techniques for Real-Time
Systems (RTRTS 2010). Electronic Proceedings in Theoretical Computer Science
36, 67–81 (2010).

[8] Blair, G.S., Coulson, G., Robin, P., Papathomas, M.: An architecture for next
generation middleware. In: Proc. IFIP Intl. Conf. on Distributed Systems Plat-
forms and Open Distributed Processing (Middleware’98), pp. 191–206. Springer
(1998)

71

72 BIBLIOGRAPHY

[9] de Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In:
R. de Nicola (ed.) Proc. 16th European Symposium on Programming (ESOP’07),
Lecture Notes in Computer Science, vol. 4421, pp. 316–330. Springer (2007)

[10] de Boer, F.S., Jaghoori, M.M., Johnsen, E.B.: Dating concurrent objects: Real-
time modeling and schedulability analysis. In: Proc. 21st Intl. Conf. on Con-
currency Theory (CONCUR), Lecture Notes in Computer Science, vol. 6269, pp.
1–18. Springer (2010)

[11] Buttazzo, G.: Hard Real-Time Computing Systems: Predictable Scheduling Al-
gorithms and Applications, 2 edn. Kluwer Academic Publishers (2004)

[12] Chakravarti, A.J., Baumgartner, G., Lauria, M.: Application-specific scheduling
for the organic grid. In: Proc. 5th IEEE/ACM Intl. Workshop on Grid Comput-
ing (GRID’04), pp. 146–155. IEEE Press (2004)

[13] Cheng, A.M.K.: Real-Time Systems: Scheduling, Analysis, and Verification.
John Wiley & Sons, Inc. (2002)

[14] Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Tal-
cott, C.L. (eds.): All About Maude - A High-Performance Logical Framework,
How to Specify, Program and Verify Systems in Rewriting Logic, Lecture Notes
in Computer Science, vol. 4350. Springer (2007)

[15] Coffman, E.G.: Computer and Job-Shop Scheduling Theory. John Wiley & Sons,
Inc. (1976)

[16] David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski:, A.: ECDAR: An
environment for compositional design and analysis of real time systems. In: Proc.
8th Automated Technology for Verification and Analysis (ATVA 2010), Lecture
Notes in Computer Science, vol. 6252, pp. 365–370. Springer (2010)

[17] Dibble, P.C.: Real-Time Java Platform Programming, 2 edn. BookSurge Pub-
lishing (2008)

[18] Fersman, E., Krcál, P., Pettersson, P., Yi, W.: Task automata: Schedulability,
decidability and undecidability. Information and Computation 205(8), 1149–
1172 (2007)

[19] Haller, P., Odersky, M.: Scala actors: Unifying thread-based and event-based
programming. Theoretical Computer Science 410(2–3), 202–220 (2009)

[20] Harchol-Balter, M., Schroeder, B., Bansal, N., Agrawal, M.: Size-based schedul-
ing to improve web performance. ACM Transactions on Computer Systems 21(2),
207–233 (2003)

BIBLIOGRAPHY 73

[21] Hoare, C.A.R.: Monitors: an operating system structuring concept. Commun.
ACM 17, 549–557 (1974)

[22] Hsiung, P.A., Huang, C.H., Chen, Y.H.: Hardware task scheduling and placement
in operating systems for dynamically reconfigurable soc. Journal of Embedded
Computing 3(1), 53–62 (2009)

[23] Hsu, C.H., Chen, S.C.: A two-level scheduling strategy for optimising commu-
nications of data parallel programs in clusters. Intl. Journal of Ad Hoc and
Ubiquitous Computing 6(4), 263–269 (2010)

[24] Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A core
language for abstract behavioral specification. In: Proc. 9th Intl. Symposium on
Formal Methods for Components and Objects (FMCO 2010), Lecture Notes in
Computer Science, vol. 6957, pp. 142–164. Springer (2011).

[25] Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed
concurrent objects. Software and Systems Modeling 6(1), 35–58 (2007)

[26] Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. International
Journal on Software Tools for Technology Transfer 1(1–2), 134–152 (1997)

[27] Lee, E.A.: Computing needs time. Communications of the ACM 52(5), 70–79
(2009)

[28] Logan, M., Merritt, E., Carlsson, R.: Erlang and OTP in Action. Manning
Publications (2010)

[29] Meseguer, J.: Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science 96, 73–155 (1992)

[30] Nobakht, B., de Boer, F.S., Jaghoori, M.M., Schlatte, R.: Programming and
deployment of active objects with application-level scheduling. In: Proc. Sym-
posium on Applied Computing (SAC). ACM (2012).

[31] Ölveczky, P.C., Meseguer, J.: Specification of real-time and hybrid systems in
rewriting logic. Theoretical Computer Science 285(2), 359–405 (2002)

[32] Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation 20(1–2), 161–196 (2007)

[33] Pierce, B.C.: Types and Programming Languages. The MIT Press (2002)

[34] Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic
and Algebraic Programming 60-61, 17–139 (2004)

74 BIBLIOGRAPHY

[35] Santoso, J., van Albada, G.D., Nazief, B.A.A., Sloot, P.M.A.: Simulating
job scheduling for clusters of workstations. In: M. Bubak, H. Afsarmanesh,
R. Williams, L.O. Hertzberger (eds.) 8th Intl. Conf. on High-Performance Com-
puting and Networking (HPCN Europe 2000), Lecture Notes in Computer Sci-
ence, vol. 1823, pp. 395–406. Springer (2000)

[36] Schäfer, J., Poetzsch-Heffter, A.: JCoBox: Generalizing active objects to con-
current components. In: European Conf. on Object-Oriented Programming
(ECOOP 2010), Lecture Notes in Computer Science, vol. 6183, pp. 275–299.
Springer (2010)

[37] Schoeberl, M.: Real-time scheduling on a Java processor. In: Proc. 10th
Intl. Conf. on Real-Time and Embedded Computing Systems and Applications
(RTCSA) (2004)

[38] Sorensen, A., Gardner, H.: Programming with time: cyber-physical programming
with Impromptu. In: W.R. Cook, S. Clarke, M.C. Rinard (eds.) Proc. Object-
Oriented Programming, Systems, Languages, and Applications, (OOPSLA), pp.
822–834. ACM (2010)

[39] Srinivasan, S., Mycroft, A.: Kilim: Isolation-typed actors for Java. In: J. Vitek
(ed.) Proc. 22nd European Conf. on Object-Oriented Programming (ECOOP
2008), Lecture Notes in Computer Science, vol. 5142, pp. 104–128. Springer
(2008)

[40] Tchernykh, A., Ramírez-Alcaraz, J.M., Avetisyan, A., Kuzjurin, N., Grushin,
D., Zhuk, S.: Two level job-scheduling strategies for a computational grid. In:
R. Wyrzykowski, J. Dongarra, N. Meyer, J. Wasniewski (eds.) 6th Intl. Conf. on
Parallel Processing and Applied Mathematics (PPAM), Lecture Notes in Com-
puter Science, vol. 3911, pp. 774–781. Springer (2005)

CHAPTER 6

Paper 2: Integrating Deployment

Architectures and Resource

Consumption in Timed

Object-Oriented Models ∗

Authors: Einar Broch Johnsen, Rudolf Schlatte and Silvia Lizeth Tapia Tarifa.

Publication: Research Report 438, Department of Informatics, University of Oslo,
February 2014. Submitted to the Journal of Logic and Algebraic Programming, in
second round revision.

Abstract: Software today is often developed for many deployment scenarios; the
software may be adapted to sequential, concurrent, distributed, and even virtual-
ized architectures. Since software performance can vary significantly depending on
the target architecture, design decisions need to address which features to include
and what performance to expect for different architectures. To make use of formal
methods for these design decisions, system models need to range over deployment
scenarios. For this purpose, it is desirable to lift aspects of low-level deployment to
the abstraction level of the modeling language. This paper proposes an integration of
deployment architectures in the Real-Time ABS language, with restrictions on pro-
cessing resources. Real-Time ABS is a timed, abstract and behavioral specification
language with a formal semantics and a Java-like syntax, that targets concurrent,
distributed and object-oriented systems. A separation of concerns between execution
cost at the object level and execution capacity at the deployment level makes it easy to

∗This work was done in the context of the EU project FP7-610582 ENVISAGE: Engineering

Virtualized Services (http://www.envisage-project.eu)

75

76 6.1 Introduction

compare the timing and performance of different deployment scenarios already during
modeling. The language and associated simulation tool is demonstrated on examples
and its semantics is formalized.

Keywords: Deployment architecture; resources; real-time; object orientation; for-
mal methods; performance; Real-Time ABS

6.1 Introduction

Software is increasingly often developed as a range of systems. Different versions of
a software may provide different functionality and advanced features, depending on
the target users. A development method which attempts to systematize this software
variability is product line engineering [1]; in a product line, different versions of a
software (i.e., the products) may be instantiated with different features. An example
is software for cell phones. Products for different cell phones and service subscriptions
are produced by selecting among functional features such as call forwarding, answering
machine, text messaging, etc. However, the selection of features in a product may be
restricted by the hardware capacity of the different targeted cell phones. In addition
to their functional variability, software systems need to adapt to different deployment
architectures. For example, operating systems adapt to specific hardware and even to
different numbers of available cores; virtualized applications are deployed on a varying
number of (virtual) servers; and services on the cloud may need to dynamically adapt
to the underlying cloud infrastructure and to changing load scenarios. This kind
of adaptability raises new challenges for the modeling and analysis of component-
based applications [2]. To apply formal methods to the design of such systems, it is
interesting to lift aspects of low-level deployment concerns to the abstraction level of
the modeling language.

The motivation for the work presented in this paper is to apply performance
analysis to formal object-oriented models in which objects are deployed on resource-
constrained deployment architectures. The idea underlying our approach is to make a
separation of concerns between the cost of performing a computation and the available
resource capacity of the deployment architecture, rather than to assume that this
relationship is fixed in terms of, e.g., specified execution times. Although a range
of resources could be considered, this paper focuses on processing capacity. In our
approach, the underlying deployment architecture of the targeted system forms an
integral part of the system model, but defaults are provided which allow the modeler
to ignore architectural design decisions when desirable. The separation of concerns
between cost and capacity allows the performance of a model to be compared for
a range of deployment choices. By comparing deployment choices many interesting
questions concerning performance can be addressed during the system design phase,

Chapter 6 Paper 2: Deployment Architectures and Resource Consumption 77

for example:

• How will the response time of my system improve if I double the number of
servers?

• How do fluctuations in client traffic influence the performance of my system on
a given deployment architecture?

• Can I better control the performance of my system by means of application-
specific load balancing?

Our approach is based on ABS [3], a modeling language for distributed concurrent
object groups akin to concurrent objects (e.g., [4–6]), Actors (e.g., [7,8]), and Erlang
processes [9]. Concurrent object groups communicate by asynchronous method calls
and futures [6]. ABS is an executable imperative language which allows modeling
abstractions; for example, functions and algebraic data types can be used to abstract
from imperative data structures while retaining an overall object-oriented design.
ABS has a formal semantics in an SOS style [10] as well as a tool suite to support
the development and analysis of models [11]. The core of this tool suite is an editor
in Eclipse with a compiler and a language interpreter executing on Maude [12], a
platform for programs written in rewriting logic [13]. The syntax of ABS and its
semantics for sequential object-oriented programs are sufficiently similar to industrial
programming languages (specifically, Java) that a moderately experienced software
engineer can start using it with a reasonably small learning effort.

To model object-oriented applications in resource-constrained deployment archi-
tectures, we extend ABS with deployment components. Deployment components were
originally proposed by the authors in [14]. Deployment components capture the ex-
ecution capacity of a location in the deployment architecture, on which a number
of concurrent objects are deployed. Deployment components are parametric in the
amount of concurrent execution capacity they allow within a time interval. This al-
lows us to analyze how the execution capacity of a deployment component influences
the performance of objects executing on the deployment component. The authors
also extended this approach to support dynamic resource reallocation [15] and object
mobility [16]. This paper improves and combines results from [14–16] by, first, giving
a unified presentation of this work; second, adapting our approach to a dense real-
time model whereas the previous papers used discrete time; third, refining the cost
model of the previous papers [14, 15] from fixed costs to the flexible user-defined cost
expressions introduced in [16]; and fourth, refining the semantics to directly handle
slow computations which require several time intervals. To validate and compare the
concurrent behavior of models under restricted concurrency assumptions, we use the
tool suite for Real-Time ABS.

Paper overview. Section 6.2 presents the Real-Time ABS modeling language and
Section 6.3 extends Real-Time ABS with a deployment layer to capture deployment

78 6.2 Modeling Timed Behavior in Real-Time ABS

Figure 6.1: The Layers of the Real-Time ABS Modeling Language

architectures and resource consumption. Sections 6.4, 6.5, and 6.6 highlight different
aspects of the modeling language through examples and show how the Real-Time
ABS tool can be used to obtain insights into the deployment aspects of the models.
Section 6.7 formalizes the modeling language in terms of an operational semantics.
Section 6.8 discusses related and future work, and Section 6.9 concludes the paper.

6.2 Modeling Timed Behavior in Real-Time ABS

ABS is an executable object-oriented modeling language which combines functional
and imperative programming styles to develop high-level executable models. ABS
targets the modeling of distributed systems by means of concurrent object groups
that internally support interleaved concurrency. Concurrent object groups execute in
parallel and communicate through asynchronous method calls. A concurrent object
group has at most one active process at any time and a queue of suspended processes
waiting to execute on an object in the group. This makes it very easy to combine
active and reactive behavior in the concurrent object groups, based on a cooperative
scheduling [3] of processes which stem from method activations. Objects in ABS are
dynamically created from classes typed by interface; i.e., there is no explicit notion of
hiding as the object state is always encapsulated behind interfaces which offer methods
to the environment.

Inside an object, internal computation is captured in a simple functional language
based on user-defined algebraic data types and functions. Thus, the modeler may
abstract from many details of the low-level imperative implementations of data struc-
tures, and still maintain an overall object-oriented design which is close to the target
system. A schematic view of the modeling layers of ABS is given in Figure 6.1; this
section presents the functional and imperative layers, the deployment layer is discussed

Chapter 6 Paper 2: Deployment Architectures and Resource Consumption 79

Syntactic categories.
T in GroundType
A in Type
x in Variable
e in Expression
v in Value

br in Branch
p in Pattern

Definitions.
T ::= B | I | D | D〈T 〉
A ::= N | T | N〈A〉

Dd ::= data D[〈A〉] = [Cons];
Cons ::= Co[(A)]

F ::= def A fn[〈A〉](A x) = e;
e ::= x | v | Co[(e)] | fn(e) | case e {br}

| this | now() | deadline() | destiny()
v ::= Co[(v)] | null

br ::= p ⇒ e;
p ::= _ | x | v | Co[(p)]

Figure 6.2: Syntax for the functional layer of Real-Time ABS. Terms e and x denote
possibly empty lists over the corresponding syntactic categories, and square brackets
[] optional elements.

in Section 6.3.

At a high level of abstraction, concurrent object groups typically consist of a single
concurrent object; other objects may be introduced into a group as required to give
some of the algebraic data structures an explicit imperative representation when this
is natural in a model. To simplify the presentation in this paper, we aim at high-level
models and only consider concurrent objects (i.e., the groups will always consist of
single concurrent objects). We make use of ABS annotations (a general mechanism
to add meta-data to statements) to express timing and deployment aspects in our
models. This paper assumes that all ABS programs are well-typed. In particular, the
presented syntax definition and operational semantics assume that annotations only
occur as discussed in the sequel. (A type system for the core ABS language is given
in [3].)

Real-Time ABS [17] is an extension of ABS to model the timed behavior of concur-
rent objects in ABS. The object-oriented perspective on timed behavior is captured
by deadlines on method calls. Every method activation in Real-Time ABS has an as-
sociated deadline; this deadline captures the remaining execution time, so it decreases
with the passage of time. Deadlines are soft; i.e., the execution of the method does
not stop because the deadline is missed. By default the deadline associated with a
method activation is infinite, so in an untimed ABS model deadlines will never be
missed. We use the annotation mechanism of ABS to override the default deadline
for specific method calls.

6.2.1 The Functional Layer of Real-Time ABS

The functional layer of Real-Time ABS consists of a library of algebraic data types
such as the empty type Unit, booleans Bool, integers Int, rational numbers Rat, and

80 6.2 Modeling Timed Behavior in Real-Time ABS

strings String; parametric data types such as sets Set〈A〉 and maps Map〈A, B〉 (given
values for the type variables A and B); and (parametric) functions over values of these
data types. For simplicity, Real-Time ABS does not support operator overloading.

Example 10. Polymorphic sets in Real-Time ABS. Polymorphic sets can be defined
using a type variable A and two constructors EmptySet and Insert. We define a func-
tion contains which recursively checks whether an element el is in a set ss by pattern
matching over ss.

data Set<A> = EmptySet | Insert(A, Set<A>);

def Bool contains<A>(Set<A> ss, A el) =
case ss {

EmptySet => False ;
Insert(el, _) => True;
Insert(_, xs) => contains(xs, el);

};

The underscore _ matches any element in a constructor pattern without introducing a
variable binding, the new binding xs matches the rest of the set in the last case clause.

The following statement defines a variable b and sets its value to True.

Bool b = contains(1, Insert(1, EmptySet));

To express time, we consider a dense time model represented by two types Time
and Duration. Time values capture points in time as reflected on a global clock during
execution. In contrast, finite durations reflect the execution time (i.e., the difference
between two time values). However, durations may be infinite (or unbounded). Infi-
nite durations are captured by the term InfDuration, which is such that for all other
durations d1, d2, the sum d1 + d2 is smaller than InfDuration.

Example 11. Dense Time in Real-Time ABS. The datatypes Time and Duration are
defined as follows:

data Time = Time(Rat timeValue);

data Duration = Duration(Rat durationValue) | InfDuration;

Here, timeValue and durationValue are partially defined accessor functions on the types
Time and Duration. For example, given a rational number r, the value Time(r) is of
type Time, Duration(r) is of type Duration, and the expressions timeValue(Time(r)) and
durationValue(Duration(r)) both evaluate to r. Functions are defined in a standard way,
shown here are a subtraction function timeDifference on Time values, a unary predi-
cate isInfinite on Duration values, and the binary less-than relation lt on Duration
values:

Chapter 6 Paper 2: Deployment Architectures and Resource Consumption 81

def Duration timeDifference(Time t1, Time t2) =
Duration(timeValue(t1)−timeValue(t2));

def Bool isInfinite(Duration d) = d == InfDuration;

def Bool lt(Duration d1, Duration d2) =
case d1 { InfDuration => False;

Duration(v1) => case d2 {
InfDuration => True;
Duration(v2) => v1 < v2;};};

Two Duration values can be added. Since there is no operator overloading in Real-Time
ABS, we define addition of durations as a function add:

def Duration add(Duration d1, Duration d2) =
case d1 { InfDuration => InfDuration;

Duration(v1) => case d2 {
InfDuration => InfDuration;
Duration(v2) => Duration(v1 + v2);};};

Here, the operators < and + are used for comparison and addition in the underlying
datatype of rational numbers.

The formal syntax of the functional language is given in Figure 6.2. The ground
types T consist of basic types B such as Bool and Int, as well as names D for datatypes
and I for interfaces. In general, a type A may also contain type variables N (i.e.,
uninterpreted type names [18]). In datatype declarations Dd, a datatype D has a set
of constructors Cons, each of which has a name Co and a list of types A for their
arguments. Function declarations F have a return type A, a function name fn, a list
of parameters x of types A, and a function body e. Both datatypes and functions
may be polymorphic and have a bracketed list of type parameters (e.g., Set〈Bool〉).
The layered type system allows functions in the functional layer to be defined over
types A which are parametrized by type variables but only applied to ground types
T in the imperative layer; e.g., the head of a list is defined for List〈A〉 but applied to
ground types such as List〈Int〉.

Expressions e include variables x, values v, constructor expressions Co(e), function
expressions fn(e), case expressions case e {br}, the self-identifier this, now() of type
Time, which evaluates to the current value of the global system clock, deadline() of
type Duration, which evaluates to the remaining execution time before the reply from
the current process is due, and destiny() which refers to the future variable where
the return value from the current process is stored after finishing the execution (see
the next section). Values v are expressions which have reached a normal form; i.e.,
constructors applied to values Co(v) or null (omitted from Figure 6.2 are values of
the basic types String, Rat and Int, which are standard).

Case expressions match a value against a list of branches p ⇒ e, where p is a

82 6.2 Modeling Timed Behavior in Real-Time ABS

pattern. Patterns are composed of the following elements:

• wild cards _ which match anything;

• variables x match anything if they are free or match against the existing value
of x if they are bound;

• values v which are compared literally;

• constructor patterns Co(p) which match Co and then recursively match the
elements p.

The branches are evaluated in the listed order, free variables in p are bound in the
expression e.

6.2.2 The Imperative Layer of Real-Time ABS

The imperative layer of Real-Time ABS addresses concurrency, communication, and
synchronization in the system design, and defines interfaces, classes, and methods in
an object-oriented language with a Java-like syntax. In Real-Time ABS, concurrent
objects are active in the sense that their run method, if defined, gets called upon
creation.

Statements are standard for sequential composition s1; s2, and for skip, if, while,
and return constructs. The statement duration(e1, e2) causes time to advance between
a best case e1 and a worst case e2 execution time, where e1 and e2 are rational numbers.
Cooperative scheduling in ABS is achieved by explicitly suspending the execution of
the active process. The statement suspend unconditionally suspends the execution
of the active process and moves this process to the queue. The statement await g
conditionally suspends execution; the guard g controls processor release and consists of
Boolean conditions b and return tests x? (explained in the next paragraph). Just like
expressions e, the evaluation of guards g is side-effect free. However, if g evaluates to
false, the processor is released and the process suspended. When the execution thread
is idle, an enabled task may be selected from the pool of suspended tasks by means
of a default scheduling policy. In addition to expressions e, the right hand side of an
assignment x=rhs includes object group creation new cog C(e), method calls o!m(e),
and future dereferencing x.get. Method calls and future dereferencing are explained
in the next paragraph.

Communication and synchronization are decoupled in Real-Time ABS. Commu-
nication is based on asynchronous method calls, denoted by assignments f=o!m(e)
to future variables f of type Fut〈T 〉, where T corresponds to the return type of the
called method m. Here, o is an object expression, m a method name, and e are expres-
sions providing actual parameter values for the method invocation. (Local calls are

Chapter 6 Paper 2: Deployment Architectures and Resource Consumption 83

written this!m(e).) After calling f=o!m(e), the future variable f refers to the return
value of the call, and the caller may proceed with its execution without blocking. Two
operations on future variables control synchronization in Real-Time ABS. First, the
guard await f? suspends the active process unless a return to the call associated with
f has arrived, allowing other processes in the object to execute. Second, the return
value is retrieved by the expression f.get, which blocks all execution in the object
until the return value is available. Futures are first-class citizens of Real-Time ABS;
the expression destiny() refers to the future associated with the current process [6].
The statement sequence x=o!m(e);v=x.get encodes commonly used blocking calls,
abbreviated v=o.m(e) (often referred to as synchronous calls). If the return value of
a call is without interest, the call may occur directly as a statement o!m(e) with no
associated future variable. This corresponds to asynchronous message passing. The
default deadline of a method activation is InfDuration. However, this default may be
overridden by an optional deadline annotation to the method call statement, which
takes as its argument a duration value. Note that deadline annotations can only occur
associated with method calls.

Example 12. Deadlines. Assume that an object o implements a method m which
takes a formal parameter of type T . We define a wrapper method n which calls m on o
and specify a deadline for this synchronized call, given as an annotation and expressed
in terms of its own remaining deadline. The method n succeeds if it can return within
its given deadline. Note that if its own deadline is InfDuration, then the deadline to
m will also be unlimited. The function scale(d,r) multiplies the value of a duration d
by a rational number r (we omit the definition of scale, which is straightforward):

Unit n (T x){
[Deadline: scale(deadline(), 9/10)] f=o.m(x);
return deadline() > 0;

}

The formal syntax of the imperative layer of Real-Time ABS is given in Figure 6.3.
A program P consists of lists of interface and class declarations followed by a main
block {T x; s}, which is similar to a method body. An interface IF has a name I and
method signatures Sg. A class CL has a name C, interfaces I (specifying types for
its instances), class parameters and state variables x of type T , and methods M (The
attributes of the class are both its parameters and state variables). A method signature
Sg declares the return type T of a method with name m and formal parameters x of
types T . M defines a method with signature Sg, local variable declarations x of types
T , and a statement s. Statements may access attributes, locally defined variables,
and the method’s formal parameters. There are no type variables at the imperative
layer of Real-Time ABS.

84 6.2 Modeling Timed Behavior in Real-Time ABS

Syntactic categories.
s in Stmt
e in Expr
b in BoolExpr
a in Annotation
g in Guard

Definitions.
P ::= IF CL {[T x;] s }

IF ::= interface I { [Sg] }
CL ::= class C [(T x)] [implements I] { [T x;] M}
Sg ::= T m ([T x])
M ::= Sg {[T x;] s }
s ::= s; s | [[a]] s | skip | x = rhs | if b { s } [else { s }]

| while b { s } | duration(e, e) | suspend
| await g | return e

a ::= Deadline: e
rhs ::= e | cm | new cog C (e)
cm ::= e!m(e) | x.get

g ::= b | x? | g ∧ g

Figure 6.3: Syntax for the imperative layer of Real-Time ABS. Terms like e and
x denote (possibly empty) lists over the corresponding syntactic categories, square
brackets [] denote optional elements.

6.2.3 Explicit and Implicit Time in Real-Time ABS

In Real-Time ABS, the local passage of time can be modeled both explicitly and
implicitly. With explicit time, the modeler inserts duration statements with best-case
and worst-case execution times into the model. This is the standard approach to
modeling timed behavior, well-known from, e.g., timed automata in UPPAAL [19].
Duration statements specify explicit execution times when the model abstracts from
the system’s deployment architecture (e.g., the deployment architecture is assumed
to be fixed and the load captured by worst- and best-case execution times).

Example 13. Explicit time. Let f be a function defined in the functional layer of
Real-Time ABS, which recurses through some data structure x of type T, and let the
function size measure this data structure. Consider a method m which takes as input
such a value x and returns the result of applying f to x. Let us assume that the
time needed for this computation depends on the size of x; e.g., the execution time is
between a duration size(x)/2 and a duration 4∗size(x). An interface I which provides
the method m and a class C which implements I, including the execution time for m
using the explicit time model, are specified as follows:

interface I {
Int m(T x)

}

class C implements I {
Int m (T x){

duration(size(x)/2, 4∗size(x));
return f(x);

}
}

Chapter 6 Paper 2: Deployment Architectures and Resource Consumption 85

With implicit time the execution time is not specified explicitly in terms of dura-
tions, but rather observed on the executing model. This is done by comparing clock
values from the global clock during model execution.

Example 14. Implicit time. We specify an interface J with a method p which, given
a value of type T, returns a value of type Duration, and we implement p in a class D
such that p measures the time needed to call the method m of Example 13 above, as
follows:

interface J {
Duration p (T x)

}

class D implements J (I o) {
Duration p (T x){

Time start;
Int y;
start = now();
y=o.m(x);
return timeDifference(now(),start);

}
}

Observe that with implicit time, no assumptions about execution times are given
in the model. The execution time depends on how quickly the method call is effec-
tuated by the other object. In Example 14 the execution time is simply observed by
comparing the time before and after making the call. As a consequence, the time
needed to execute a statement depends on the capacity of the chosen deployment ar-
chitecture and on synchronization with (slower) objects. In many cases it is natural
to use both explicit and implicit time in a model, so both are supported in Real-Time
ABS.

6.3 Modeling Deployment Architectures

The execution time in a distributed system depends on the amount of computation
which takes place at different locations, and on the execution capacity of those lo-
cations. Deployment architectures express how different software units are deployed
on physical or virtual hardware. We can think of a deployment architecture as a
collection of locations with resource constraints, on which the software units are de-
ployed. Real-Time ABS makes a separation of concerns between the resource cost of
performing a computation and the resource capacity of a given location.

In this paper we focus on CPU resources. Deployment components are used to
model locations which are restricted in their execution capacity. Resource cost anno-
tations are used to express resource consumption during computation. Other resource

86 6.3 Modeling Deployment Architectures

data DCData = InfCPU | CPU(Int capacity);

interface DC{
DCData total();
Rat load(Int n);
Unit transfer(DC target, Int amount)

}

Figure 6.4: The specification of resources and the interface of deployment components.

types like bandwidth, memory, and power consumption can be handled with similar
techniques as the ones presented here; work in this area is ongoing.

6.3.1 Deployment Components

A deployment component captures the execution capacity of a location on which a
number of concurrent objects are deployed. The capacity is specified as an amount
of resources which is available during a time interval; the time interval corresponds
to the time between integer values in the dense time domain of Real-Time ABS. The
available resources may be used to perform computation within the time interval, and
they are renewed for the next time interval. The renewal of resources for different
deployment components is synchronized.

The main block of the model executes in a root object located on a default deploy-
ment component, which we call environment, with unrestricted processing capacity.
A model may be extended with other deployment components with different capaci-
ties. When objects are created, they are by default allocated to the same deployment
component as their creator, but they may also be allocated to a different deployment
component. Thus, in a model without explicit deployment components all objects run
in environment, which places no restrictions on the processing capacity of the model.

Deployment components are first-class citizens of Real-Time ABS. They may be
passed around as arguments to method calls, they support a number of methods, and
they may be created dynamically, depending on control flow, or statically in the main
block of the model. Syntactically, deployment components in Real-Time ABS are
manipulated in a way similar to objects. Variables which refer to deployment compo-
nents are typed by an interface DC and new deployment components are dynamically
created as instances of a class DeploymentComponent, which implements DC. The
interface DC is defined as in Figure 6.4.

The DC interface provides the following methods for resource management: total()
returns the number of resources currently allocated to the deployment component,
load(n) returns the deployment component’s average load during the last n time inter-
vals in a percentage scaled from 0 to 100 (i.e., a load of 90 means that 90% of the total

Chapter 6 Paper 2: Deployment Architectures and Resource Consumption 87

resources have been used in the last n time intervals in average), and transfer(target,r)
reallocates r resources from the deployment component to the target deployment com-
ponent. If the deployment component has less than r resources available, the available
amount is transferred.

The type DCData, given in Figure 6.4, reflects processing capacity. It has construc-
tors InfCPU for infinite resources and CPU(r), where r represents the amount of process-
ing resources available in a time interval. The observer function capacity is defined for
the constructor CPU(r) and returns the amount r. Deployment components are created
by an assignment with the right hand side new cog DeploymentComponent(descriptor,
capacity). The parameter capacity of type DCData specifies the initial CPU capacity
of the deployment component. The parameter descriptor of type String is a descrip-
tor mainly used for monitoring purposes; i.e., it defines a user-defined name for the
deployment component which facilitates querying the run-time state but that has no
semantic effect. The use of descriptors is further illustrated in the examples of Sec-
tions 6.4 and 6.6. Objects are deployed on deployment components when the objects
are created. By default an object is deployed on the same deployment component as
its creator. However, a different deployment component may be selected by means
of an optional deployment annotation [DC: e] to the object creation statement, where
e is an expression of type DC. Note that deployment annotations can only occur
associated with the creation of concurrent object groups.

Example 15. Static Deployment Architecture. Given the interfaces I and J and
classes C and D of Examples 13 and 14, we can specify a static deployment architecture
in which two C objects, deployed on different deployment components Server1 and
Server2, interact with D objects deployed on a deployment component ClientServer, as
follows. We create three deployment components with descriptors Server1, Server2,
and ClientServer and processing capacities 6, 3, and InfCPU (i.e., the ClientServer
has no resource restrictions). The local variables dc1, dc2, and dc3 refer to these
three deployment components in the scope of the main block of the model. Objects
are explicitly allocated to the servers by deployment annotations; below, object1 is
allocated to Server1, etc.

{
// This main block initializes a static deployment architecture:
DC dc1 = new cog DeploymentComponent("Server1",CPU(6));
DC dc2 = new cog DeploymentComponent("Server2",CPU(3));
DC dc3 = new cog DeploymentComponent("ClientServer", InfCPU);
[DC: dc1] I object1 = new cog C;
[DC: dc2] I object2 = new cog C;
[DC: dc3] J client1monitor = new cog D(object1);
[DC: dc3] J client2monitor = new cog D(object2);

}

Figure 6.5 depicts this deployment architecture and the artefacts introduced into
the modeling language.

88 6.3 Modeling Deployment Architectures

ClientServer

Server2

Server1
...

client1
monitor

client2
monitor

object2

object1

Figure 6.5: A deployment architecture in Real-Time ABS, with the three deployment
components Server1, Server2, and ClientServer described in Section 6.3.1. In each
deployment component, we see its allocated objects and the “battery” of allocated
and available processing resources (top right).

6.3.2 Resource Consumption

The available resource capacity of a deployment component determines how much
computation may occur in the objects deployed on that deployment component. Ob-
jects allocated to the deployment component compete for the shared resources in
order to execute, and they may execute until the deployment component runs out of
resources or they are otherwise blocked. In the case of CPU resources, the resources
of the deployment component define its capacity inside a time interval, after which
the resources are renewed.

The resource consumption of executing statements in the ABS model is determined
by a default cost value which can be set as a compiler option (e.g., −defaultcost=10).
However, the default cost does not discriminate between the statements, so a more
refined cost model will often be desirable. For example, in a realistic model the
assignment x=e should have a significantly higher cost for a complex expression e than
for a constant. For this reason, more fine-grained costs can be inserted into Real-Time
ABS models by means of cost annotations [Cost: e]. Note that cost annotations can
be associated with any statement, and that a statement may have several annotations
(for example, a new statement may have both a cost and a DC annotation; see
Figures 6.3 and 6.6).

Example 16. Annotation with concrete cost. Reconsider the class C of Example 13
and assume that the exact cost of computing the function f(x) may be given as a func-
tion g which depends on the size of the input value x. In the context of deployment
components, a resource-sensitive implementation of interface I may be modeled, which
does not have a predefined duration as in the explicit time model of class C. The
resulting class C2 can be defined as follows:

Chapter 6 Paper 2: Deployment Architectures and Resource Consumption 89

Definitions.
a ::= DC: e | Cost: e | a, a | . . .
e ::= thisDC() | . . .

rhs ::= new cog DeploymentComponent (e, e) | . . .
cm ::= e!load(e) | e!total() | e!transfer(e, e) | . . .

s ::= movecogto(e) | . . .

Figure 6.6: Syntax extension for the deployment layer.

class C2 implements I {
Int m (T x){

[Cost: g(size(x))] return f(x);
}

}

It is the responsibility of the modeler to specify appropriate resource costs. A
behavioral model with default costs may be gradually refined to provide more realis-
tic resource-sensitive behavior. For the computation of the cost functions such as g
in Example 16, the modeler may be assisted by the COSTABS tool [20], which can
compute a worst-case approximation of the cost of f in terms of abstract execution
steps for an input value x based on static analysis techniques, when given the ABS
definition of the expression f. However, the modeler may also want to capture re-
source consumption at a more abstract level; for example, resource limitations can
be made explicit in the model during the early stages of system design. Therefore,
cost annotations may be used by the modeler to abstractly represent the cost of some
computation which is not fully specified.

Example 17. Annotation with abstract cost. The class C3 below may represent a
draft version of our method m from Example 16, in which the cost of the computation
is specified although the function f has yet to be introduced:

class C3 implements I {
Int m (T x){

[Cost: size(x)∗size(x)] return 0;
}

}

6.3.3 The Deployment Layer of Real-Time ABS

Figure 6.6 summarizes the extensions to the syntax (as presented in Figures 6.2 and
6.3) for modeling deployment in Real-Time ABS. Annotations a are extended with
deployment component annotations [DC: e] as explained in Section 6.3.1) and cost
annotations [Cost: e] as explained in Section 6.3.2. Expressions e are extended with

90 6.4 Example: A Client-Server System

thisDC(); since all objects are deployed on some deployment component, we let the ex-
pression thisDC() refer to the deployment component where the object is currently de-
ployed, similar to the self reference this. The right hand side rhs of assignments is ex-
tended with deployment component creation new cog DeploymentComponent(descriptor,
capacity) explained in Section 6.3.1. Method invocation cm is extended with methods
load(n), total(), and transfer(target,amount), also explained in Section 6.3.1. State-
ments s are extended with a primitive movecogto(e) for object group reallocation,
an object may relocate its concurrent object group to a deployment component e by
executing this statement.

6.4 Example: A Client-Server System

This section presents the first of three larger examples. We illustrate the modeling of
deployment architecture and resource consumption through a client-server system and
its behavior under various constant load scenarios. To focus on the mechanisms of the
modeling of deployment architecture and resource consumption, we consider a simple
model of a client-server system that models the general architecture and control flow
of, e.g., a website or computation service, while mostly abstracting from the internal
software architecture of the concrete system.

On the server, an agent distributes sessions to clients from a pool of session ob-
jects and dynamically creates new session objects as required (at a somewhat higher
cost than re-using existing sessions). A client obtains a session through the getSession
method of the Agent object; the session objects return themselves to the agent when
the session is completed. Clients submit work to the server by calling the order method
of a Session object, with a cost parameter that allows the model to specify the execu-
tion costs of the invoked service while abstracting from the concrete implementation
of the service. Each session stays valid for one order, after which the client can ask
for a new session. The Real-Time ABS model of the server is given in Figure 6.7.

In the implementation of the Session class the completion of an order requires a
specific amount of resources, specified via its cost parameter. The skip statement in
the order method consumes the given cost. An order is successful if it is completed
within its deadline; success is calculated by checking that the deadline() expression
is larger than Duration(0). Note that when sessions run on a deployment component
with unlimited resources InfCPU, all orders will be completed immediately, as expected
from an infinitely fast server. In the Agent class, the attribute sessions stores a set
of Session objects which are currently not in use by any client (the ABS datatype for
sets has two constructors EmptySet and Insert, and operations such as, emptySet to
check for the empty set, take to select some element of a non-empty set, and remove
to remove an element from a set). When a client requests a Session, the Agent takes a
session from the set of available sessions if possible, otherwise it creates a new session.

Chapter 6 Paper 2: Deployment Architectures and Resource Consumption 91

interface Agent {
Session getSession();
Unit free(Session session, Bool success);

}

interface Session {
Bool order(Int cost);

}

class Session(Agent agent) implements Session {
Bool order(Int cost) {

[Cost: cost] skip;
Bool success = durationValue(deadline()) > 0;
agent!free(this, success);
return success;

}
}

class Agent implements Agent {
Set<Session> sessions = EmptySet;
Int requestcount = 0;
Int successcount = 0;

Session getSession() {
Session session;
if (emptySet(sessions)) {

[Cost: 2]session = new cog Session(this);
}
else {

[Cost: 1]session = take(sessions);
sessions = remove(sessions, session);

}
requestcount = requestcount + 1;
return session;

}

Unit free(Session session, Bool success) {
if (success) {

successcount = successcount + 1;
}
sessions = Insert(session, sessions);

}
}

Figure 6.7: A session-oriented server model in Real-Time ABS. An Agent object hands
out Session objects, reusing them if possible. The behavior of the order method itself
is left abstract.

Both re-using a session object and creating a new session have associated costs, to
accurately model behavior under heavy load or denial-of-service attacks from the
environment. The method free inserts a session in the available sessions of the Agent,
and is called by the session itself upon completion of an order.

92 6.4 Example: A Client-Server System

interface Client {}

class Client (Agent agent, Int cycle, Int cost, Int deadline) implements Client {
Int ordercount = 0;
Int successcount = 0;

Unit run() {
await duration(cycle, cycle);
Session session = agent.getSession();
[Deadline: Duration(deadline)] Fut<Bool> f = session!order(cost);
ordercount = ordercount + 1;
this!run();
await f?;
Bool result = f.get;
if (result) {

successcount = successcount + 1;
}

}
}

{
//Main block
DC shop = new cog DeploymentComponent("Shop", CPU(20));
[DC: shop] Agent agent = new cog Agent();
Client client1 = new cog Client(agent, 2, 5, 5);
...

}

Figure 6.8: Deployment environment and client model of the web shop example.

Simulating and Testing the Server The behavior of the server can be ana-
lyzed by extending the model with a deployment scenario and an environment to
simulate a workload. The operational semantics of Real-Time ABS with deployment
components and resource consumption, presented in Section 6.7, has been specified
in rewriting logic [13], which allows models to be analyzed using the rewriting tool
Maude [12]. Given an initial configuration, Maude supports simulation and breadth-
first search through reachable states to check safety properties and model checking
of finite reachable states for LTL properties. In this paper, Maude is used as an in-
terpreter for the semantics of Real-Time ABS to simulate and test Real-Time ABS
models with deployment components and resource consumption.

The environment is modeled by creating one or more instances of the class Client,
given in Figure 6.8. An instance of Client periodically calls order every c time intervals,
corresponding to periodic requests. (The work in [14] showed the effects of clients with
varying co-operative vs. flooding behavior on a similar model.) In the main block of
the model, shown in Figure 6.8, a deployment component shop is created with a
processing capacity of 20 resources available for the objects allocated on the shop.
An instance of Agent is created in that deployment component, which in turn creates

Chapter 6 Paper 2: Deployment Architectures and Resource Consumption 93

Figure 6.9: Number of total requests and successful orders, depending on the number
of clients and resources. Once the load increases over a certain threshold, no deadlines
are met in the simulated system.

Session objects when required by clients.

Figure 6.9 shows the number of total requests and successful orders for a set of
simulation runs, where each run lasted for a duration of 100 time intervals. The
scenarios range from 10 to 50 clients and from 20 to 100 resources on the shop deploy-
ment component. The scenario shows the effect of flooding the server with requests:
After a certain threshold of incoming requests, server response QoS (expressed in
responses within deadline vs. requests) collapses and no requests are successfully pro-
cessed within the specified deadline.

6.5 Example: Implementing Object Migration

to Mitigate Overload

In this section, the example of Section 6.4 is extended to dynamic deployment sce-
narios based on the migration of concurrent object groups. Figure 6.9 showed how
heavy client traffic may lead to congestion on the server, which in turn can cause se-
rious degradation of the server’s quality of service. In order to investigate the effects
of more dynamic deployment scenarios on the quality of service of timed software
models, we compare the behavior of Real-Time ABS models with the same functional
behavior and workload when the models are run on two different dynamic deployment
scenarios.

Real-Time ABS models can include load balancing strategies, which aim to decrease
congestion and thus improve the overall quality of service compared to models with
static deployment scenarios. Load balancing strategies are typically expressed in Real-

94 6.5 Example: Implementing Object Migration to Mitigate Overload

interface Session { ...
Unit moveTo(DC dc);

}

class SessionImp(Agent agent) implements Session {
...
Unit moveTo(DC dc) {

if (dc != thisDC()) {
[Cost: 1] movecogto(dc);
[Cost: 1] skip;

}
}

}

class SmartAgent(DC backupserver) implements Agent {
...
Unit free(Session session) {

...
session!moveTo(thisDC());

}

Session getsession() {
...
Rat load = thisDC().load(1);
DCData total = thisDC().total();
if (total != InfCPU && load > 50) {

session!moveTo(backupserver);
}
return session;

}
}

Figure 6.10: An agent which performs load balancing. If the main server load is more
than 50%, sessions are started on the backup server. (Code which is identical to that
of Figure 6.8 has been elided for brevity.)

Time ABS using the resource-related language constructs total and load to inspect
the state of the deployment architecture. For our server example, two sensible load
balancing strategies might be to start requests on a backup server once the main
server’s load exceeds a certain threshold, or to migrate long-running requests to the
backup server in order to free resources on the main server. This can be done by
moving concurrent object groups between two deployment components, using the
movecogto primitive.

In this section we model and simulate these two different load balancing strategies:
(1) a load balancing agent which starts sessions on a backup server when the load on
the main server is above a given threshold and (2) self-monitoring sessions which
move themselves to the backup server once the processing of their current request
exceeds a given time limit. Both of these dynamic deployment scenarios are analyzed

Chapter 6 Paper 2: Deployment Architectures and Resource Consumption 95

class SmartSession(Agent agent, Duration limit, DC backupserver)
implements Session {

Bool mightNeedToMove = False;
Time timeToMove = Time(0);
DC origserver = thisDC();

Unit moveTo(DC dc) { ... } // As before

Bool order(Int cost) {
timeToMove = addDuration(now(), limit);
while (cost > 0) {

[Cost: 1] cost = cost − 1;
if (timeValue(now()) > timeValue(timeToMove) && thisDC() != backupserver) {

this.moveTo(backupserver);
}

}
Bool success = durationValue(deadline()) > 0;
agent!free(this, success);
this.moveTo(origserver);
return success;

}
}

Figure 6.11: Self-monitoring session objects. The session moves to the backupserver
if the request runs longer than limit.

using an open workload scenario (in which the clients send periodic requests without
synchronizing).

Figure 6.10 shows the Real-Time ABS class SmartAgent which models a load bal-
ancing agent which moves sessions to a backup server when the load on the main
server increases beyond a certain threshold, namely that the average load of the main
server in the last past four time intervals exceeds 50%. This load balancing strategy
tries to minimize the amount of work done on the backup server, while maintaining
an acceptable quality of service. When the load threshold is reached, the getsession
method calls the moveTo method of the session object before the session is returned.
When the session is finished, the method free similarly returns the session to the main
server.

Figure 6.11 shows the Real-Time ABS class SmartSession which models self-moni-
toring session objects which move themselves to the backup server if the execution of
the current request exceeds a given time limit (which is set at creation time in the
example through the constructor parameter limit). Here, the order method initially
calculates the threshold execution time timeToMove and moves the session to the
backup server once execution time passes the threshold.

96 6.6 Example: Load Balancing via Resource Transfer

0

50

100

150

200

10 15 20 25 30 35 40 45 50

S
u

c
c
e
s
s
fu

l
R

e
s
p

o
n

s
e
s

Server Resources

Simple Simple x2 Smart Agent Smart Sessions

Figure 6.12: Simulation results for the load balancing strategies using a balanc-
ing agent (smart agent) and self-monitoring sessions (smart sessions) and for single
servers.

Simulations of Load Balancing Deployment Scenarios For the simulations
of the server example augmented with load balancing strategies, we added a second
deployment component with the same capacity as the primary deployment component.
The simulated client job size was chosen so that the capacity of the servers range from
complete overloaded to successful completion of all requests.

Figure 6.12 summarizes all three scenarios (single server, load balancing agent, and
self-balancing sessions) when the capacity of the deployment components ranges from
10 to 50 resources, as well as a single server with twice the resources (i.e., ranging from
20 to 100). This second single server has the same capacity as the two balanced servers
combined and illustrates the efficiency of the different balancing scenarios under the
chosen workload.

6.6 Example: Load Balancing via

Resource Transfer

At midnight on New Year’s Eve the behavior of cellphone users briefly changes from
normal usage (i.e., a fairly low number of calls and messages) to sending large numbers
of SMS messages. We use this phenomenon to motivate and illustrate a complemen-
tary approach to load balancing based on the reallocation of (virtualized) resources
between deployment components.

The model consists of two cooperating services, TelephoneService and SMSService,
and a number of handset clients interacting with these services. The interfaces and
implementations of the two services are given in Figure 6.13. The method call will be

Chapter 6 Paper 2: Deployment Architectures and Resource Consumption 97

interface TelephoneServer {
Unit call(Int calltime);

}

interface SMSServer {
Unit sendSMS();

}

class TelephoneServer implements TelephoneServer {
Int callcount = 0;

Unit call(Int calltime){
while (calltime > 0) {

[Cost: 1] calltime = calltime − 1;
await duration(1, 1);

}
callcount = callcount + 1;

}
}

class SMSServer implements SMSServer {
Int smscount = 0;

Unit sendSMS() {
[Cost: 1] smscount = smscount + 1;

}
}

Figure 6.13: The telephony and SMS services.

invoked synchronously; as a parameter the client provides a duration for the call. The
method sendSMS will be called asynchronously. Note that this model abstracts from
many further details which can be added as needed (e.g., a data model, bandwidth,
server internals).

The model of the handset clients interoperating with the services is given in Fig-
ure 6.14. Client behavior is regulated by a parameter cycle, which determines the
frequency of phone calls and messages sent from the handset. Between time t = 50
and 70, Handset objects (modeling the behavior of their clients) change to “midnight”
behavior and send SMS messages in a rapid pace, otherwise they have “normal” be-
havior and alternate between sending SMS and making calls.

Simulating this model in a scenario with infinite resources leads to a purely be-
havioral model, where each object acts according to its specification (as in normal
Real-Time ABS). Placing the SMS service in an environment with restricted resources
leads to observable overload during the midnight window, given a sufficient number
of clients to consume all its resources.

In Figure 6.15 the main block defines a scenario where each service runs in its own

98 6.6 Example: Load Balancing via Resource Transfer

class Handset (Int cyclelength, TelephoneServer ts, SMSServer smss) {
Bool call = False;

Unit normalBehavior() {
if (timeValue(now()) > 50 && timeValue(now()) < 70) {

this!midnightWindow();
}
else {

if (call) {
ts.call(1);

}
else {

smss!sendSMS();
}
call = ~ call;
await duration(cyclelength,cyclelength);
this!normalBehavior();

}
}

Unit midnightWindow() {
if (timeValue(now()) >= 70) {

this!normalBehavior();
}
else {

Int i = 0;
while (i < 10) {

smss!sendSMS();
i = i + 1;

}
await duration(1,1);
this!midnightWindow();

}
}

Unit run(){
this!normalBehavior();

}
}

Figure 6.14: The Handset class, implementing “New Year’s Eve” behavior. Before
and after midnight, clients alternate between short calls and sending single messages.
During the midnight window (50 ≤ t ≤ 70), ten SMS are sent per cycle.

deployment component with a capacity of 20 resources, and four clients run in the
unrestricted root deployment component environment. Dynamic load balancing is im-
plemented by the Balancer class, an instance of which runs in parallel with the service
in each component. This class implements a simple load balancing strategy, transfer-
ring resources to its partner deployment component when receiving a request message,
and monitoring its own load and requesting assistance when needed. More involved
or hierarchical schemes for distributing resources among deployment components can

Chapter 6 Paper 2: Deployment Architectures and Resource Consumption 99

be defined similarly.

Figure 6.16 presents simulation results for this scenario. Results for a scenario
without any load balancing is also presented, which shows that the allocated resources
are more than sufficient for servicing the normal client behavior, but the SMS service
is overloaded during the whole load peak and for another 20 time intervals while
catching up with the backlog of delayed messages. In the load balancing scenario, the
SMS service is working at capacity during the midnight window but finishes the work
backlog two time intervals after the demand spike subsides. After the load on the SMS
service returns to normal, the capacity between the two balancers is rebalanced. Note
that both scenarios use the identical functional model. The balancing functionality is
implemented by two active objects, more elaborate load balancing strategies can be
added in similar ways.

6.7 Semantics

The operational semantics of Real-Time ABS extended with deployment components
and resource consumption is presented as a transition system in an SOS style [10].

6.7.1 Runtime Configurations

The runtime syntax is given in Figure 6.17. A timed configuration tcn adds a global
clock cl(t) to a configuration (where t is a value of type Time). A configuration cn
is a multiset of objects, invocation messages, futures, and deployment components.
The associative and commutative union operator on (timed) configurations is denoted
by whitespace and the empty configuration by ε. Note the use of brackets on timed
configurations {tcn} which will be used when we consider the whole configuration and
not just some of its terms; i.e., a bracketed configuration will only give a top-level
match in the transition system (detailed in Section 6.7.3).

An object obj is a term o(σ, p, q) where o is the object’s identifier, σ is a substitution
representing the binding of the object’s fields, p is an (active) process, and q a pool of
processes. For substitutions σ and process pools q, concatenation is denoted by σ1 ◦σ2

and q1 ◦ q2, respectively. A process {σ|s} consists of a substitution σ of local variable
bindings and a list s of statements, or it is idle. (We identify any process with an
empty statement list with the idle process.) We let the fields of an object include
this and thisDC, and the local variables of a process include deadline and destiny
(assuming no name capture). The value of this is the identifier of the object and the
value of thisDC is bound to the object’s current deployment component. The value
of deadline is the remaining duration of the deadline of the process and the value of
destiny is the address for the return of the process.

100 6.7 Semantics

interface Balancer {
Unit requestdc(DC comp);
Unit setPartner(Balancer p);

}

class Balancer implements Balancer {
Balancer partner = null;

Unit run() {
await partner != null;
while (True) {

await duration(1, 1);
Rat ld = thisDC().load(1);
if (ld > 90) {

Fut<Unit> r = partner!requestdc(thisDC());
await r?;

}
}

}

Unit requestdc(DC comp) {
DCData total = thisDC().total();
Rat ld = thisDC().load(1);
if (ld < 50) {

thisDC()!transfer(comp, capacity(total) / 3);
}

}

Unit setPartner(Balancer p) {
partner = p;

}
}

{
// Main block
DC smscomp = new cog DeploymentComponent("smscomp", CPU(50));
DC telcomp = new cog DeploymentComponent("telcomp", CPU(50));

[DC: smscomp] SMSServer sms = new cog SMSServer();
[DC: telcomp] TelephoneServer tel = new cog TelephoneServer();
[DC: smscomp] Balancer smsb = new cog Balancer();
[DC: telcomp] Balancer telb = new cog Balancer();
smsb!setPartner(telb);
telb!setPartner(smsb);
new cog Handset(1,tel,sms); new cog Handset(1,tel,sms);
await duration(1, 1);
new cog Handset(1,tel,sms); new cog Handset(1,tel,sms);

}

Figure 6.15: A resource reallocation strategy and deployment configuration. Without
the Balancer objects, the model runs with no functional changes but with a different
timing behavior due to overload in the SMS deployment component.

Chapter 6 Paper 2: Deployment Architectures and Resource Consumption 101

Figure 6.16: Simulation of “New Year’s Eve” behavior (SMS load spike between t=50
and t=70), with (top) and without resource balancing (bottom).

In an invocation message m(o, v, f, d), m is the method name, o the callee, v the
call’s actual parameter values, f the future to which the call’s result is returned and
d is the provided deadline. A future is either an identifier f or a term f(v) with an
identifier f and a reply value v. For simplicity, classes are not represented explicitly in
the semantics, but may be seen as static tables of object layout and method definitions.
In a deployment component dc(n, u, k, h, z), dc is its identity, n is the total number
of available processing resources allocated for the current time interval, u the used
resources in the current time interval, k is the number of resources to be allocated for
the next time interval, h the (possibly empty) sequence of resource usage over time
intervals and z the (possibly empty) sequence of total allocated resources over time
intervals.

The values v are extended with identifiers for the dynamically created objects, fu-
tures, and deployment components, statements with duration2(v, v) (where the best
and worst case expressions must similarly be values instead of expressions), and ex-
pressions e with case2 v {br} (where the condition must be a value). In the statements
s, we further assume for simplicity that all method call assignments have deadline an-
notations as explained in Section 6.2.2 and we let default(T) denote a default value
of type T ; e.g., null for interface types.

102 6.7 Semantics

tcn ::= cn cl(t) | {cn cl(t)} v ::= o | f | dc | . . .
cn ::= ε | obj | msg | fut | cmp | cn cn σ ::= x 	→ v | σ ◦ σ
fut ::= f | f(v) p ::= {σ|s} | idle
obj ::= o(σ, p, q) q ::= ε | p | q ◦ q

msg ::= m(o, v, f, d) s ::= duration2(v, v) | . . .
cmp ::= dc(n, u, k, h, z) e ::= case2 v {br} | . . .

Figure 6.17: Runtime syntax; here, o, f , and dc are identifiers for objects, futures, and
deployment components, x is the name of a variable, and d is the deadline annotation.

Initial configuration The initial configuration of a program reflects its main block;
for a program with main block {T x; s} the initial configuration has the form

main(a, {l|s}, ε) environment(InfCPU, 0, InfCPU, ε, ε) cl(0)

where main is an object, environment is the default deployment component with un-
limited allocated resources in both the current and next time intervals, and cl(0) is
the system clock at time 0. In the main object, let a be the substitution ε[this 	→
main, thisDC 	→ environment] and l be the substitution ε[destiny 	→ default(Fut〈Unit〉),
deadline 	→ InfDuration], x 	→ default(T). (We assume that for a well-typed program,
the main block does not refer to the expressions this, destiny(), and deadline().)

6.7.2 The Timed Evaluation of Expressions

Let σ be a substitution which binds the name destiny to a future identifier, deadline
to a duration value, this to an object identifier, and thisDC to the identifier of a
deployment component. The evaluation function for expressions e given a substitution
σ at a time t is defined inductively over the data types of the functional language (see
Figure 6.18) and is mostly standard, hence this subsection only contains brief remarks
about some of the expressions. For every (user defined) function definition

def T fn(T x) = efn,

the evaluation of a function call [[fn(e)]]tσ reduces to the evaluation of the correspond-
ing expression [[efn]]tx �→v when the arguments e have already been reduced to ground
terms v. (Note the change in scope. Since functions are defined independently of the
context where they are used, we here assume that the expression e does not contain
free variables and the substitution σ does not apply in the evaluation of e.) In the
case of pattern matching, variables in the pattern p may be bound to argument val-
ues in v. Thus the substitution context for evaluating the right hand side e of the
branch p → e extends the current substitution σ with bindings that occurred during
the pattern matching. Let the function match(p, v) return a substitution such that
match(p, v)(p) = v (if there is no match, match(p, v) = ⊥). For simplicity, we here
assume that the evaluation of functional expressions is terminating.

Chapter 6 Paper 2: Deployment Architectures and Resource Consumption 103

[[x]]tσ = σ(x)
[[v]]tσ = v

[[now()]]tσ = t

[[Co(e)]]tσ = Co([[e]]tσ)
[[destiny()]]tσ = σ(destiny)
[[deadline()]]tσ = σ(deadline)
[[this]]tσ = σ(this)
[[thisDC()]]tσ = σ(thisDC)

[[fn(e)]]tσ =

{

[[efn]]tx �→v if e = v

[[fn([[e]]tσ)]]tσ otherwise

[[case e {br}]]tσ = [[case2 [[e]]tσ {br}]]tσ

[[case2 v {p ⇒ e; br}]]tσ =

{

[[e]]tσ◦match(p,br) if match(p, br) �= ⊥

[[case2 v {br}]]tσ otherwise

Figure 6.18: The evaluation of functional expressions.

6.7.3 A Transition System for Timed Configurations

Let the transition relation →t capture transitions between timed configurations let
→ represent untimed execution. A timed run is a non-terminating sequence of timed
configurations {tcn0}, {tcn1}, . . . such that {tcni} →t {tcni+1}. Similarly, an untimed
run is a possibly terminating sequence of (timed) configurations tcn0, tcn1, . . . such

that tcni → tcni+1. Let tcn
!

→ tcn′ denote that tcn′ is a normal form resulting from a
terminating run from the initial configuration tcn; i.e., there is no configuration tcn′′

such that tcn′ → tcn′′.

We define a maximal progress semantics in which the rules for time advance only
apply when untimed execution is blocked; i.e., for a timed configuration tcni, the

relation {tcni} →t {tcni+1} is defined by tcni
!

→ tcn′
i and tcni+1 = φ(tcn′

i), where
φ is one of the auxiliary functions which express the effect of advancing time on the
terms of the configuration tcn′

i. When auxiliary functions such as φ are used in the
semantics, these are evaluated in between the application of transition rules in a run.
Rules apply to subsets of configurations (the standard context rules are not listed). For
simplicity we assume that configurations can be reordered to match the left hand side
of the rules, i.e., matching is modulo associativity and commutativity as in rewriting
logic [13]. Real-Time ABS does not assume that time will always advance; time will
never advance in models where execution never runs out of resources and never gets
blocked. This corresponds to resource-unaware or infinitely fast models.

Evaluating guards Given a substitution σ, a time t and a configuration cn, we lift
the evaluation function for functional expressions to guards and denote by [[g]]t,cn

σ an

104 6.7 Semantics

evaluation function which reduces guards g to data values (here the configuration cn
is needed to evaluate future variables). Let [[g1 ∧ g2]]t,cn

σ = [[g1]]t,cn
σ ∧ [[g2]]t,cn

σ , [[x?]]t,cn
σ =

True if [[x]]t,cn
σ = f and f(v) ∈ cn for some value v (i.e., the future already has a value),

otherwise f ∈ cn and we let [[x?]]t,cn
σ = False. Guards that are Boolean expressions

reduce as expected: [[e]]t,cn
σ = [[e]]tσ (note that such guards can change their value only

if they refer to the object state).

Auxiliary functions If the class of an object o has a method m, we let bind(m, o, v,
f, d) return a process resulting from the activation of m on o with actual parameters
v, an associated future f , and a deadline d. If the binding succeeds, the local variable
destiny in the new process is bound to f , deadline is bound to d, and the method’s
formal parameters are bound to v. The function select(q, σ, cn) schedules a process
which is ready to execute from the process queue q of an object o(σ, idle, q) in a
configuration cn. The function atts(C, v, o, dc) returns the initial substitution σ for
the fields of a new instance o of class C, in which the formal parameters are bound
to v, the field this is bound to the object identity o and the field thisDC to the
deployment component dc. The function init(C) returns an activation (process) of
the init method of C, if defined. Otherwise it returns the idle process. The predicate
fresh(n) asserts that a name n is globally unique (where n may be an identifier for
an object, a future, or a deployment component). The definition of these functions
is straightforward but requires that the class table is explicit in the semantics, which
we have omitted for simplicity.

Transition rules Transition rules transform configurations into new configura-
tions, and are given in Figures 6.19 and 6.20. In the semantics, different assignment
rules are defined for side effect free expressions (Assign1 and Assign2), object creation
(New-Object1 and New-Object2), method calls (Async-call), and future dereferenc-
ing (Read-Fut). We conventionally write a to denote the substitution which maps
fields to values in an object and l to denote the substitution which maps local vari-
ables to values in a process. Annotations are used to provide a deadline, a cost, and
to associate objects with deployment components. (In the implementation, these an-
notations are generated with default values by the compiler if they are not explicitly
given in the source code.)

Rule Skip consumes a skip in the active process. Here and in the sequel, the
variable s will match any (possibly empty) statement list. Rules Assign1 and Assign2

assign the value of expression e to a variable x in the local variables l or in the fields
a, respectively. Rules Cond1 and Cond2 cover the two cases of conditional statements.
(We omit the standard rule which unfolds while-loops into the conditional.)

Note that in the Activate rule, in order to evaluate guards on futures, the entire
configuration cn is passed to the select function. This explains the use of brackets

Chapter 6 Paper 2: Deployment Architectures and Resource Consumption 105

(Skip)

o(a, {l | skip; s}, q)
→ o(a, {l | s}, q)

(Activate)

p = select(q, a, cn)

{o(a, idle, q) cn cl(t)}
→ {o(a, p, (q \ p)) cn cl(t)}

(Suspend)

o(a, {l | suspend; s}, q)
→ o(a, idle, {l | s} ◦ q)

(Assign1)

x ∈ dom(l)

o(a, {l | x = e; s}, q) cl(t)
→ o(a, {l[x 	→ [[e]]ta◦l] | s}, q) cl(t)

(Assign2)

x ∈ dom(a)

o(a, {l | x = e; s}, q) cl(t)
→ o(a[x 	→ [[e]]ta◦l], {l | s}, q) cl(t)

(Cond1)

[[e]]ta◦l

o(a, {l | if e {s1} else {s2}; s}, q) cl(t)
→ o(a, {l | s1; s}, q) cl(t)

(Cond2)

¬[[e]]ta◦l

o(a, {l | if e {s1} else {s2}; s}, q) cl(t)
→ o(a, {l | s2; s}, q) cl(t)

(Await1)

[[e]]t,cn
a◦l

{o(a, {l | await e; s}, q) cl(t) cn}

→ {o(a, {l | s}, q) cl(t) cn}

(Await2)

¬[[e]]t,cn
a◦l

{o(a, {l | await e; s}, q) cl(t) cn}

→ {o(a, {l | suspend; await e; s}, q)
cl(t) cn}

(Async-Call)

an = Deadline: e′, an′

[[e]]ta◦l = o′ [[e′]]ta◦l = d fresh(f)

o(a, {l | [an] x = e!m(e); s}, q) cl(t)
→ o(a, {l | [an′] x = f ; s}, q)

m(o′, [[e]]ta◦l, f, d) f cl(t)

(Bind-Mtd)

q′ = bind(m, o, v̄, f, d) ◦ q

o(a, {l | s}, q) m(o, v̄, f, d)
→ o(a, {l | s}, q′)

(Return)

f = l(destiny)

o(a, {l | return(e); s}, q) f cl(t)
→ o(a, idle, q) f([[e]]ta◦l) cl(t)

(Read-Fut)

f = [[e]]ta◦l

o(a, {l | x = e.get; s}, q) f(v) cl(t)
→ o(a, {l | x = v; s}, q) f(v) cl(t)

(Duration1)

v1 = [[e1]]ta◦l v2 = [[e2]]ta◦l

o(a, {l | duration(e1, e2); s}, q) cl(t)
→ o(a, {l | duration2(v1, v2); s}, q) cl(t)

(Duration2)

v1 ≤ 0

o(a, {l | duration2(v1, v2); s}, q)
→ o(a, {l | s}, q)

Figure 6.19: Semantics for Real-Time ABS with deployment components and resource
consumption (1).

106 6.7 Semantics

(New-Object1)

fresh(o′) an = DC: e′, an′ [[e′]]ta◦l = dc

p′ = init(C) a′ = atts(C, [[e]]ta◦l, o′, dc)

o(a, {l | [an] x = new C(e); s}, q) cl(t)
→ o(a, {l | [an′] x = o′; s}, q)

o′(a′, p′, ∅) cl(t)

(New-Object2)

fresh(o′) a(thisDC) = dc

p′ = init(C) a′ = atts(C, [[e]]ta◦l, o′, dc)

o(a, {l | x = new C(e); s}, q) cl(t)
→ o(a, {l | x = o′; s}, q) o′(a′, p′, ∅) cl(t)

(New-DC)

fresh(dc) [[e]]ta◦l = n

o(a, {l | x = new DeploymentComponent(e0, e); s}, q) cl(t)
→ o(a, {l | x = dc; s}, q) dc(n, 0, n, ε, ε) cl(t)

(Emp-Annotation)

o(a, {l | [ε] s}, q)
→ o(a, {l | s}, q)

(Cost1)

a(thisDC) = dc an = Cost: e, an′

[[e]]ta◦l = c c ≤ n − u

o(a, {l | [an′] s}, q) cl(t) cn

→ o(a′, p′, q′) cl(t) cn′

o(a, {l | [an] s}, q) dc(n, u, k, h, z) cl(t) cn

→ o(a′, p′, q′) dc(n, u + c, k, h, z) cl(t) cn′

(Cost2)

a(thisDC) = dc an = Cost: e′, an′

[[e′]]ta◦l = c c > n − u n �= u

c′ = c − (n − u) an′′ = Cost: c′, an′

o(a, {l | [an] s}, q)
dc(n, u, k, h, z) cl(t) cn

→ o(a, {l | [an′′] s}, q)
dc(n, n, k, h, z) cl(t) cn

(Total)

fresh(f) an = Deadline: e′, an′ [[e]]ta◦l = dc

o(a, {l | [an] x = e!total(); s}, q)
dc(n, u, k, h, z) cl(t)

→ o(a, {l | [an′] x = f ; s}, q)
dc(n, u, k, h, z) f(n) cl(t)

(Move)

[[e]]ta◦l = dc

o(a, {l | moveto(e); s}, q) cl(t)
→ o(a[thisDC 	→ dc], {l | s}, q) cl(t)

(Transfer)

fresh(f) an = Deadline: e′, an′ [[e]]ta◦l = dc

[[e′]]ta◦l = dc′ [[e′′]]ta◦l = i i′ = min(i, k)

o(a, {l | [an] x = e!transfer(e′, e′′); s}, q)
dc(n, u, k, h, z) dc′(n′, u′, k′, h′, z′) cl(t)

→ o(a, {l | [an′] x = f ; s}, q)
dc(n, u, k − i′, h, z)

dc′(n′, u′, k′ + i′, h′, z′) f(i′) cl(t)

(Load)

an = Deadline: e′, an′

[[e]]ta◦l = dc [[e′]]ta◦l = i

fresh(f) v = avg(h, z, i)

o(a, {l | [an] x = e!load(e′); s}, q)
dc(n, u, k, h, z) cl(t)

→ o(a, {l | [an′] x = f ; s}, q)
dc(n, u, k, h, z) f(v) cl(t)

(Run-Inside-Interval)

cn cl(t)
!

→ cn′ cl(t)
0 < d ≤ mte(cn′, t) ⌊t⌋ = ⌊t + d⌋

{cn cl(t)}
→t {timeAdv(cn′, d) cl(t + d)}

(Run-To-New-Interval)

cn cl(t)
!

→ cn′ cl(t)
0 < d ≤ mte(cn′, t) ⌈t⌉ = t + d

{cn cl(t)}
→t {timeAdv(rscRefill(cn′), d) cl(t + d)}

Figure 6.20: Semantics for Real-Time ABS with deployment components and resource
consumption (2).

Chapter 6 Paper 2: Deployment Architectures and Resource Consumption 107

in this rule, which ensures that cn is bound to the full configuration and not just a
part of the configuration. The same approach is used to evaluate guards in the rules
Await1 and Await2 below.

Rule Suspend enables cooperative scheduling and suspends the active process to
the process pool, leaving the active process idle. Rule Await1 consumes the await g
statement if g evaluates to true in the current state of the object, rule Await2 adds a
suspend statement to the process if the guard evaluates to false.

In rule Bind-Mtd the function bind(m, o, v̄, f, d) binds a method call in the class of
the callee o. This results in a new process {l | s} which is placed in the queue, where
l(destiny) = f , l(deadline) = d, and where the formal parameters of m are bound to
v in l.

Method calls. Rule Async-Call sends an invocation message to [[e]]a◦l with the
unique identity f of a new future (since fresh(f)), the method name m, actual param-
eters v, and deadline d. The identifier of the new future is placed in the configuration,
and is bound to a return value in Return. Rule Return places the evaluated return
expression in the future associated with the executing process, and stops the execu-
tion. Rule Read-Fut dereferences a future on the form f(v). Note that if the future
lacks a return value, it is of the form f and the reduction in this object is blocked.

Durations. In rule Duration1, the statement duration(e1, e2) is transformed to
duration2(v1, v2) by reducing the expressions e1 and e2 to their values. In rule
Duration2, this statement blocks execution on the object until the best case execution
time v1 has passed. This depends on the time advance function; the effect of advancing
the time by a duration d is that duration2(v1, v2) is reduced to duration2(v1−d, v2−d).
The maximal time elapse function similarly ensures that time cannot pass beyond du-
ration v2 before the statement has been executed. These two functions, which control
time advance in the semantics, are discussed in detail below.

Object creation. Rules New-Object1 and New-Object2 create a new object with a
unique identifier o′. The object’s fields are given default values by atts(C, [[e]]ta◦l, o′, dc),
extended with the actual values [[e]]ta◦l for the class parameters (evaluated in the con-
text of the creating process), o′ for this and dc for thisDC. In order to instantiate the
remaining attributes, the process init(C) will be active (this function returns idle if
the init method is unspecified in the class C, and it asynchronously calls run if the
latter is specified). New-Object1 deals with deployment component annotations.

Deployment components. Rule New-DC creates a new deployment component
dc(n, 0, n, ε, ε) where dc is a unique identifier, n the capacity of the deployment compo-
nent, and ε an empty list. Rule Emp-Annotation removes an empty list of annotations.
The rules Cost1 and Cost2 capture the reduction of an object o in which the head of
the statement list in the active process has a cost annotation with expression e. Rule
Cost1 covers the case in which the deployment component has enough resources to
execute the statement inside the time interval. Rule Cost2 covers the case in which

108 6.7 Semantics

the deployment component does not have enough resources to execute the statement
inside the time interval; i.e., the required resources c are larger than the available
resources n − u. Since we work with processing resources (as opposed to, e.g., mem-
ory resources which must be obtained atomically), we allow execution to take several
time intervals, and let the cost expression be gradually reduced. In both rules, the
consumed resources are added to u in dc. Rule Total assigns to the variable x the
total amount of resources in dc in the current time interval. Observe that the deadline
annotation is ignored, since the result is obtained in the same execution step. This
also applies for load and transfer. Rule Move changes the deployment component
associated with the object o to dc. The rule Transfer reallocates i′ resources from dc
to dc′ to be effective in the next time interval. Note that if the deployment compo-
nent does not have i resources available for the next time interval, only the available
amount k will be reallocated. The rule Load calculates and assigns to the variable
x the average percent of used resources in dc during the last i time intervals. Let
nth(h, n) select the n’th element of a sequence h, and length(h) the number of ele-
ments in h. It may be the case that length(h) < i, in which case we can only calculate
load(length(h)). Therefore, we define the average resource load in percentage (scaled
from 0 to 100) as follows:

avg(h, z, i) =
min(i,length(h))

∑

j=1

nth(h, j)

nth(z, j)
×

100

min(i, length(h))
.

Time advance Time advance in the system is specified by the two rules Run-Inside-

Interval and Run-To-New-Interval. Our model of time is based on maximal progress,
so time will only advance when execution is otherwise blocked. The rule Run-Inside-

Interval captures time advance which does not influence the resource availability in
the deployment components of the system, and the rule Run-To-New-Interval cap-
tures the case when the resources in the deployment components should be “refilled”
for the next time interval.

Following the approach of Real-Time Maude [21], we define an auxiliary function
mte(cn, t) which computes the maximum time elapse of a configuration cn at time t,
and an auxiliary function timeAdv(cn, d) which captures the effect on a configuration
cn of advancing time by a duration d. For any configuration cn and time t, the rules
Run-Inside-Interval and Run-To-New-Interval allow time to advance by a duration
d ≤ mte(cn, t). However, we are not interested in advancing time by a duration 0,
which would leave the system in the same configuration. The definition of mte ensures
that the time for renewing resources in the deployment components is never bypassed.
When time advances to the next time interval, the auxiliary function rscRefill(cn) is
used to capture the effect of time advance on the deployment components in cn.

The auxiliary functions mte, timeAdv, and rscRefill are defined in Figure 6.21.
These functions are recursively defined by cases over the system configuration; the

Chapter 6 Paper 2: Deployment Architectures and Resource Consumption 109

interesting cases are objects and deployment components since these exhibit time-
dependent behavior. Additional subscripted functions which apply to elements of the
objects are similarly defined by cases for processes, statement, and guards.

The function mte calculates the largest amount by which time can advance such
that no “interesting” occurrence will be missed in any object or deployment component
(e.g., a worst-case duration expires or the deployment components need to be refilled).
To ensure maximal progress, the maximum time elapse is 0 for enabled statements
which are not time-dependent and infinite if the statement is not enabled, since time
may pass when the object is blocked. A statement is not enabled if it has a cost
annotation or is otherwise blocked. Thus, for a process which has a cost annotation for
its head statement, time must advance before the process can proceed; the maximum
time elapse of this process is infinite. Hence, mte returns the minimum time increment
that makes some object become “unstuck”, either by letting its active process continue
or enabling one of its suspended processes.

The function timeAdv updates the active and suspended processes of all objects,
decrementing the values of all deadline variables and duration2 statements at the
head of the statement list in processes. The function rscRefill captures the effect of
time advance on the deployment components; the available resources n are refilled
according to the amount of resources in k, and the histories of resource consumption
h and of total allocated resources z are extended with the used resources u and the
current total resources n of the previous time interval, respectively.

6.8 Related and Future Work

The concurrency model of ABS combines concurrent objects from Creol [5,6] with con-
current object groups [22] and is reminiscent of Actors [7] and Erlang [9] processes:
Object groups are inherently concurrent, conceptually each group has a dedicated
processor, and there is at most one activity in a group at any time. This concur-
rency model has attracted attention as an alternative to multi-thread concurrency in
object-orientation (e.g., [4]), and been integrated with, e.g., Java [23] and Scala [8].
Concurrent objects support compositional verification of concurrent software [6, 24],
in contrast to multi-threaded object systems. Their inherent compositionality allows
concurrent objects to be naturally distributed on different locations, because only an
object’s local state is needed to execute its methods. A particular feature of ABS,
inherited from Creol, is its cooperative scheduling of method activations inside the
object groups. In order to capture the timing of object-oriented models, Real-Time
ABS [17] extends ABS and its tool suite to combine real-time with concurrent object
models.

In the authors’ early work on deployment components [14, 15], the execution cost
was fixed in the language semantics; following an idea proposed in [16], resource con-

110 6.8 Related and Future Work

mte(cn1 cn2, t) = min(mte(cn1, t), mte(cn2, t))

mte(o(a, p, q), t) =

{

mtep(p, t) if p �= idle

mtep(q, t) if p = idle

mte(dc(n, u, k, h, z), t) = ⌊t + 1⌋ − t

mte(cn, t) = ∞ otherwise

mtep(q1 ◦ q2, t) = min(mte(q1, t), mte(q2, t))

mtep({l|s}, t) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

w if s = duration2(b, w); s2

mteg(g, t) if s = await g; s2

0 if s is enabled
∞ otherwise

mtep(q) = ∞ otherwise

mteg(g, t) =

⎧

⎪

⎨

⎪

⎩

max(mteg(g1, t), mteg(g2, t)) if g = g1 ∧ g2

0 if g evaluates to true
∞ otherwise

timeAdv(cn1 cn2, d) = timeAdv(cn1, d) timeAdv(cn2, d)
timeAdv(o(a, p, q), d) = o(a, timeAdvp(p, d), timeAdvp(q, d))
timeAdv(cn, d) = cn otherwise

timeAdvp((q1 ◦ q2), d) = timeAdvp(q1, d), timeAdvp(q2, d)
timeAdvp({l|s}, d) = {l[deadline 	→ l(deadline) − d]|timeAdvs(s, d)}
timeAdvp(q, d) = q otherwise

timeAdvs(s, d) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

duration2(b − d, w − d) if s = duration2(b, w)
await timeAdvg(g, d) if s = await g

timeAdvs(s1, d); s2 if s = s1; s2

s otherwise

timeAdvg(g, d) =

⎧

⎪

⎨

⎪

⎩

timeAdvg(g1, d) ∧ timeAdvg(g2, d) if g = g1 ∧ g2

duration2(b − d, w − d) if g = duration2(b, d)
g otherwise

rscRefill(cn1 cn2) = rscRefill(cn1) rscRefill(cn2)
rscRefill(dc(n, u, k, h, z)) = dc(k, 0, k, u ◦ h, n ◦ z)
rscRefill(cn) = cn otherwise

Figure 6.21: Functions controlling the advancement of time and its effect on the
system configuration.

Chapter 6 Paper 2: Deployment Architectures and Resource Consumption 111

sumption is expressed in our paper in terms of optional annotations with user-defined
expressions which relate to the local state and the input parameters to methods. This
way, the cost of execution in the model may be adapted by the modeler to a specific
cost scenario. This allows us to abstractly model the effect of deploying concurrent
objects on deployment components with different amounts of allocated resources at an
early stage in the software development process, before modeling the detailed control
flow of the targeted system.

Whereas this paper has focused on processing resources, initial complementary
work addresses deployment components with restricted memory [25] and bandwidth [26].
A more abstract approach to user-defined resource management is discussed in [27], in
which the user also specifies when resources are released during the execution. Mod-
eling other resource types, as well as the semantics of more than one resource type in
a model, is an area of ongoing research for the authors in the scope of the EU FP7
project Envisage, which will extend the approach taken in this paper to cloud comput-
ing, service-level agreements, code generation, and monitoring [28]. Preliminary work
suggests that annotations can be used in a similar way for other resources, and that
the semantics and existing interpreter can be augmented with a generic framework
for handling resources.

There is an extensive literature on formal models of locations and mobility based
on, e.g., agents, ambient calculi, and process algebras. These models are typically
concerned with maintaining correct interactions with respect to, e.g., security, link
failure, or location failure. Among non-functional properties, access to shared re-
sources have been studied through type and effect systems (e.g., [29,30]), QoS-aware
processes proposed for negotiating contracts [31], and type-based space control for
space-aware processes [32]. Closer to our work, timed synchronous CCS-style pro-
cesses can be compared for speed using faster-than bisimulation [33], albeit without
notions of mobility or location. We are not aware of other formal models connecting
reallocatable (virtual) processing capacities to locations.

Techniques for prediction or analysis of non-functional properties are based on
either measurement, simulation, or modeling [34]. Measurement-based approaches
can only be applied when an implementation already exists (i.e., fairly late in the
software life-cycle), using dedicated profiling or tracing tools like JMeter or Load-
Runner. Whereas simulations are traditionally done in programming languages (e.g.,
SIMULA), domain-specific simulation packages and dedicated simulators are very ef-
ficient inside their specific application domain but are less flexible [34]. Related work
on simulation tools for virtualized resources in cloud computing are typically reminis-
cent of network simulators. A number of testing techniques and tools for cloud-based
software systems are surveyed in [35]. In particular, CloudSim [36] and ICanCloud [37]
are simulation tools using virtual machines to simulate cloud environments. CloudSim
is a fairly mature tool which has already been used for a number of papers, but it is
restricted to simulations on a single computer. In contrast, ICanCloud supports dis-

112 6.8 Related and Future Work

tribution on a cluster. Additionally CloudSim was originally based on GridSim [38], a
toolkit for modeling and simulations of heterogeneous Grid resources. EMUSIM [39] is
an integrated tool that uses AEF [40] (Automated Emulation Framework) to estimate
performance and costs for an application by means of emulations to produce improved
input parameters for simulations in CloudSim. Compared to these approaches, our
work is based on a formal semantics and aims to support the developer of software
applications at an early phase in the development process. The approach of this paper
has been encouragingly compared to specialized simulation tools and to measurements
on deployed code in two larger case studies addressing resource management in the
cloud; an ABS model of the Montage case study [41] is presented in [42] and compared
to results from specialized simulation tools and a large ABS model of the Fredhop-
per Replication Server has been compared to measurements on the deployed system
in [43].

Model-based approaches allow abstraction from specific system intricacies, but
depend on parameters provided by domain experts [44]. A survey of model-based
performance analysis techniques is given in [45]. Formal systems using process alge-
bra, Petri Nets, game theory, and timed automata have been used in the embedded
software domain (e.g., [46–48]), but also to the schedulability of processes in con-
current objects [49, 50]. The latter work complements ours as it does not consider
restrictions on shared deployment resources, but studies the schedulability of method
activations in the context of concurrent objects as found in Real-Time ABS. User-
defined schedulers for concurrent objects were introduced for Real-Time ABS in [17],
using optional scheduling annotations and defaults.

Performance evaluation for component-based systems is surveyed in [51]. UML
has been extended with a profile for schedulability, performance, and time (SPT)
and combined with a methodology for software performance engineering (SPE) [52].
Using the UML SPT profile, Petriu and Woodside [53] informally define the Core
Scenario Model (CSM) to solve questions that arise in performance model building.
CSM has a notion of resource context, which reflects an operation’s set of resources.
CSM aims to bridge the gap between UML and techniques to generate performance
models [45]. Closer to our work is the extension of VDM++ for embedded real-time
systems by M. Verhoef [54] and the Palladio component model by R. Reussner et
al. [55,56]. In Verhoef’s work, static architectures are explicitly modeled using CPUs
and buses. The approach uses fixed resources targeting the embedded domain, namely
processor cycles bound to the CPUs. In Palladio, components with explicit resource
requirements are deployed on a static architecture where nodes have resources such as
CPU, memory, and cache. In contrast to our work, Palladio uses probabilistic finite
state machines and abstract from branch conditions and loop iterations. Components
in Palladio are assumed to be stateless, but recent work considers an extension to
stateful components [57]. Both approaches support simulation-based analysis, which
is stochastic for Palladio. Both approaches consider several resources, in contrast

Chapter 6 Paper 2: Deployment Architectures and Resource Consumption 113

to our work which here focuses on CPU. However, these approaches are restricted
to static deployment scenarios. Our work goes beyond static scenarios to consider
dynamic deployment and load balancing.

Other interesting lines of research relating to our work are techniques for static cost
analysis (e.g., [58,59]) and symbolic execution [60] for object-oriented programs, and
statistical model checking [61, 62]. Since Real-Time ABS is fully formalized, it is in-
teresting to see how such formal analysis techniques can be applied to obtain stronger
analysis results than simulations. However, most tools for cost analysis and symbolic
execution only consider sequential and untimed programs. In addition, programs must
be fully developed before automated cost analysis can be applied. COSTABS [20] is
a cost analysis tool for ABS which supports concurrent object-oriented programs,
based on a novel notion of cost center. Our approach, in which the modeler specifies
resource consumption in terms of cost annotations, could be supported by COSTABS
to automatically derive cost annotations for the parts of a model that are fully im-
plemented (see Example 16). In collaboration with Albert et al., this approach has
been applied for memory analysis of ABS models [25]. However, the generalization of
that work for processing resources as well as for general, user-defined cost models, and
its integration into the software development process currently remains future work.
The separation of concerns between the resource capacity of the deployment layer
and the resource consumption of the imperative layer may allow cost analysis and
symbolic execution of concurrent timed programs. Extending our tool with symbolic
execution allow the approximation of best- and worst-case response times for different
deployment scenarios, depending on the available resources and the user load.

The work presented in this paper is based on a maximal progress semantics. A
case study of the Fredhopper Replication Server [43], where costs were obtained by
averaging observations from a real system, suggests that this gives fairly realistic
results. Our framework has been extended to Monte Carlo simulations by adding a
seed to the simulation tool [16]. An interesting extension of our work is to support
statistical model checking [61, 62], for example by combining PVeStA [63] with our
simulation tool in Maude. However, a stochastic model requires that meaningful
probabilities are assigned to the different transitions of the language interpreter. One
approach could be to assign probabilistic information to each deployment component,
refining the notion of maximal progress. In addition, it is interesting to use stochastic
modeling to specify end-user scenarios for our models.

6.9 Conclusion

This paper presents a simple and flexible approach to integrating deployment architec-
tures and resource consumption into executable object-oriented models. The approach
is based on a separation of concerns between the resource cost of performing computa-

114 6.9 Conclusion

tions and the resource capacity of the deployment architecture. The paper considers
resources which abstractly reflect execution: each deployment component has a re-
source capacity per time interval and each computation step has a cost, specified by a
user-defined cost expression or by a default. This separation of concerns between cost
and capacity allows the performance of a model to be easily compared for a range of
deployment choices. By comparing deployment scenarios, many interesting questions
concerning performance can be addressed already at an early phase of the software
design.

The integration of deployment architectures into software models further allows
application-level resource management policies to become an integral part of the soft-
ware design. For deployment scenarios reflecting fixed architectures, it is natural to
define the architecture as part of a model’s main block. For deployment scenarios
reflecting dynamic architectures, new deployment components may be dynamically
created to model, e.g., virtualized machines initialized through a middleware layer
or on the cloud. This paper explores two complementary approaches to load balanc-
ing between existing deployment components as part of the application-level resource
management, both based on allowing objects to inspect the load of different parts of
the deployment architecture. First, concurrent object groups may move between de-
ployment components and, second, resources may be reallocated between deployment
components.

Technically, the paper presents an extension of Real-Time ABS with a deployment
layer, including linguistic primitives to express dynamic deployment architectures and
resource management at the abstraction level of the modeling language as well as op-
tional annotations with user-defined cost expressions to capture resource consumption.
These primitives have been fully integrated with Real-Time ABS, which combines real-
time and object-oriented models. The paper presents a complete formal semantics for
the extended language and a number of examples to illustrate its usage. The pre-
sented semantics has been used to extend the ABS tool suite, which has been applied
to obtain simulation results concerning performance for the presented examples.

Whereas most work on performance either specify timing or cost as part of the
model (assuming a fixed deployment architecture) or measure the behavior of the
compiled code deployed on an actual deployment architecture, the approach presented
in this paper addresses a need in formal methods to capture models which vary over the
underlying deployment architectures, for example to model deployment variability in
software product lines and resource management of virtualized resource management
for the cloud.

Bibliography

[1] K. Pohl, G. Böckle, F. Van Der Linden, Software Product Line Engineering:
Foundations, Principles, and Techniques, Springer, 2005.

[2] S. M. Yacoub, Performance analysis of component-based applications, in: G. J.
Chastek (Ed.), Proc. Second International Conference on Software Product Lines
(SPLC’02), Vol. 2379 of Lecture Notes in Computer Science, Springer, 2002, pp.
299–315.

[3] E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, M. Steffen, ABS: A core lan-
guage for abstract behavioral specification, in: B. Aichernig, F. S. de Boer, M. M.
Bonsangue (Eds.), Proc. 9th International Symposium on Formal Methods for
Components and Objects (FMCO 2010), Vol. 6957 of Lecture Notes in Computer
Science, Springer, 2011, pp. 142–164.

[4] D. Caromel, L. Henrio, A Theory of Distributed Object, Springer, 2005.

[5] E. B. Johnsen, O. Owe, An asynchronous communication model for distributed
concurrent objects, Software and Systems Modeling 6 (1) (2007) 35–58.

[6] F. S. de Boer, D. Clarke, E. B. Johnsen, A complete guide to the future,
in: R. de Nicola (Ed.), Proc. 16th European Symposium on Programming
(ESOP’07), Vol. 4421 of Lecture Notes in Computer Science, Springer, 2007,
pp. 316–330.

[7] G. A. Agha, ACTORS: A Model of Concurrent Computations in Distributed
Systems, The MIT Press, Cambridge, Mass., 1986.

[8] P. Haller, M. Odersky, Scala actors: Unifying thread-based and event-based pro-
gramming, Theoretical Computer Science 410 (2–3) (2009) 202–220.

[9] J. Armstrong, Programming Erlang: Software for a Concurrent World, Pragmatic
Bookshelf, 2007.

[10] G. D. Plotkin, A structural approach to operational semantics, Journal of Logic
and Algebraic Programming 60-61 (2004) 17–139.

115

116 BIBLIOGRAPHY

[11] D. Clarke, N. Diakov, R. Hähnle, E. B. Johnsen, I. Schaefer, J. Schäfer,
R. Schlatte, P. Y. H. Wong, Modeling spatial and temporal variability with
the HATS abstract behavioral modeling language, in: M. Bernardo, V. Issarny
(Eds.), Proc. 11th Intl. School on Formal Methods for the Design of Computer,
Communication and Software Systems (SFM 2011), Vol. 6659 of Lecture Notes
in Computer Science, Springer, 2011, pp. 417–457.

[12] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, C. L.
Talcott (Eds.), All About Maude - A High-Performance Logical Framework, How
to Specify, Program and Verify Systems in Rewriting Logic, Vol. 4350 of Lecture
Notes in Computer Science, Springer, 2007.

[13] J. Meseguer, Conditional rewriting logic as a unified model of concurrency, The-
oretical Computer Science 96 (1992) 73–155.

[14] E. B. Johnsen, O. Owe, R. Schlatte, S. L. Tapia Tarifa, Validating timed
models of deployment components with parametric concurrency, in: B. Beck-
ert, C. Marché (Eds.), Proc. International Conference on Formal Verification of
Object-Oriented Software (FoVeOOS’10), Vol. 6528 of Lecture Notes in Com-
puter Science, Springer, 2011, pp. 46–60.

[15] E. B. Johnsen, O. Owe, R. Schlatte, S. L. Tapia Tarifa, Dynamic resource real-
location between deployment components, in: J. S. Dong, H. Zhu (Eds.), Proc.
International Conference on Formal Engineering Methods (ICFEM’10), Vol. 6447
of Lecture Notes in Computer Science, Springer, 2010, pp. 646–661.

[16] E. B. Johnsen, R. Schlatte, S. L. Tapia Tarifa, A formal model of object mobility
in resource-restricted deployment scenarios, in: F. Arbab, P. Ölveczky (Eds.),
Proc. 8th International Symposium on Formal Aspects of Component Software
(FACS 2011), Vol. 7253 of Lecture Notes in Computer Science, Springer, 2012,
pp. 185–202, to appear.

[17] J. Bjørk, F. S. de Boer, E. B. Johnsen, R. Schlatte, S. L. Tapia Tarifa, User-
defined schedulers for real-time concurrent objects, Innovations in Systems and
Software Engineering 9 (1) (2013) 29–43.
URL http://dx.doi.org/10.1007/s11334-012-0184-5

[18] B. C. Pierce, Types and Programming Languages, The MIT Press, 2002.

[19] K. G. Larsen, P. Pettersson, W. Yi, UPPAAL in a nutshell, International Journal
on Software Tools for Technology Transfer 1 (1–2) (1997) 134–152.

[20] E. Albert, P. Arenas, S. Genaim, M. Gómez-Zamalloa, G. Puebla, COSTABS:
a cost and termination analyzer for ABS, in: O. Kiselyov, S. Thompson (Eds.),
Proc. Workshop on Partial Evaluation and Program Manipulation (PEPM’12),
ACM, 2012, pp. 151–154.

BIBLIOGRAPHY 117

[21] P. C. Ölveczky, J. Meseguer, Semantics and pragmatics of Real-Time Maude,
Higher-Order and Symbolic Computation 20 (1–2) (2007) 161–196.

[22] J. Schäfer, A. Poetzsch-Heffter, JCoBox: Generalizing active objects to concur-
rent components, in: European Conference on Object-Oriented Programming
(ECOOP 2010), Vol. 6183 of Lecture Notes in Computer Science, Springer, 2010,
pp. 275–299.

[23] A. Welc, S. Jagannathan, A. Hosking, Safe futures for Java, in: Proc. Object ori-
ented programming, systems, languages, and applications (OOPSLA’05), ACM
Press, New York, NY, USA, 2005, pp. 439–453.

[24] W. Ahrendt, M. Dylla, A system for compositional verification of asynchronous
objects, Science of Computer Programming (2012), in press. doi:10.1016/j.

scico.2010.08.003.

[25] E. Albert, S. Genaim, M. Gómez-Zamalloa, E. B. Johnsen, R. Schlatte, S. L.
Tapia Tarifa, Simulating concurrent behaviors with worst-case cost bounds, in:
M. Butler, W. Schulte (Eds.), FM 2011, Vol. 6664 of Lecture Notes in Computer
Science, Springer, 2011, pp. 353–368.

[26] R. Schlatte, E. B. Johnsen, F. Kazemeyni, S. L. Tapia Tarifa, Models of rate
restricted communication for concurrent objects, Electronic Notes in Theoretical
Computer Science 274 (2011) 67–81.

[27] E. B. Johnsen, R. Schlatte, S. L. Tapia Tarifa, A formal model of user-defined
resources in resource-restricted deployment scenarios, in: B. Beckert, F. Dami-
ani, D. Gurov (Eds.), Proc. International Conference on Formal Verification of
Object-Oriented Software (FoVeOOS’11), Vol. 7421 of Lecture Notes in Com-
puter Science, Springer, 2012, pp. 196–213.

[28] E. Albert, F. de Boer, R. Hähnle, E. B. Johnsen, C. Laneve, Engineering vir-
tualized services, in: M. A. Babar, M. Dumas (Eds.), 2nd Nordic Symposium
on Cloud Computing & Internet Technologies (NordiCloud’13), ACM, 2013, pp.
59–63.

[29] A. Igarashi, N. Kobayashi, Resource usage analysis, ACM Transactions on Pro-
gramming Languages and Systems 27 (2) (2005) 264–313.

[30] M. Hennessy, A Distributed Pi-Calculus, Cambridge University Press, 2007.

[31] R. D. Nicola, G. L. Ferrari, U. Montanari, R. Pugliese, E. Tuosto, A process
calculus for QoS-aware applications, in: J.-M. Jacquet, G. P. Picco (Eds.), Proc.
7th International Conference on Coordination Models and Languages (COOR-
DINATION’05), Vol. 3454 of Lecture Notes in Computer Science, Springer, 2005,
pp. 33–48.

118 BIBLIOGRAPHY

[32] F. Barbanera, M. Bugliesi, M. Dezani-Ciancaglini, V. Sassone, Space-aware am-
bients and processes, Theoretical Computer Science 373 (1–2) (2007) 41–69.

[33] G. Lüttgen, W. Vogler, Bisimulation on speed: A unified approach, Theoretical
Computer Science 360 (1–3) (2006) 209–227.

[34] R. Jain, The Art of Computer Systems Performance Analysis, John Wiley &
Sons, Inc., 1991.

[35] X. Bai, M. Li, B. Chen, W.-T. Tsai, J. Gao, Cloud testing tools, in: J. Z. Gao,
X. Lu, M. Younas, H. Zhu (Eds.), Proc. 6th Intl. Symposium on Service Oriented
System Engineering (SOSE’11), IEEE, 2011, pp. 1–12.

[36] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose, R. Buyya,
CloudSim: A toolkit for modeling and simulation of cloud computing environ-
ments and evaluation of resource provisioning algorithms, Software, Practice and
Experience 41 (1) (2011) 23–50.

[37] A. Nuñez, J. Vázquez-Poletti, A. Caminero, G. Castañé, J. Carretero, I. Llorente,
iCanCloud: A flexible and scalable cloud infrastructure simulator, Journal of Grid
Computing 10 (2012) 185–209.

[38] R. Buyya, M. Murshed, GridSim: A toolkit for the modeling and simulation of
distributed resource management and scheduling for grid computing, Concur-
rency and Computation: Practice and Experience 14 (2002) 1175–1220.

[39] R. N. Calheiros, M. A. Netto, C. A. D. Rose, R. Buyya, EMUSIM: an integrated
emulation and simulation environment for modeling, evaluation, and validation of
performance of cloud computing applications, Software: Practice and Experience
43 (5) (2013) 595–612.

[40] R. N. Calheiros, R. Buyya, C. A. F. De Rose, Building an automated and self-
configurable emulation testbed for grid applications, Software: Practice and Ex-
perience 40 (5) (2010) 405–429.

[41] E. Deelman, G. Singh, M. Livny, G. B. Berriman, J. Good, The cost of doing
science on the cloud: The Montage example, in: Proceedings of the Conference
on High Performance Computing (SC’08), IEEE/ACM, 2008, pp. 1–12.

[42] E. B. Johnsen, R. Schlatte, S. L. Tapia Tarifa, Modeling resource-aware virtu-
alized applications for the cloud in Real-Time ABS, in: T. Aoki, K. Tagushi
(Eds.), Proc. 14th International Conference on Formal Engineering Methods
(ICFEM’12), Vol. 7635 of Lecture Notes in Computer Science, Springer, 2012,
pp. 71–86.

BIBLIOGRAPHY 119

[43] F. S. de Boer, R. Hähnle, E. B. Johnsen, R. Schlatte, P. Y. H. Wong, Formal
modeling of resource management for cloud architectures: An industrial case
study, in: F. D. Paoli, E. Pimentel, G. Zavattaro (Eds.), Proc. European Con-
ference on Service-Oriented and Cloud Computing (ESOCC 2012), Vol. 7592 of
Lecture Notes in Computer Science, Springer, 2012, pp. 91–106.

[44] I. Epifani, C. Ghezzi, R. Mirandola, G. Tamburrelli, Model evolution by run-
time parameter adaptation, in: Proc. 31st International Conference on Software
Engineering (ICSE’09), IEEE, 2009, pp. 111–121.

[45] S. Balsamo, A. D. Marco, P. Inverardi, M. Simeoni, Model-based performance
prediction in software development: A survey, IEEE Transactions on Software
Engineering 30 (5) (2004) 295–310.

[46] A. Vulgarakis, C. C. Seceleanu, Embedded systems resources: Views on modeling
and analysis, in: Proc. 32nd IEEE Intl. Computer Software and Applications
Conference (COMPSAC’08), IEEE Computer Society, 2008, pp. 1321–1328.

[47] A. Chakrabarti, L. de Alfaro, T. A. Henzinger, M. Stoelinga, Resource inter-
faces, in: R. Alur, I. Lee (Eds.), Proc. Third International Conference on Em-
bedded Software (EMSOFT’03), Vol. 2855 of Lecture Notes in Computer Science,
Springer, 2003, pp. 117–133.

[48] E. Fersman, P. Krcál, P. Pettersson, W. Yi, Task automata: Schedulability,
decidability and undecidability, Information and Computation 205 (8) (2007)
1149–1172.

[49] M. M. Jaghoori, F. S. de Boer, T. Chothia, M. Sirjani, Schedulability of asyn-
chronous real-time concurrent objects, Journal of Logic and Algebraic Program-
ming 78 (5) (2009) 402–416.

[50] F. S. de Boer, M. M. Jaghoori, E. B. Johnsen, Dating concurrent objects: Real-
time modeling and schedulability analysis, in: P. Gastin, F. Laroussinie (Eds.),
Proc. 21st Intl. Conf. on Concurrency Theory (CONCUR), Vol. 6269 of Lecture
Notes in Computer Science, Springer, 2010, pp. 1–18.

[51] H. Koziolek, Performance evaluation of component-based software systems: A
survey, Performance Evaluation 67 (8) (2010) 634–658.

[52] C. U. Smith, L. G. Williams, Performance Solutions: A Practical Guide to Cre-
ating Responsive, Scalable Software, Addison-Wesley, 2002.

[53] D. B. Petriu, C. M. Woodside, An intermediate metamodel with scenarios and
resources for generating performance models from UML designs, Software and
System Modeling 6 (2) (2007) 163–184.

120 BIBLIOGRAPHY

[54] M. Verhoef, P. G. Larsen, J. Hooman, Modeling and validating distributed em-
bedded real-time systems with VDM++, in: J. Misra, T. Nipkow, E. Sekerinski
(Eds.), Proceedings of the 14th International Symposium on Formal Methods
(FM’06), Vol. 4085 of Lecture Notes in Computer Science, Springer, 2006, pp.
147–162.

[55] R. Reussner, H. W. Schmidt, I. Poernomo, Reliability prediction for component-
based software architectures, Journal of Systems and Software 66 (3) (2003)
241–252.

[56] S. Becker, H. Koziolek, R. Reussner, The Palladio component model for model-
driven performance prediction, Journal of Systems and Software 82 (1) (2009)
3–22.

[57] L. Happe, B. Buhnova, R. Reussner, Stateful component-based performance
models, Journal of Software and Systems Modeling. Available online: http:

//dx.doi.org/10.1007/s10270-013-0336-6. To appear.

[58] E. Albert, P. Arenas, S. Genaim, G. Puebla, D. Zanardini, Cost Analysis of Java
Bytecode, in: 16th European Symposium on Programming, (ESOP’07), Vol. 4421
of Lecture Notes in Computer Science, Springer, 2007, pp. 157–172.

[59] S. Gulwani, K. K. Mehra, T. M. Chilimbi, SPEED: Precise and Efficient Static
Estimation of Program Computational Complexity, in: Z. Shao, B. C. Pierce
(Eds.), Proc. 36th Symp. on Principles of Programming Languages (POPL’09),
ACM, 2009, pp. 127–139.

[60] B. Beckert, R. Hähnle, P. H. Schmitt (Eds.), Verification of Object-Oriented
Software. The KeY Approach, Vol. 4334 of Lecture Notes in Artificial Intelligence,
Springer, 2007.

[61] K. Sen, M. Viswanathan, G. Agha, On statistical model checking of stochastic
systems, in: K. Etessami, S. K. Rajamani (Eds.), Proc. 17th International Con-
ference on Computer Aided Verification (CAV’05), Vol. 3576 of Lecture Notes in
Computer Science, Springer, 2005, pp. 266–280.

[62] A. David, K. G. Larsen, A. Legay, M. Mikucionis, D. B. Poulsen, J. van Vliet,
Z. Wang, Statistical model checking for networks of priced timed automata, in:
U. Fahrenberg, S. Tripakis (Eds.), Proc. 9th Intl. Conf. on Formal modeling
and analysis of timed systems (FORMATS’11), Vol. 6919 of Lecture Notes in
Computer Science, Springer, 2011, pp. 80–96.

[63] M. AlTurki, J. Meseguer, PVeStA: A parallel statistical model checking and
quantitative analysis tool, in: A. Corradini, B. Klin, C. Cîrstea (Eds.), Proc.
4th International Conference on Algebra and Coalgebra in Computer Science

BIBLIOGRAPHY 121

(CALCO’11), Vol. 6859 of Lecture Notes in Computer Science, Springer, 2011,
pp. 386–392.

122 BIBLIOGRAPHY

CHAPTER 7

Paper 3: Modeling Resource-Aware

Virtualized Applications

for the Cloud ∗

Authors: Einar Broch Johnsen, Rudolf Schlatte, Silvia Lizeth Tapia Tarifa.

Publication: Formal Methods and Software Engineering. Proceedings of the 14th
International Conference on Formal Engineering Methods, volume 7635 of Lecture
Notes in Computer Science, pages 71–86. Springer, November 2012.

Abstract: An application’s quality of service (QoS) depends on resource availability;
e.g., response time is worse on a slow machine. On the cloud, a virtualized application
leases resources which are made available on demand. When its work load increases,
the application must decide whether to reduce QoS or increase cost. Virtualized
applications need to manage their acquisition of resources. In this paper resource
provisioning is integrated in high-level models of virtualized applications. We develop
a Real-Time ABS model of a cloud provider which leases virtual machines to an
application on demand. A case study of the Montage system then demonstrates how to
use such a model to compare resource management strategies for virtualized software
during software design. Real-Time ABS is a timed abstract behavioral specification
language targeting distributed object-oriented systems, in which dynamic deployment
scenarios can be expressed in executable models.

∗Partly funded by the EU project FP7-231620 HATS: Highly Adaptable and Trustworthy Software
using Formal Models (http://www.hats-project.eu).

123

124 7.1 Introduction

7.1 Introduction

The added value and compelling business drivers of cloud computing are undeni-
able [10], but considerable new challenges need to be addressed for industry to make
an effective usage of cloud computing. As the key technology enabler for cloud com-
puting, virtualization makes elastic amounts of resources available to application-level
services deployed on the cloud; for example, the processing capacity allocated to a
service may be changed on the demand. The integration of virtualization in general
purpose software applications requires novel techniques for leveraging resources and re-
source management into software engineering. Virtualization poses challenges for the
software-as-a-service abstraction concerning the development, analysis, and dynamic
composition of software with respect to quality of service. Today these challenges are
not satisfactorily addressed in software engineering. In particular, better support for
the modeling and validation of application-level resource management strategies for
virtualized resources are needed to help the software developer make efficient use of
the available virtualized resources in their applications.

The abstract behavioral specification language ABS is a formalism which aims at
describing systems at a level which abstracts from many implementation details but
captures essential behavioral aspects of the targeted systems [25]. ABS targets the
engineering of concurrent, component-based systems by means of executable object-
oriented models which are easy to understand for the software developer and allow
rapid prototyping and analysis. The extension Real-Time ABS integrates object ori-
entation and timed behavior [8]. Whereas the functional correctness of a planned
system largely depends on its high-level behavioral specification, the choice of deploy-
ment architecture may hugely influence the system’s quality of service. For example,
CPU limitations may restrict the applications that can be supported on a cell phone,
and the capacity of a server may influence the response time of a service during peaks
in the user traffic.

Whereas software components reflect the logical architecture of systems, deploy-
ment components have recently been proposed for Real-Time ABS to reflect the de-
ployment architecture of systems [27, 28]. A deployment component is a resource-
restricted execution context for a set of concurrent object groups, which controls how
much computation can occur in this set between observable points in time. Deploy-
ment components may be dynamically created and are parametric in the amount of
resources they provide to their objects. This explicit representation of deployment
scenarios allows application-level response time and load balancing to be expressed
in the software models in a very natural and flexible way, relative to the resources
allocated to the software.

This paper shows how deployment components in Real-Time ABS may be used
to model virtualized systems in a cloud environment. We develop a Real-Time ABS

Chapter 7 Paper 3: Resource-Awareness and Cloud Infrastructures 125

model of cloud provisioning and accounting for resource-aware applications: an ab-
stract cloud provider offers virtual machines with given CPU capacities to client ap-
plications and bills the applications for their resource usage. We use this model in a
case study of the Montage system [24], a cloud-based resource-aware application for
scientific computing, and compare execution times and accumulated costs depending
on the number of leased machines by means of simulations of the executable model.
We show that our results are comparable to those previously obtained for Montage
with the same deployment scenarios on specialized simulation tools [19] and thus that
our formal model can be used to estimate cloud deployment costs for realistic sys-
tems. We then introduce dynamic resource management strategies in the Montage
model, and show that these improve on the resource management strategies previously
considered [19].

The paper is structured as follows. Section 7.2 presents the abstract behavioral
specification language Real-Time ABS, Section 7.3 develops our model of cloud pro-
visioning. Section 7.4 presents the case study of the Montage system. Section 7.5
discusses related work and Section 7.6 concludes the paper.

7.2 Abstract Behavioral Specification

with Real-Time ABS

ABS is an executable object-oriented modeling language with a formal semantics [25],
which targets distributed systems. The language is based on concurrent object groups,
akin to concurrent objects (e.g., [14, 17, 26]), Actors (e.g., [1, 23]), and Erlang pro-
cesses [5]. Concurrent object groups in ABS internally support interleaved concur-
rency using guarded commands. This allows active and reactive behavior to be easily
combined, based on cooperative scheduling of processes which stem from method calls.
A concurrent object group has at most one active process at any time and a queue
of suspended processes waiting to execute on an object in the group. Objects in ABS
are dynamically created from classes but typed by interface; i.e., there is no explicit
notion of hiding as the object state is always encapsulated behind interfaces which
offer methods to the environment.

7.2.1 Modeling Timed Behavior in ABS

ABS combines functional and imperative programming styles with a Java-like syn-
tax [25]. Concurrent object groups execute in parallel and communicate through
asynchronous method calls. Data manipulation inside methods is modeled using a
simple functional language. Thus, the modeler may abstract from the details of low-
level imperative implementations of data structures, and still maintain an overall

126 7.2 Abstract Behavioral Specification with Real-Time ABS

object-oriented design which is close to the target system.

The functional part of ABS allows user-defined algebraic data types such as the
empty type Unit, Booleans Bool, integers Int; parametric data types such as sets
Set<A> and maps Map<A> (given a value for the variable A); and user-defined
functions over values of these types, with support for pattern matching.

The imperative part of ABS addresses concurrency, communication, and synchro-
nization at the concurrent object level, and defines interfaces, classes, and methods.
ABS objects are active in the sense that their run method, if defined, gets called
upon creation. Statements for sequential composition s1; s2, assignment x=rhs, skip,
if, while, and return are standard. The statement suspend unconditionally suspends
the active process of an object by moving this process to the queue, from which an
enabled process is selected for execution. In await g, the guard g controls suspension
of the active process and consists of Boolean conditions b and return tests x? (see
below). Functional expressions e and guards g are side-effect free. If g evaluates to
false, the active process is suspended, i.e., moved to the queue, and some process
from the queue may execute. Expressions rhs include the creation of an object group
new cog C(e), object creation in the creator’s group new C(e), method calls o!m(e)

and o.m(e), future dereferencing x.get, and functional expressions e.

Communication and synchronization are decoupled in ABS, which allows complex
workflows to be modeled. Communication is based on asynchronous method calls,
denoted by assignments f=o!m(e) where f is a future variable, o an object expression,
and e are (data value or object) expressions. After calling f=o!m(e), the future vari-
able f refers to the return value of the call and the caller may proceed with its execution
without blocking on the method reply. There are two operations on future variables,
which control synchronization in ABS. First, the statement await f? suspends the ac-
tive process unless a return value from the call associated with f has arrived, allowing
other processes in the object group to execute. Second, the return value is retrieved by
the expression f.get, which blocks all execution in the object until the return value is
available. The statement sequence x=o!m(e);v=x.get encodes commonly used block-
ing calls, abbreviated v=o.m(e) (reminiscent of synchronous calls).

We work with Real-Time ABS [8], a timed extension of ABS with a run-to-
completion semantics, which combines explicit and implicit time for ABS models.
Real-Time ABS has an interpreter defined in rewriting logic [30] which closely reflects
its semantics and which executes on the Maude platform [16]. In Real-Time ABS,
explicit time is specified directly in terms of durations (as in, e.g., UPPAAL [29]).
Real-Time ABS provides the statement duration(b,w) to specify a duration between
the worst-case w and the best case b. A process may also suspend for a certain dura-
tion, expressed by await duration(b,w). For the purposes of this paper, it is sufficient
to work with a discrete time domain, and let b and w be of type Int. In contrast to
explicit time, implicit time is observed by measurements of the executing model. Mea-
surements are obtained by comparing clock values from a global clock, which can be

Chapter 7 Paper 3: Resource-Awareness and Cloud Infrastructures 127

read by an expression now() of type Time. With implicit time, no assumptions about
execution times are hard-coded into the models. The execution time of a method
call depends on how quickly the call is effectuated by the server object. In fact,
the execution time of a statement varies with the capacity of the chosen deployment
architecture and on synchronization with other (slower) objects.

7.2.2 Modeling Deployment Architectures

in Real-Time ABS

Deployment components in Real-Time ABS abstractly capture the resource capacity
at a location [27, 28]. Deployment components are first-class citizens in Real-Time
ABS and share their resources between their allocated objects. The root object of
a model is allocated to the deployment component environment, which has unlimited
resources. Deployment components with different resource capacities may be dynam-
ically created depending on the control flow of the model or statically created in the
main block of the model. When created, objects are by default allocated to the same
deployment component as their creator, but they may also be explicitly allocated to
a different component by an annotation.

Deployment components have the type DC and are instances of the class Deployment
Component. This class takes as parameters a name (the name of the location, mostly
used for monitoring purposes), given as a string, and a set of restrictions on resources.
Here we focus on resources reflecting the components’ CPU processing capacity, which
are specified by the constructor CPUCapacity(r), where r of type Resource represents
the amount of available abstract processing resources between observable points in
time. The expression thisDC() evaluates to the deployment component of the cur-
rent object. The method total("CPU") of a deployment component returns the total
amount of CPU resources allocated to that component.

The CPU processing capacity of a deployment component determines how much
computation may occur in the objects allocated to that component. The CPU re-
sources of a component define its capacity between observable (discrete) points in
time, after which the resources are renewed. Objects allocated to the component
compete for the shared resources in order to execute. With the run-to-completion
semantics, the objects may execute until the component runs out of resources or they
are otherwise blocked, after which time will advance [28].

The cost of executing statements is given by a cost model. A default cost value
for statements can be set as a compiler option (e.g., defaultcost=10). This default
cost does not discriminate between different statements. For some statements a more
precise cost expression is desirable in a realistic model; e.g., if e is a complex expression,
then the statement x=e should have a significantly higher cost than the statement skip.
For this reason, more fine-grained costs can be introduced into the models by means

128 7.3 Resource Management and Cloud Provisioning

of annotations, as follows:

class C implements I {
Int m (T x) {

[Cost: g(size(x))] return f(x);
}

}

It is the responsibility of the modeler to specify an appropriate cost model. A be-
havioral model with default costs may be gradually refined to obtain more realistic
resource-sensitive behavior. To provide cost functions such as g in our example above,
the modeler may be assisted by the COSTABS tool [2], which computes a worst-case
approximation of the cost for f in terms of the size of the input value x based on
static analysis techniques, when given the definition of the expression f. However,
the modeler may also want to capture resource consumption at a more abstract level
during the early stages of system design, for example to make resource limitations
explicit before further behavioral refinements of a model. Therefore, cost annotations
may be used to abstractly represent the cost of some computation which remains to
be fully specified.

7.3 Resource Management

and Cloud Provisioning

An explicit model of cloud provisioning allows the application developer to interact
in a simple way with a provisioning and accounting system for virtual machines. This
section explains how such cloud provisioning may be modeled, for Infrastructure-
as-a-Service [10] cloud environments. Consider an interface CloudProvider which of-
fers three methods for resource management to client applications: createMachine,
acquireMachine, and releaseMachine.

The method createMachine prepares and returns an abstract virtual machine with
a specified processing capacity, after which the client application may deploy objects
on the machine. This method models the provisioning and configuration part of
a cloud-based application, and corresponds roughly to instancing and configuring a
virtual machine on a cloud, without starting up the machine.

Before running a computation on a machine created with createMachine, the
client application must first call the method acquireMachine. The cloud provider
then starts accounting for the time this machine is kept running; the client calls the
method releaseMachine to “shut down” the machine again. (For simplicity it is cur-
rently not checked whether processes are run before calling acquireMachine or after
releaseMachine; this is a straightforward extension of the approach which could be
useful to model “cheating” clients.) For a later reactivation of the same machine, only

Chapter 7 Paper 3: Resource-Awareness and Cloud Infrastructures 129

Client Application Cloud Provider

createMachine

acquireMachine

releaseMachine

M
a
c
h
in

e
 u

s
a
b
le

A
c
c
o
u
n
tin

g

Figure 7.1: Interaction between a client application and the cloud provider.

acquireMachine needs to be called. Fig. 7.1 shows one such sequence of interactions
between a client application and a cloud provider.

In addition, the interface offers a method getAccumulatedCost which returns the
cost accumulated so far by the client application. This method can be used in load
balancing schemes to implement various trade-offs between quality of service and the
cost of running the application, or to implement operator alerts when certain QoS or
cost budgets are bypassed.

A Model of Cloud Provisioning in Real-Time ABS. A class which imple-
ments the CloudProvider interface is given in Fig. 7.2. Abstract virtual machines are
modeled as deployment components. The class has two formal parameters to allow
easy configuration: startupTime sets the length of the startup procedure for virtual
machines and accountingPeriod sets the length of each accounting period. In addi-
tion, the class has four fields: accumulatedCost stores the cost incurred by the client
application up to present time, the set billableMachines contains the machines to be
billed in the current time interval, and the sets availableMachines and runningMachines
contain the created but not currently running and the running machines, respectively.
The empty set is denoted EmptySet. Let s be a set over elements of type T and let
e : T . The following functions are defined in the functional part of Real-Time ABS:
insertElement(s, e) returns {e} ∪ s, remove(s, e) returns s \ {e}, and take(s) returns
some e such that e ∈ s.

The methods for resource management move machines between these sets. Any
machine which is either created or running within an accounting period, is billable in
that period; i.e., a machine may be both acquired and released in a period, so there
may be more billable than running machines. The method createMachine creates a new
deployment component of the given capacity and adds it to availableMachines. The
method acquireMachine moves a machine from availableMachines to runningMachines.

130 7.3 Resource Management and Cloud Provisioning

interface CloudProvider {
DC createMachine(Int capacity);
Unit acquireMachine(DC machine);
Unit releaseMachine(DC machine);
Int getAccumulatedCost();

}

class CloudProvider (Int startupTime, Int accountingPeriod) implements CloudProvider {
Int accumulatedCost = 0;
Set<DC> billableMachines = EmptySet;
Set<DC> availableMachines = EmptySet;
Set<DC> runningMachines = EmptySet;

DC createMachine(Int r) {
DC dc = new DeploymentComponent("", set[CPUCapacity(r)]);
availableMachines = insertElement(availableMachines, dc);
return dc;

}

Unit acquireMachine(DC dc) {
billableMachines = insertElement(billableMachines, dc);
availableMachines = remove(availableMachines, dc);
runningMachines = insertElement(runningMachines, dc);
await duration(startupTime, startupTime);

}

Unit releaseMachine(DC dc) {
runningMachines = remove(runningMachines, dc);
availableMachines = insertElement(availableMachines, dc);

}

Int getAccumulatedCost(){
return accumulatedCost;

}

Unit run() {
while (True) {

await duration(accountingPeriod, accountingPeriod);
Set<DeploymentComponent> billables = billableMachines;
while (~(billables == EmptySet)) {

DeploymentComponent dc = take(billables);
billables = remove(billables,dc);
Int capacity = dc.total("CPU");
accumulatedCost = accumulatedCost+(accountingPeriod∗capacity);

}
billableMachines = runningMachines;

}
}

}

Figure 7.2: The CloudProvider class in Real-Time ABS.

Chapter 7 Paper 3: Resource-Awareness and Cloud Infrastructures 131

Since the machine becomes billable, it is placed in billableMachines. The method sus-
pends for the duration of the startupTime before it returns, so the accounting includes
the startup time of the machine. The method releaseMachine moves a machine from
runningMachines to availableMachines. The machine remains billable for the current
accounting period.

The run method of the cloud provider implements the accounting of incurred re-
source usage for the client application. The method suspends for the duration of the
accounting period, after which all machines in billableMachines are billed by adding
their resource capacity for the duration of the accounting period to accumulatedCost.
Remark that Real-Time ABS has a run-to-completion semantics which guarantees
that the loop in run will be executed after every accounting period. After account-
ing is finished, only the currently running machines are already billable for the next
period. These are copied into billableMachines and the run method suspends for the
next accounting period.

7.4 Case Study: The Montage Toolkit

Montage is a portable software toolkit for generating science-grade mosaics by com-
posing multiple astronomical images [24]. Montage is modular and can be run on a
researcher’s desktop machine, in a grid, or on a cloud. Due to the high volume of data
in a typical astronomical dataset and the high resolution of the resulting mosaic, as
well as the highly parallelizable nature of the needed computations, Montage is a good
candidate for cloud deployment. In [19], Deelman et al. present simulations of cloud
deployments of Montage and the cost of creating mosaics with different deployment
scenarios, using the specialized simulation tool GridSim [9].

This section describes the architecture of the Montage system and how it was
modeled in Real-Time ABS. We explain how costs were associated to the different
parts of the model. The results obtained by simulations of the model in the Real-Time
ABS interpreter are compared to those obtained in the specialized simulator. Finally,
more fine-grained dynamic resource management, not considered in the previous work
[19], is proposed and compared to previous scenarios.

7.4.1 The Problem Description

Creating a mosaic from a set of input images involves a number of tasks: first re-
projecting the images to a common projection, coordinating system and scale, then
rectifying the background radiation in all images to a common flux scale and back-
ground level, and finally co-adding the reprojected background-rectified images into
a final mosaic. The tasks exchange data in the format FITS, which encapsulates

132 7.4 Case Study: The Montage Toolkit

Module Description

mImgtbl Extract geometry information from a set of FITS headers and
create a metadata table from it.

mOverlaps Analyze an image metadata table to determine which images
overlap on the sky.

mProject Reproject a FITS image.
mProjExec Reproject a set of images, running mProject for each image.
mDiff Perform a simple image difference between a pair of

overlapping images.
mDiffExec Run mDiff on all the overlap pairs identified by mOverlaps.
mFitplane Fit a plane (excluding outlier pixels) to an image. Used on the

difference images generated by mDiff.
mFitExec Run mFitplane on all overlapping pairs. Creates a table of

image-to-image difference parameters.
mBgModel Modeling/fitting program which uses the image-to-image

difference parameter table to interactively determine a set of
corrections to apply to each image to achieve a “best” global fit.

mBackground Remove a background from a single image
mBgExec Run mBackground on all the images in the metadata table.
mAdd Co-add the reprojected images to produce an output mosaic.

Figure 7.3: The modules of the Montage case study.

image data and meta-data. These tasks are implemented by a number of Montage
modules [24], which are listed and described in Fig. 7.3. These modules can be run in-
dividually or combined in a workflow, locally or remotely on a grid or a cloud. Fig. 7.4
depicts the dataflow dependencies between the modules in a typical Montage work-
flow [19]. These dependencies show which jobs can be parallelized on multiprocessor
systems, grids, or cloud services.

Simulation results for running Montage on the Amazon cloud with the workflow
depicted in Fig. 7.4 have been published in [19], including cost measurements for CPU
and storage resources. The simulation tool GridSim [9] was used to study the trade-
offs between cost and performance for different execution and resource provisioning
scenarios when running Montage in a cloud service provider.

We model and analyze the same abstract workflow architecture of Montage based
on the model of cloud provisioning presented in Section 7.3, as a means to validate
the presented formal model of cloud provisioning in Real-Time ABS. In particular,
we consider the case in which Montage processes multiple input images in parallel.
Our model abstracts from the implementation details of the manipulation of images,
replacing them with abstract statements and cost annotations. One important result
of [19] is that computation cost dominates storage and data transfer cost for the

Chapter 7 Paper 3: Resource-Awareness and Cloud Infrastructures 133

mProject

mProjExec

mImgtbl mOverlaps

mDiffExec

mDiff

mFitExec

mFitplane

mBgModel

mBackground

mBgExec

mAdd

Figure 7.4: Montage abstract workflow.

Montage workload by 2-3 orders of magnitude, which allows us to focus on CPU
usage alone.

7.4.2 A Model of the Montage Workflow in Real-Time ABS

The Core Modules. The Montage core modules that execute atomic tasks (i.e.,
mProject, mDiff, mFitplane, mBgModel, mBackground, mAdd, mImgtbl, and mOverlaps)
are modeled as methods inside a class CalcServer which implements the CalcServer
interface shown in Fig. 7.5. In the methods of this class, cost annotations are used to
specify the costs of executing atomic tasks. The images considered in the case study
have a constant size, so it is sufficient to use a constant cost for the atomic tasks.
Lacking precise cost estimates for the individual tasks, we consider an abstract cost
model in which each atomic task is assigned the cost of 1 resource. (This cost model
could be further refined; although some timing measurements are given in [24], these
are not detailed enough for this purpose.) The code for one such atomic task inside
the CalcServer class is shown in Fig. 7.5.

Resource Management. The workflow process does not interact with the dif-
ferent instances of CalcServer directly. Instead, tasks are sent to an instance of
ApplicationServer which acts a broker for the preallocated machine instances and
distributes tasks to free machines. The ApplicationServer interface, partly shown in
Fig. 7.6, provides the workflow with means to start the parallelizable tasks (i.e.,
mProjExec, mDiffExec, mFitExec and mBgExec) and distributes the atomic tasks (e.g.,
mDiff) to instances of CalcServer. Atomic tasks are sent directly to one calculation
server. Two fields activeMachines and servers keep track of the number of active jobs on

134 7.4 Case Study: The Montage Toolkit

interface CalcServer {
DeploymentComponent getDC();
MetadataT mImgtbl(List<FITS> i);
MetadataT mOverlaps(MetadataT mt);
FITS mProject(FITS image);
FITSdf mDiff (FITS image1, FITS image2);
FITSfit mFitplane (FITSdf df);
CorrectionT mBgModel(Image2ImageT diffs, MetadataT ovlaps);
FITS mBackground (Int correction,FITS image);
FITS mAdd (List<FITS> images); }

class CalcServer implements CalcServer {
...
FITS mBackground (Int correction,FITS image){

[Cost: 1] FITS result = correctFITS(image,correction);
return result;

}
...

}

Figure 7.5: CalcServer interface and class in Real-Time ABS.

each created machine and the order in which servers get jobs, respectively. Surround-
ing every call to a calculation server the auxiliary methods getServer and dropServer
do the bookkeeping and resource management of the virtual machines. Asynchronous
method calls to the future variables fimage and fnewimages, and task suspension are
used to keep the application server responsive.

Our model defines algebraic data types FITS, FITSdf, FITSfit, as well as the list
MetadataT and the maps CorrectionT and Image2ImageT to represent the input and
output data at the different stages of the workflow; for example, FITS is a data type
which represents image archives in FITS format, which is constructed from an abstract
representation of metadata and of image data. This data can be used to keep track of
data flow and abstractions of calculation results. The empty list and map are denoted
Nil and EmptyMap. On lists, the constructor Cons(h, t) takes as arguments an element
h and a list t; head(Cons(h, t)) = h and tail(Cons(h, t)) = t. The function isEmpty(l)
returns true if l is the empty list. On maps, the function lookupDefault(m, k, v) returns
the value bound to k in m if the key k is bound in m, and otherwise it returns the
default value v.

7.4.3 Simulation Results

We simulated a workload equivalent to the Montage 1 scenario described in [19]. As
in that paper, the simulations were run on deployment scenarios ranging from 1 to
128 virtual machine instances, where all the machines were started up prior to the
simulations (i.e., the startupTime parameter of the CloudProvider class in our model

Chapter 7 Paper 3: Resource-Awareness and Cloud Infrastructures 135

interface ApplicationServer {
FITS mAdd (List<FITS> images);
List<FITS> mProjExec(List<FITS> images);
List<FITSdf> mDiffExec (MetadataT metatable, List<FITS> images);
Image2ImageT mFitExec(List<FITSdf> dfs);
List<FITS> mBgExec (CorrectionT corrections, List<FITS> images);
...

}

class ApplicationServer(CloudProvider provider) implements ApplicationServer {
List<CalcServer> servers = Nil; Map<DC,Int> activeMachines = EmptyMap;
...
List<FITS> mBgExec(CorrectionT corrections,List<FITS> images) {

List<FITS> newimages = Nil;
if (isEmpty(images)==False) {

FITS image = head(images);
Int correction = lookupDefault(corrections,getId(image), 0);
CalcServer b = this.getServer();
Fut<FITS> fimage = b!mBackground (correction,image);
Fut<List<FITS>> fnewimages=this!mBgExec(corrections,tail(images));
await fimage?;
FITS tmpimage = fimage.get;
this.dropServer(b);
await fnewimages?;
List<FITS> newtmpimages = fnewimages.get;
newimages = Cons(tmpimage, newtmpimages);

}
return newimages;

}
...

}

Figure 7.6: The ApplicationServer interface and class (abridged).

has value 0). Both simulation approaches exhibit the expected geometric downward
progression of execution time when going from 1 to 128 machines, and roughly half an
order of magnitude increase in cost. In our first simulation runs, the execution cost
(measured in simulated machine-minutes) increased a little over two-fold over the full
simulation range, versus closer to a six-fold increase (“60 cents [...] versus almost 4$”)
in [19]. To explain this difference, we theorized that the observed lower cost may have
resulted from better machine allocation strategies in our model—the virtual machines
were eagerly released by the ApplicationServer class when no more work was available
to them, instead of being kept running until all computations finished.

To test this hypothesis, the ApplicationServer class was modified to keep all in-
stances running during the whole computation task. Using this allocation strategy,
we observed a cost increase of 4.27 from 1 to 128 computation servers, which is more
in line with the results obtained using GridSim. Fig. 7.7 (left) shows the simulation
results of the modified model. The authors of [19] later confirmed in private commu-

136 7.5 Related Work

0

25

50

75

100

1 2 4 8 16 32 64 128
1

10

100

1000

10000

T
im

e

C
P

U
 C

o
s
t

time cost (dynamic, small startup time)
time cost (dynamic, large startup time)
time cost (constant)

0

25

50

75

100

1 2 4 8 16 32 64 128
1

10

100

1000

10000

T
im

e

C
P

U
 C

o
s
t

Processing Time Cost

Figure 7.7: Execution costs and times of simulation. The Montage 1 scenario (left
figure) is compared to dynamic resource management (right figure). The costs are
presented on a logarithmic scale for easier comparison with the results of [19].

nication that our hypothesis about the setup of the GridSim simulation scenario was
indeed correct.

In order to further investigate the initial results involving dynamic startup and
shutdown of machine instances, we refine our model by introducing startup times for
virtual machines. Fig. 7.7 (right) compares the previous static deployment scenario
(constant) with two dynamic resource management scenarios with varying startup
times for virtual machines. One scenario models machine startup times of roughly one
tenth of the time needed for performing a basic task, the other startup times roughly
as large as basic task times. It can be seen that the cost of running a single job in the
Montage system can be substantially reduced by switching off unused machines, given
that the cost of starting machines is dominated by the actual calculations taking place,
with almost no loss in time. On the other hand, if starting a machine is significantly
slower than executing a basic task, it can be seen that both cost and time of the
dynamic scenario are worse than when initially starting all machines in the static
scenario of the considered workflow except in the case of severe over-provisioning of
machines.

7.5 Related Work

The concurrency model of ABS is based on concurrent objects and Actor-based com-
putation, in which software units with encapsulated processors communicate asyn-
chronously (e.g., [1, 5, 14, 23, 26]). Their inherent compositionality allows concurrent
objects to be naturally distributed on different locations, because only the local state

Chapter 7 Paper 3: Resource-Awareness and Cloud Infrastructures 137

of a concurrent object is needed to execute its methods. In previous work, the au-
thors have introduced deployment components as a formal modeling concept to cap-
ture restricted resources shared between concurrent object groups and shown how
components with parametric resources naturally model different deployment archi-
tectures [28], extended the approach with resource reallocation [27], and combined
it with static cost analysis [4]. This paper complements our previous work by using
deployment components to model cloud-based scenarios and the development of the
Montage case study. A companion paper [18] further applies the approach of this
paper to an industrial case study.

Techniques for prediction or analysis of non-functional properties are based on
either measurement or modeling. Measurement-based approaches apply to existing
implementations, using dedicated profiling or tracing tools like JMeter or LoadRun-
ner. Model-based approaches allow abstraction from specific system intricacies, but
depend on parameters provided by domain experts [20]. A survey of model-based
performance analysis techniques is given in [7]. Formal systems using process alge-
bra, Petri Nets, game theory, and timed automata have been used in the embedded
software domain (e.g., [15, 21]). Real-Time ABS combines explicit time modeling
with duration statements with implicit measurements of time already at the model-
ing level, which is made possible by the combination of costs in the application model
and capacities in the deployment components.

Work on modeling object-oriented systems with resource constraints is more scarce.
Using the UML SPT profile for schedulability, performance, and time, Petriu and
Woodside [32] informally define the Core Scenario Model (CSM) to solve questions
that arise in performance model building. CSM has a notion of resource context, which
reflects an operation’s set of resources. CSM aims to bridge the gap between UML
and techniques to generate performance models [7]. Closer to our work is M. Verhoef’s
extension of VDM++ for embedded real-time systems [33], in which static architec-
tures are explicitly modeled using CPUs and buses. The approach uses fixed resources
targeting the embedded domain, namely processor cycles bound to the CPUs, while
we consider more general resources for arbitrary software. Verhoef’s approach is also
based on abstract executable modeling, but the underlying object models and opera-
tional semantics differ. VDM++ has multi-thread concurrency, preemptive schedul-
ing, and a strict separation of synchronous method calls and asynchronous signals,
in contrast to our work with concurrent objects, cooperative scheduling, and caller-
decided synchronization.

Related work on simulation tools for cloud computing are typically reminiscent of
network simulators. A number of testing techniques and tools for cloud-based soft-
ware systems are surveyed in [6]. In particular, CloudSim [13] and ICanCloud [31] are
simulation tools using virtual machines to simulate cloud environments. CloudSim is
a fairly mature tool which has already been used for a number of papers, but it is
restricted to simulations on a single computer. In contrast, ICanCloud supports dis-

138 7.6 Conclusion

tribution on a cluster. Additionally CloudSim was originally based on GridSim [9], a
toolkit for modeling and simulations of heterogeneous Grid resources. EMUSIM [12] is
an integrated tool that uses AEF [11] (Automated Emulation Framework) to estimate
performance and costs for an application by means of emulations to produce improved
input parameters for simulations in CloudSim. Compared to these approaches, our
work is based on a formal semantics and aims to support the developer of software
applications for cloud-based environments at an early phase in the development pro-
cess.

Another interesting line of research is static cost analysis for object-oriented pro-
grams (e.g., [3, 22]) Most tools for cost analysis only consider sequential programs,
and assume that the program is fully developed before cost analysis can be applied.
COSTABS [2] is a cost analysis tool for ABS which supports concurrent object-
oriented programs. Our approach, in which the modeler specifies cost in cost an-
notations, could be supported by COSTABS to automatically derive cost annotations
for the parts of a model that are fully implemented. In collaboration with Albert
et al., we have applied this approach for memory analysis of ABS models [4]. How-
ever, the full integration of COSTABS in our tool chain and the software development
process remain future work.

7.6 Conclusion

This paper develops a model in Real-Time ABS of a cloud provider which offers vir-
tual machines with given CPU capacities to a client application. Virtual machines
are modeled as deployment components with given CPU capacities, and the cloud
provider offers methods for resource management of virtual machines to client ap-
plications. The proposed model has been validated by means of a case study of the
Montage toolkit, in which a typical Montage workflow was formalized. This formal-
ization allows different user scenarios and deployment models to easily expressed and
compared by means of simulations using the Real-Time ABS interpreter. The re-
sults from these simulations were comparable to those obtained for the Montage case
study using specialized simulators, which suggests that models using abstract behav-
ioral specification languages such as Real-Time ABS can be used to estimate cloud
deployment costs for realistic systems.

Real-Time ABS aims to support the developer of client applications for cloud-
based deployment, and in particular to facilitate the development of strategies for
virtualized resource management at early stages in the development process. We
are not aware of similar work addressing the formal modeling of virtualized resource
management and cloud computing from the client application perspective. With the
increasing focus on cloud-based deployment of general purpose software, such support
could become very useful for software developers.

Chapter 7 Paper 3: Resource-Awareness and Cloud Infrastructures 139

This paper focused on the formalization of cloud provisioning and simulations of
the executable model. The presented work can be extended in a number of directions.
In particular, we are interested in how to combine different virtualized resources in the
same model to estimate combined costs of, e.g., computations, storage, bandwidth,
and power consumption. Another extension is to strengthen the tool-based analysis
support for Real-Time ABS. An integration with cost analysis tools such as COSTABS
would assist the developer in providing cost annotations in the model. Furthermore,
we plan to investigate symbolic execution techniques for Real-Time ABS, which would
allow stronger automated analysis results than those considered here. Finally, an
integration of QoS contracts with the interfaces of Real-Time ABS could form a basis
for analysis abstract behavioral specifications with respect to service-level agreements.

Acknowledgment. We thank G. Bruce Berriman and Ewa Deelman for helping us
with additional details of the Montage case study.

140 7.6 Conclusion

Bibliography

[1] G. A. Agha. ACTORS: A Model of Concurrent Computations in Distributed
Systems. The MIT Press, Cambridge, Mass., 1986.

[2] E. Albert, P. Arenas, S. Genaim, M. Gómez-Zamalloa, and G. Puebla.
COSTABS: a cost and termination analyzer for ABS. In Proc. Workshop on
Partial Evaluation and Program Manipulation (PEPM’12), pages 151–154. ACM,
2012.

[3] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost Analysis of
Java Bytecode. In Proc. ESOP’07, LNCS 4421, pages 157–172. Springer, 2007.

[4] E. Albert, S. Genaim, M. Gómez-Zamalloa, E. B. Johnsen, R. Schlatte, and S. L.
Tapia Tarifa. Simulating concurrent behaviors with worst-case cost bounds. In
Proc. Formal Methods (FM’11), LNCS 6664, pages 353–368. Springer, June 2011.

[5] J. Armstrong. Programming Erlang: Software for a Concurrent World. Prag-
matic Bookshelf, 2007.

[6] X. Bai, M. Li, B. Chen, W.-T. Tsai, and J. Gao. Cloud testing tools. In Proc. 6th
Symposium on Service Oriented System Engineering, pages 1–12. IEEE, 2011.

[7] S. Balsamo, A. D. Marco, P. Inverardi, and M. Simeoni. Model-based performance
prediction in software development: A survey. IEEE Transactions on Software
Engineering, 30(5):295–310, 2004.

[8] J. Bjørk, F. S. de Boer, E. B. Johnsen, R. Schlatte, and S. L. Tapia Tarifa. User-
defined schedulers for real-time concurrent objects. Innovations in Systems and
Software Engineering, 2012. http://dx.doi.org/10.1007/s11334-012-0184-5

[9] R. Buyya and M. Murshed. GridSim: A toolkit for the modeling and simu-
lation of distributed resource management and scheduling for grid computing.
Concurrency and Computation: Practice and Experience, 14:1175–1220, 2002.

141

142 BIBLIOGRAPHY

[10] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud computing
and emerging IT platforms: Vision, hype, and reality for delivering computing
as the 5th utility. Future Generation Computer Systems, 25(6):599–616, 2009.

[11] R. N. Calheiros, R. Buyya, and C. A. F. De Rose. Building an automated and
self-configurable emulation testbed for grid applications. Software: Practice and
Experience, 40(5):405–429, Apr. 2010.

[12] R. N. Calheiros, M. A. Netto, C. A. D. Rose, and R. Buyya. EMUSIM: an
integrated emulation and simulation environment for modeling, evaluation, and
validation of performance of cloud computing applications. Software: Practice
and Experience, pages 00–00, 2012.

[13] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose, and R. Buyya.
CloudSim: a toolkit for modeling and simulation of cloud computing environ-
ments and evaluation of resource provisioning algorithms. Software, Practice and
Experience, 41(1):23–50, 2011.

[14] D. Caromel and L. Henrio. A Theory of Distributed Objects. Springer, 2005.

[15] A. Chakrabarti, L. de Alfaro, T. A. Henzinger, and M. Stoelinga. Resource
interfaces. In Proc. EMSOFT’03, LNCS 2855, pages 117–133. Springer, 2003.

[16] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and C. L.
Talcott, editors. All About Maude, LNCS 4350. Springer, 2007.

[17] F. S. de Boer, D. Clarke, and E. B. Johnsen. A complete guide to the future. In
Proc. ESOP’07, LNCS 4421, pages 316–330. Springer, 2007.

[18] F. S. de Boer, R. Hähnle, E. B. Johnsen, R. Schlatte, and P. Y. H. Wong. Formal
Modeling of Resource Management for Cloud Architectures: An Industrial Case
Study. In Proc. European Conference on Service-Oriented and Cloud Computing
(ESOCC), To appear in LNCS. Springer, Sep. 2012.

[19] E. Deelman, G. Singh, M. Livny, G. B. Berriman, and J. Good. The cost of
doing science on the cloud: The Montage example. In Proc. High Performance
Computing (SC’08), pages 1–12. IEEE/ACM, 2008.

[20] I. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburrelli. Model evolution by
run-time parameter adaptation. In Proc. ICSE’09, pages 111–121. IEEE, 2009.

[21] E. Fersman, P. Krcál, P. Pettersson, and W. Yi. Task automata: Schedulabil-
ity, decidability and undecidability. Information and Computation, 205(8):1149–
1172, 2007.

BIBLIOGRAPHY 143

[22] S. Gulwani, K. K. Mehra, and T. M. Chilimbi. Speed: Precise and Efficient
Static Estimation of Program Computational Complexity. In Proc. POPL’09,
pages 127–139. ACM, 2009.

[23] P. Haller and M. Odersky. Scala actors: Unifying thread-based and event-based
programming. Theoretical Computer Science, 410(2–3):202–220, 2009.

[24] J. C. Jacob, D. S. Katz, G. B. Berriman, J. Good, A. C. Laity, E. Deelman,
C. Kesselman, G. Singh, M.-H. Su, T. A. Prince, and R. Williams. Montage: a
grid portal and software toolkit for science-grade astronomical image mosaicking.
Intl. Journal of Computational Science and Engineering, 4(2):73–87, 2009.

[25] E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS: A
core language for abstract behavioral specification. In Proc. Symposium on For-
mal Methods for Components and Objects (FMCO), LNCS 6957, pages 142–164.
Springer, 2011.

[26] E. B. Johnsen and O. Owe. An asynchronous communication model for dis-
tributed concurrent objects. Software and Systems Modeling, 6(1):35–58, Mar.
2007.

[27] E. B. Johnsen, O. Owe, R. Schlatte, and S. L. Tapia Tarifa. Dynamic resource re-
allocation between deployment components. In Proc. Intl. Conference on Formal
Engineering Methods (ICFEM’10), LNCS 6447, pages 646–661. Springer, 2010.

[28] E. B. Johnsen, O. Owe, R. Schlatte, and S. L. Tapia Tarifa. Validating timed mod-
els of deployment components with parametric concurrency. In Formal Verifica-
tion of Object-Oriented Software (FoVeOOS), LNCS 6528, pages 46–60. Springer,
2011.

[29] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. Intl. Journal
on Software Tools for Technology Transfer, 1(1–2):134–152, 1997.

[30] J. Meseguer. Conditional rewriting logic as a unified model of concurrency. The-
oretical Computer Science, 96:73–155, 1992.

[31] A. Nuñez, J. Vázquez-Poletti, A. Caminero, G. Castañé, J. Carretero, and
I. Llorente. iCanCloud: A flexible and scalable cloud infrastructure simulator.
Journal of Grid Computing, 10:185–209, 2012.

[32] D. B. Petriu and C. M. Woodside. An intermediate metamodel with scenarios
and resources for generating performance models from UML designs. Software
and System Modeling, 6(2):163–184, 2007.

[33] M. Verhoef, P. G. Larsen, and J. Hooman. Modeling and validating distributed
embedded real-time systems with VDM++. In Proc. Formal Methods (FM’06),
LNCS 4085, pages 147–162. Springer, 2006.

144 BIBLIOGRAPHY

CHAPTER 8

Paper 4: Simulating Concurrent

Behaviors with Worst-Case

Cost Bounds ∗

Authors: Elvira Albert, Samir Genaim, Miguel Gómez-Zamalloa, Einar Broch Johnsen,
Rudolf Schlatte, Silvia Lizeth Tapia Tarifa

Publication: Proceedings of the 17th International Symposium on Formal Methods,
volume 6664 of Lecture Notes in Computer Science, pages 353–368. Springer, June
2011

Abstract: Modern software systems are increasingly being developed for deploy-
ment on a range of architectures. For this purpose, it is interesting to capture aspects
of low-level deployment concerns in high-level modeling languages. In this paper,
an executable object-oriented modeling language is extended with resource-restricted
deployment components. To analyze model behavior a formal methodology is pro-
posed to assess resource consumption, which balances the scalability of the method
and the reliability of the obtained results. The approach applies to a general no-
tion of resource, including traditional cost measures (e.g., time, memory) as well as
concurrency-related measures (e.g., requests to a server, spawned tasks). The main
idea of our approach is to combine reliable (but expensive) worst-case cost analysis
of statically predictable parts of the model with fast (but inherently incomplete) sim-
ulations of the concurrent aspects in order to avoid the state-space explosion. The
approach is illustrated by the analysis of memory consumption.

∗Partly funded by the EU project FP7-231620 HATS: Highly Adaptable and Trustworthy Software
using Formal Models (http://www.hats-project.eu).

145

146 8.1 Introduction

8.1 Introduction

Software systems today are increasingly being developed to be highly configurable,
not only with respect to the functionality provided by a specific instance of the sys-
tem but also with respect to the targeted deployment architecture. An example of
a development method is software product line engineering [20]. In order to capture
and analyze the intended deployment variability of such software, formal models need
to express and range over different deployment scenarios. For this purpose, it is in-
teresting to reflect aspects of low-level deployment in high-level modeling languages.
As our first contribution, in this paper, we propose a notion of resource-restricted
deployment component for an executable modeling language based on concurrent ob-
jects [8, 11, 14, 21, 24]. The main idea of resource-restricted deployment components
is that they are parametric in the amount of resources they make available to their
concurrently executing objects. This way, different deployment scenarios can be con-
veniently expressed at the modeling level and a model may be analyzed for a range
of deployment scenarios.

As our main contribution, we develop a novel approach for estimating the re-
source consumption of this kind of resource-constrained concurrent executions which
is reasonably reliable and scalable. Resource consumption is in this sense a way of
understanding and debugging the model of the deployment components. Our work
is based on a general notion of resource, which can be any function that associates a
cost unit to the program statements. Traditional resources are execution steps, time
and memory, but one may also consider more concurrency-related resources like the
number of tasks spawned along the execution, the number of requests to a server, etc.

The two main approaches to estimating resource consumption of a program ex-
ecution are static cost analysis and dynamic simulation (or monitoring). Efficient
simulation techniques can analyze model behavior in different deployment scenarios,
but simulations are carried out for particular input data. Hence, they cannot guaran-
tee the correctness of the model. Due to the non-determinism of concurrent execution
and the choice of inputs, possible errors may go undetected in a simulation. Static cost
(or resource usage) analysis aims at automatically inferring a program’s resource con-
sumption statically, i.e., without running the program. Such analysis must consider
all possible execution paths and ensures soundness, i.e., it guarantees that the pro-
gram never exceeds the inferred resource consumption for any input data. While cost
analysis for sequential languages exists, the problem has not yet been studied in the
concurrent setting, partly due to the inherent complexity of concurrency: the number
of possible execution paths can be extremely large and the resulting outcome non-
deterministic. Statically analyzing the concurrent behaviors of our resource-restricted
models requires a full state space exploration and quickly becomes unrealistic.

In this paper, we propose to combine simulations with static techniques for cost

Chapter 8 Paper 4: Deployment Architectures and Worst-Case Cost Bounds 147

analysis, which allows classes of input values to be covered by a single simulation. The
main idea is to apply cost analysis to the sequential computations while simulation
handles the concurrent system behavior. Our method is developed for an abstract
behavioral specification language ABS, simplifying Creol [11, 14], which contains a
functional level where computations are sequential and an concurrent object-oriented
level based on concurrent objects. This separation allows a concise and clean for-
malization of our technique. The combination of simulation and static analysis, as
proposed in this paper, suggests a middle way between full state space exploration
and simulating single paths, which gives interesting insights into the behavior of con-
current systems.

Paper organization. Section 8.2 describes the syntax and semantics of the ABS
modeling language and introduces our running example. Section 8.3 discusses the
worst-case cost bounds calculation of the functional parts of ABS. Section 8.4 in-
troduces deployment components, which model resource-containing runtime entities,
and Section 8.5 presents the results of applying the technique to the running example.
Finally, Section 8.6 discusses related work and Section 8.7 concludes the paper with
a discussion of extensions of our presented technique.

8.2 A Language for Distributed

Concurrent Objects

Our method is presented for ABS, an abstract behavioral specification language for
distributed concurrent objects (simplifying Creol [11, 14] by excluding, e.g., class in-
heritance and dynamic class upgrades). Characteristic features of ABS are that: (1)
it allows abstracting from implementation details while remaining executable; i.e., a
functional sub-language over abstract data types is used to specify internal, sequential
computations; and (2) it provides flexible concurrency and synchronization mecha-
nisms by means of asynchronous method calls, release points in method definitions,
and cooperative scheduling of method activations.

Intuitively, concurrent ABS objects have dedicated processors and live in a dis-
tributed environment with asynchronous and unordered communication. All commu-
nication is between named objects, typed by interfaces, by means of asynchronous
method calls. (There is no remote field access.) Calls are asynchronous as the caller
may decide at runtime when to synchronize with the reply from a call. Method calls
may be seen as triggers of concurrent activity, spawning new activities (so-called pro-
cesses) in the called object. Active behavior, triggered by an optional run method, is
interleaved with passive behavior, triggered by method calls. Thus, an object has a
set of processes to be executed, which stem from method activations. Among these,
at most one process is active and the others are suspended in a process pool. Pro-

148 8.2 A Language for Distributed Concurrent Objects

Syntactic categories.

I in Interface type

D in Data type

x in Variable

e in Expression

b in Bool Expression

t in Ground Term

br in Branch

p in Pattern

Definitions.

Dd ::= data D = Cons;
Cons ::= Co[(T)] | (Cons | Cons)

F ::= def T fn(T x) = e;
T ::= I | D

e ::= b | x | t | this | Co[(e)] | fn(e) | case e {br}

t ::= Co[(t)] | null

br ::= p ⇒ e;
p ::= _ | x | t | Co[(p)]

Figure 8.1: ABS syntax for the functional level. Terms e and x denote possibly
empty lists over the corresponding syntactic categories, and square brackets [] optional
elements. Boolean expressions b include comparison by equality, greater- and less-than
operators.

cess scheduling is non-deterministic, but controlled by processor release points in a
cooperative way.

An ABS model defines interfaces, classes, datatypes, and functions, and has a main

method to configure the initial state. Objects are dynamically created instances of
classes; their declared attributes are initialized to arbitrary type-correct values, but
may be redefined in an optional method init. This paper assumes that models are
well-typed, so method binding is guaranteed to succeed.

The functional level of ABS defines data types and functions, as shown in Fig. 8.1.
In data type declarations Dd, a data type D has at least one constructor Cons, which
has a name Co and a list of types T for its arguments. Function declarations F consist
of a return type T , a function name fn, a list of variable declarations x of types T , and
an expression e. Expressions e include Boolean expressions b, variables x, (ground)
terms t, the (read-only) variable this which refers to the object’s identifier, construc-
tor expressions Co(e), function expressions fn(e), and case expressions case e {br}.
Ground terms t are constructors applied to ground terms Co(t), and null. Case
expressions have a list of branches p ⇒ e, where p is a pattern. The branches are
evaluated in the listed order. Patterns include wild cards _, variables x, terms t, and
constructor patterns Co(p). Remark that expressions may refer to object references.

Example 18. Consider a polymorphic data type for sets and a function in which
checks if e is an a member of the set ss.

Chapter 8 Paper 4: Deployment Architectures and Worst-Case Cost Bounds 149

Syntactic categories.

C, m in Names

g in Guard

s in Statement

Definitions.

IF ::= interface I { Sg }

CL ::= class C [(T x)] [implements I] { T x; M}

Sg ::= T m (T x)
M ::= Sg { T x; s }

g ::= b | x? | g ∧ g | g ∨ g

s ::= s; s | x := rhs | release | await g | return e

| if b then { s } [else { s }] | while b { s } | skip

rhs ::= e | new C [(e)] | [e]!m(e) | x.get

Figure 8.2: ABS syntax for the concurrent object level.

data Set<A> = EmptySet | Insert(A, Set<A>);

def Bool in<A>(Set<A> ss, A e) =
case ss {

EmptySet => False ;
Insert(e, _) => True;
Insert(_, xs) => in(xs, e);

};

The concurrent object level of ABS is given in Fig. 8.2. Here, an interface IF has a
name I and method signatures Sg. A class implements a list of interfaces, specifying
types for its instances; a class CL has a name C, interfaces I, class parameters and
state variables x of type T , and methods M (The attributes of the class are both its
parameters and state variables). A method signature Sg declares the return type T
of a method with name m and formal parameters x of types T . M defines a method
with signature Sg, a list of local variable declarations x of types T , and a statement s.
Statements may access attributes of the current class, locally defined variables, and
the method’s formal parameters.

Right hand side expressions rhs include object creation new C(e), method calls,
and (pure) expressions e. Statements are standard for assignment x := rhs, se-
quential composition s1; s2, and skip, if, while, and return constructs. release

unconditionally releases the processor, suspending the active process. In await g, the
guard g controls processor release and consists of Boolean conditions b and return
tests x? (see below). If g evaluates to false, the processor is released and the process
suspended. When the processor is idle, any enabled process from the object’s pool
of suspended processes may be scheduled. Explicit signaling is therefore redundant.
Like expressions e, guards g are side-effect free.

Communication in ABS is based on asynchronous method calls, denoted o!m(e).

150 8.2 A Language for Distributed Concurrent Objects

(Local calls are written !m(e).) After asynchronously calling x := o!m(e), the caller
may proceed with its execution without blocking on the call. Here x is a future
variable, o is an object (an expression typed by an interface), and e are expressions. A
future variable x refers to a return value which has yet to be computed. There are two
operations on future variables, which control external synchronization in ABS. First, a
return test x? evaluates to false unless the reply to the call can be retrieved. (Return
tests are used in guards.) Second, the return value is retrieved by the expression
x.get, which blocks all execution in the object until the return value is available. The
statement sequence x := o!m(e); v := x.get encodes a blocking, synchronous call,
abbreviated v := o.m(e), whereas the statement sequence x := o!m(e); await x?; v :=
x.get encodes a non-blocking, preemptable call, abbreviated await v := o.m(e).

Example 19. Consider a model of a book shop where clients can order a list of books

for delivery to a country. Clients connect to the shop by calling the getSession

method of an Agent object. An Agent hands out Session objects from a dynamically
growing pool. Clients call the order method of their Session instance, which calls the
getInfo and confirmOrder methods of a Database object shared between the differ-
ent sessions. Session objects return to the agent’s pool after an order is completed.
(The full model is available in [5].)

interface Agent {
Session getSession();
Unit free(Session session);

}

interface Session {
OrderResult order(List<Bname> books, Cname country);

}

interface Database {
DatabaseInfo getInfo(List<Bname> books, Cname country);
Bool confirmOrder(List<Bname> books);

}

class DatabaseImp(Map<Bname,Binfo> bDB, Map<Cname,Cinfo> cDB) implements Database {
DatabaseInfo getInfo(List<Bname> books, Cname country){

Map<Bname,Binfo> bOrder:=EmptyMap;
Pair<Cname,Cinfo> cDestiny;
bOrder:=getBooks(bDB, books);
cDestiny:=getCountry(cDB, country);
return Info(bOrder, cDestiny);

}
...

In the model, a DatabaseImp class stores and handles the information about the books
available in the shop (in the bDB map) as well as information about the delivery coun-
tries (in the cDB map). This class has a method getInfo; given an order with a list
of books and a destination country, the getInfo method extracts information about
book availability from bDB and shipping information from cDB by means of function

Chapter 8 Paper 4: Deployment Architectures and Worst-Case Cost Bounds 151

calls getBooks(bDB, books) and getCountry(cDB, country) The result from the
method call has type DatabaseInfo, with a constructor of the form: Info(bOrder,

cDestiny).

8.2.1 Operational Semantics

The operational semantics of ABS is presented as a transition system in an SOS
style [19]. Rules apply to subsets of configurations (the standard context rules are not
listed). For simplicity we assume that configurations can be reordered to match the left
hand side of the rules (i.e., matching is modulo associativity and commutativity as in
rewriting logic [18]). A run is a possibly nonterminating sequence of rule applications.
When auxiliary functions are used in the semantics, these are evaluated in between
the application of transition rules in a run.

Configurations cn are sets of objects, invocation messages, and futures. The asso-
ciative and commutative union operator on configurations is denoted by whitespace
and the empty configuration by ε. These configurations live inside curly brackets; in
the term {cn}, cn captures the entire configuration. An object is a term ob(o, C, a, p, q)
where o is the object’s identifier and C its class, a an attribute mapping representing
the object’s fields, p an active process, and q a pool of suspended processes. A pro-
cess p consists of a mapping l of local variable bindings and a list s of statements,
denoted by {l|s} when convenient. In an invocation message invoc(o, f, m, v), o is the
callee, f the future to which the call’s result is returned, m the method name, and
v the call’s actual parameter values. A future fut(f, v) has a identifier f and a reply
value v (which is ⊥ when the future’s reply value has not been received). Values are
object and future identifiers, Boolean expressions, and null (as well as expressions in
the functional language). For simplicity, classes are not represented explicitly in the
semantics, but may be seen as static tables.

Evaluating Expressions. Denote by σ(x) the value bound to x in a mapping σ
and by σ1 ◦ σ2 the composition of mappings σ1 and σ2. Given a substitution σ and a
configuration cn, denote by [[e]]cn

σ a confluent and terminating reduction system which
reduces expressions e to data values. Let [[x?]]cn

σ = true if [[x]]cn
σ = f and fut(f, v) ∈ cn

for some value v �= ⊥, otherwise [[x?]]cn
σ = false. The remaining cases are fairly

straightforward, looking up values for declared variables in σ. For brevity, we omit
the reduction system for the functional level of ABS (for details, see [5]) and simply
denote by [[e]]εσ the evaluation of a guard or expression e in the context of a substitution
σ and a state configuration cn (the state configuration is needed to evaluate future
variables). The reduction of an expression always happens in the context of a given
process, object state, and configuration. Thus, σ = a ◦ l (the composition of the fields
a and the local variable bindings l), and cn the current configuration of the system
(ignoring the object itself).

152 8.2 A Language for Distributed Concurrent Objects

Transition Rules. Transition rules of the operational semantics transform state
configurations into new configurations, and are given in Fig. 8.3. We assume given
functions bind(o, f, m, v, C) which returns a process resulting from the method acti-
vation of m in a class C with actual parameters v, callee o and associated future f ;
init(C) which returns a process initializing instances of class C; and atts(C, v, o, n)
which returns the initial state of an instance of class C with class parameters v, iden-
tity o, and deployment component n. The predicate fresh(n) asserts that a name n
is globally unique (where n may be an identifier for an object or a future). Let idle
denote any process {l|s} where s is an empty statement list. Finally, we define dif-
ferent assignment rules for side effect free expressions (assign1 and assign2), object
creation (new-object), method calls (async-call), and future dereferencing (read-fut).
Rule skip consumes a skip in the active process. Here and in the sequel, the variable
s will match any (possibly empty) statement list. Rules assign1 and assign2 assign
the value of expression e to a variable x in the local variables l or in the fields a,
respectively. (We omit the standard rules for if-then-else and while).

Process Suspension and Activation. Three operations are used to manipulate a
process pool q: enqueue(p, q) adds a process p to q, q \ p removes p from q, and
select(q, a, cn, t) selects a process from q (which is idle if q is empty or no process is
ready [14]). The actual definitions are left undefined; different definitions correspond
to different process scheduling policies. Let ∅ denote the empty pool. Rule release
suspends the active process to the pool, leaving the active process idle. Rule await1
consumes the await statement if the guard evaluates to true in the current state of
the object, rule await2 adds a release statement in order to suspend the process if the
guard evaluates to false. Rule activate selects a process from the pool for execution if
this process is ready to execute, i.e., if it would not directly be resuspended or block
the processor [14].

Communication and Object Creation. Rule async-call sends an invocation message
to o′ with the unique identity f (by the condition fresh(f)) of a new future, the method
name m, and actual parameters v. Note that the return value of the new future f
is undefined (i.e., ⊥). Rule bind-mtd consumes an invocation method and places
the process corresponding to the method activation in the process pool of the callee.
Note that a reserved local variable ‘destiny’ is used to store the identity of the future
associated with the call. Rule return places the return value into the call’s associated
future. Rule read-fut dereferences the future f in the case where v �= ⊥. Note that if
this attribute is ⊥ the reduction in this object is blocked. Finally, new-object creates
a new object with a unique identifier o′. The object’s fields are given default values
by atts(B, v, o′, n), extended with the actual values v for the class parameters and o′

for this. In order to instantiate the remaining attributes, the process p is loaded (we
assume that this process reduces to idle if init(B) is unspecified in the class definition,
and that it asynchronously calls run if the latter is specified).

Chapter 8 Paper 4: Deployment Architectures and Worst-Case Cost Bounds 153

(skip)

ob(o, C, a, {l|skip; s}, q)
→ ob(o, C, a, {l|s}, q)

(release)

ob(o, C, a, {l|release; s}, q)
→ ob(o, C, a, idle, enqueue({l|s}, q))

(Async-Call)

o′ = [[e]]ε(a◦l) v = [[e]]ε(a◦l) fresh(f)

ob(o, C, a, {l|x := e!m(e); s}, q)
→ ob(o, C, a, {l|x := f ; s}, q)
invoc(o′, f, m, v) fut(f, ⊥)

(Read-Fut)

v �= ⊥ f = [[e]]ε(a◦l)

ob(o, C, a, {l|x := e.get; s}, q) fut(f, v)
→ ob(o, C, a, {l|x := v; s}, q) fut(f, v)

(return)

v = [[e]]ε(a◦l) l(destiny) = f

ob(o, C, a, {l|return e; s}, q) fut(f, ⊥)
→ ob(o, C, a, {l|s}, q) fut(f, v)

(New-Object)

fresh(o′) p = init(B)
a′ = atts(B, [[e]]εa◦l, o′, n)

ob(o, C, a, {l|x := new B(e); s}, q)
→ ob(o, C, a, {l|x := o′; s}, q)

ob(o′, B, a′, p, ∅)
(assign1)

x ∈ dom(l) v = [[e]]ε(a◦l)

ob(o, C, a, {l|x := e; s}, q)
→ ob(o, C, a, {l[x 	→ v]|s}, q)

(await1)

¬[[g]]cn
(a◦l)

{ob(o, C, a, {l|await g; s}, q) cn}

→ {ob(o, C, a, {l|release; await g; s}, q) cn}

(assign2)

x ∈ dom(a) v = [[e]]ε(a◦l)

ob(o, C, a, {l|x := e; s}, q)
→ ob(o, C, a[x 	→ v], {l|s}, q)

(await2)

[[g]]cn
(a◦l)

{ob(o, C, a, {l|await g; s}, q) cn}

→ {ob(o, C, a, {l|s}, q) cn}

(Bind-Mtd)

p′ = bind(o, f, m, v, C)

ob(o, C, a, p, q)
invoc(o, f, m, v)

→ ob(o, C, a, p, enqueue(p′, q))

(activate)

p = select(q, a, cn)

{ob(o, C, a, idle, q) cn}

→ {ob(o, C, a, p, q\p) cn}

Figure 8.3: ABS Semantics

8.3 Worst-Case Cost Bounds

The goal of this section is to infer worst-case upper bounds (UBs) from the (sequen-
tial) functions in our sub-language. This problem has been intensively studied since
the seminal paper on cost analysis [23]. Thus, instead of a formal development, we
illustrate the main steps of the analysis on the running example.

Size of terms. The cost of a function that traverses a term t usually depends on the
size of t, and not on the concrete data structure to which t is bound. For instance,

154 8.3 Worst-Case Cost Bounds

the cost of executing dom(map) (which returns the domain of a map) depends on
the size of map (the number of elements). Therefore, in order to infer worst-case
UBs, we first need to define the meaning of size of a term. This is done by using
norms [7]. A norm is a function that maps terms to their size. For instance, the term-
size norm calculates the number of type constructors in a given term, and is defined
as |Co(t1, . . . , tn)|ts = 1 + Σn

i=1|ti|ts, and, the term-depth norm calculates the depth of
the term, and is defined as |Co(t1, . . . , tn)|td = 1+max(|t1|td , . . . , |tn|td). Consider the
book shop model described in Ex. 19; the database uses maps for storing information;
a Map<A, B> has two constructors Ins(Pair<A, B>, Map<A, B>) and EmptyMap (to represent
empty maps). For storing the information of a book sold by the shop, the model
uses a constructor of the form BInfo(Bquantity, Bweight, Bbackordertime) (A more detailed
description of this data type can be found in [5].). For a term:

t = Ins(Pair("b1",BInfo(5,1,2)),Ins(Pair("b2",BInfo(1,2,5)),EmptyMap))

which can represent the database of books in the shop, we have that |t|ts = 15 and
|t|td = 5. Note that we count strings and numbers as type constructors. Norms
map a given variable x to itself in order to account for the size of the term to which
x is bounded. Any norm can be used in the analysis, depending on the used data
structures, w.l.o.g., we will use the term-size norm.

Size relations. The getBooks function (called from method getInfo in Ex. 19)
returns a sub-database (of booksDB) which contains only those books in books:

def Map getBooks(Map booksDB,List books) =
case books {

Nil => EmptyMap;
Cons(b,t) =>

case in(dom(booksDB),b) {
False => getBooks(booksDB,t) ;
True => Ins(Pair(b,lookup(booksDB,b)),getBooks(booksDB,t));

};
};

Function dom returns the set of keys of the mapping provided as argument, in is the
one of Ex. 18, and, lookup returns the value that corresponds to the provided key in
the provided mapping. Observe that the return value of dom is passed on to function
in. Since the cost of in is part of the total cost of getBooks, we need to express
its cost in terms of booksDB. This is possible only if we know which is the relation
between the returned value of dom and its input value booksDB. This input-output
relation (or a post-condition) is a conjunction of (linear) constraints that describe a
relation between the sizes of the input parameters of the function and its return value,
w.r.t. the selected norm. E.g., ret ≤ map is a possible post-condition for function dom,
where map is the size of its input parameter and ret is the size of the returned term.

Chapter 8 Paper 4: Deployment Architectures and Worst-Case Cost Bounds 155

We apply existing techniques [6] to infer such relations for our functional language.
In what follows, we assume that IP includes a post-conditions 〈fn(x̄), ψ〉 for each
function, where ψ is a conjunction of (linear) constraints over x̄ and ret.

Cost Model. Cost analysis is typically parametric on the notion of cost model
M, i.e., on the resource that we want to measure [2]. Informally, a cost model is a
function that maps instructions to costs. Traditional cost models are: (1) number of
instructions, which maps all instructions to 1, i.e., M(b) = 1 for all instructions b; and
(2) memory consumption, which can be defined as Mh(x = t) = Mh(t) = mem(t)
where mem(Co(t1, . . . , tn)) = Co + Σn

i=1mem(ti) and mem(x) = 0. For any other
instruction b we let Mh(b) = 0. The symbol Co represents the amount of memory
required for constructing a term of type Co. Note that we estimate only the memory
required for storing terms.

Upper bounds. In order to make the presentation simpler, we assume functions
are normalized such that nested expressions are flattened using let bindings. Using
this normal form, the evaluation of an expression e consists in evaluating a sequence
of sub-expressions of the form y = fn(x̄), y = t, match(y, t), fn(x̄), t or x. We refer
to such sequence as an execution path of e. In a static setting, since variables are
not assigned concrete values, and due to the use of case, an expression e might have
several execution paths. We denote the set of all execution paths of e by paths(e). This
set can be constructed from the abstract syntax tree of e. Clearly, when estimating
the cost of executing an expression e we must consider all possible execution paths.
In practice, we generate a set of (recursive) equations where each equation accounts
for the cost of one execution path. Then, the solver of [1] is used in order to obtained
a closed-form UB.

Definition 1. Given a function def T fn(T x) = e, its cost relation (CR) is defined
as follows: for each execution path p ≡ b1, . . . , bn ∈ paths(e), we define an equation
〈fn(x̄) = Σn

i=1M(bi) + fni1
(x̄i1

) + · · · + fnik
(x̄ik

), ∧n
i=1ϕi〉 where fni1

(x̄i1
), . . . , fnik

(x̄ik
)

are all function calls in p; and ϕi ≡ y = |t|ts if bi ≡ y = t, and ϕi ≡ ψ[ret/y] if
bi ≡ y = f(x̄) and 〈f(x̄), ψ〉 ∈ IP , otherwise ϕi = true. The CR system of a given
program the set of all CRs of its functions.

Example 20. The following is the CR of getBooks w.r.t the cost model mem:

getBooks(a, b) = EmptyMap {b = 1}

getBooks(a, b) = dom(a)+in(d, e)+getBooks(a, g) {b = 1+e+g, d≤a, d≥1, e≥1, g≥1}

getBooks(a, b) = Pair+Ins+dom(a)+in(d, e) {b = 1+e+g, d≤a, d≥1, e≥1, g≥1}

+ lookup(a, e)+getBooks(a, g)

The first equation can be read as “the memory consumption of getBooks is one
EmptyMap constructor if the size of b is 1”. Equations for functions in, lookup

156 8.4 Deployment Components

and dom are not shown due to space limitations and have resp. constant, zero and
linear memory consumptions. Solving the above CR results in the UB

getBooks(a, b) = EmptyMap+nat(b−1
2)∗(nat(a−1

4)∗Ins+EmptySet+ max(True, False))

Replacing, for example, EmptyMap, Ins, True and False by 1 results in

getBooks(a, b) = 1 + nat(b−1
2) ∗ (2 + nat(a−1

4))

8.4 Deployment Components

Deployment components make quantifiable deployment-level resources explicitly avail-
able in the modeling language. A deployment component allows the logical execution
environment of concurrent objects to be mapped to a model of physical resources, by
specifying an abstract execution context which is shared between a number of con-
currently executing objects. The resources available to a deployment component are
shared between the component’s objects. An object may get and return resources
from and to its deployment component. Thus, the deployment components impose
a resource-restricted execution context for their concurrently executing objects, but
not a communication topology as objects still communicate directly with each other
independent of the components.

Resource-restricted deployment components are integrated in the modeling lan-
guage as follows. Let variables x of type Component refer to deployment compo-
nents and allow deployment components to be statically created by the statement
x:=component(r) in the main method, which allocates a given quantity of resources r
to the component x (capturing the resource constraint of x). Resources are modeled
by a data type Resource which extends the natural numbers with an “unbounded
resource” ω. Resource allocation and usage is captured by resource addition and
subtraction, where ω + n = ω and ω − n = ω.

Concurrent objects residing on components, may grow dynamically. All objects
are created inside a deployment component. The syntax for object creation is ex-
tended with an optional clause to specify the targeted deployment component in the
expression new C(e)@ x. This expresses that the new C object will reside in the compo-
nent x. Objects generated without an @ clause reside in the same component as their
parent object. Thus the behavior of an ABS model which does not statically declare
additional deployment components can be captured by a root deployment component
with ω resources.

Example 21. Consider the book shop model described in Ex. 19 instantiated inside
deployment components:

Chapter 8 Paper 4: Deployment Architectures and Worst-Case Cost Bounds 157

Rule cost free
assign1, assign2 cost(e) |vp| − |v|

Read-Fut max(cost(e), |v|) 0
Bind-Mtd P + |v| −(P + |v|)
Async-Call cost(e) + |f | 0
New-Object-Create O + P + |v| −(O + P + |v|)

Table 8.1: The non-trivial cost functions of memory-constrained ABS semantics. All
identifiers are the same as in the corresponding rule of Figure 8.3, except vp (old value
of a variable), |v| (size of term v), P (size of a process), and O (size of an object).

Component c := component(200);
Database db := new DataBaseImp(...) @ c;
Agent agent := new AgentImp(db) @ c;

The Session objects created and handed out by the Agent object will then be created
inside c as well, without further changes to the model.

The execution inside a component d with r resources can be understood as follows.
An object o residing in d may execute a transition step with cost c if

• o can execute the step in a context with unbounded resources, and

• c ≤ r; i.e., the cost of executing the step does not exclude the transition in an
execution context restricted to r resources.

After the execution of the transition step, the object may return free resources to
its deployment component. Thus, for each transition rule the resources needed to
apply this rule to a state t, resulting in a state t′, can be characterized in terms of
two functions over the state space, one computing the cost of the transition form t
to t′ and one computing the free resources after the transition. The allocation and
return of resources for objects in a deployment component will depend on the specific
cost model M for the considered resource, so the exact definitions of costM(t, t′) and
freeM(t, t′) depend on M.

Example 22. Table 8.1 shows the costM(t, t′) and freeM(t, t′) functions for the mem-
ory cost model of the ABS semantics, using the symbols of Figure 8.3. There are
some subtle details in these functions – for example, message invocations and future
variables are considered to be outside any one deployment component, so the mem-
ory required to execute the Read-Fut rule can be larger than evaluating the future
variable expression e since the deployment component must have enough memory to
accommodate the incoming value v. Also, object creation affects two places, so was
split into two rules, similar to method invocation.

158 8.5 Simulation and Experimental Results

(Context)

mycomp(o) = id costM(o msg, o′ msg′ config
′
) ≤ r

o msg −→ o′ msg′ config
′

r′ = r + freeM(o msg, o′ msg′ config
′
)

{comp(id, r) o msg config} −→M {comp(id, r′) o′ msg′ config config
′
}

Figure 8.4: An operational semantics for resource-constrained deployment components

Semantics of Resource Constrained Execution. Let M be a cost model.
The operational semantics of M-constrained execution in deployment components is
defined as a small-step operational semantics, extending the semantics of ABS given
in Sec. 8.2.1 to resource-sensitive runtime configurations for M. We assume given
functions costM(t, t′) and freeM(t, t′).

Let −→ denote the single-step reduction relation of the ABS semantics, defined
in Sec. 8.2.1. A resource-constrained run of an ABS model consists of zero or more
applications of a transition relation −→M, which is defined by the context rule given in
Fig. 8.4. Runtime configurations are extended with the representation of deployment
components comp(id, r), where id is the identifier of the component and r its currently
available resources. Each object has a field mycomp, instantiated to its deployment
component at creation time (we omit the redefined object creation rule). Let config
denote a set of objects and futures. The context rule expresses how an object o may
evolve to o′ given a set of invocation messages msg in the context of a deployment
component with r available resources. Since o may consume an invocation message
and create new objects, futures, or invocation messages, the right hand side of the rule
returns o′ with a possibly different set of messages msg′ and a configuration config

′
.

8.5 Simulation and Experimental Results

To validate the approach presented in this paper, an interpreter for the ABS language
was augmented with a resource constraint model that simulates systems with lim-
ited memory. The semantics of this ABS interpreter is given in rewriting logic [18]
and executes on the Maude platform [10]. Note that the semantics of Section 8.4,
when implemented directly, leads to a significant amount of backtracking in an actual
simulation. For this reason, our Maude interpreter was modified to incorporate de-
ployment components and use the costs of Table 8.1 for the execution of statements.
One such modified rule is shown in Figure 8.5: An assignment to x can only proceed
if the cost of evaluating the right-hand side e of the assignment statement is less than
the currently free memory r. In this case, x is bound to the new value v, and r is
adjusted using Table 8.1 (here, the difference between v and the previous value vp).
All other transition rules which evaluate expressions are modified in the same way.

Chapter 8 Paper 4: Deployment Architectures and Worst-Case Cost Bounds 159

(assign1-rsc)

x ∈ dom(l) v = [[e]]ε(a◦l) vp = l(x) cost(e) ≤ r mycomp(o) = dc

dc(r) ob(o, C, a, {l|x := e; s}, q)
→ dc(r + |vp| − |v|) ob(o, C, a, {l[x 	→ v]|s}, q)

Figure 8.5: Resource-aware assignment rule, with an object ob and deployment com-
ponent dc. The assignment statement is only executed if e can be evaluated with the
current r, which is adjusted afterwards.

0

100

200

300

400

1 2 3 4 5 6 0

50

100

150

200

Time

Figure 8.6: Final and peak memory use as a function of the size of input (left) and
progression of memory use for execution using input size 2 (right).

Simulation results. Deployment component declarations were added to the book
shop model described in Example 19, restricting the memory available to all objects of
type Database, Agent, and Session (i.e., the server part of the model). Cost functions
were computed for all functions in the model, as described in Sec. 8.3 (UBs for all
functions in the book shop model can be found in [5]). With this interpreter, creating
a deployment component with too little memory leads to the expected deadlock.

To obtain quantitative results, the interpreter was instrumented to record current
memory r and peak memory usage r + cost(s) during the evaluation of its resource-
aware rules. This instrumentation yields both maximum resource usage and a time
series of memory usage for a simulation run. Figure 8.6 (left) shows the peak in-
termediate memory usage and memory use at the end of the simulation for various
input sizes (i.e., how often to run book orders of constant size). Figure 8.6 (right)
shows the memory use over time of one single run of the model. The “peaks” in the
right-hand side graph occur during evaluation of functions with large intermediate
memory usage (the blue line represents memory use between execution steps, when
the transient memory has been freed again).

160 8.6 Related Work

8.6 Related Work

Static cost inference for sequential programming languages has recently received con-
siderable attention. A cost analysis for Java bytecode has been developed in [2], for
C++ in [12], and for functional programs in [13]. Our approach for inferring cost for
the functional part of ABS is based on [2], which follows the classical approach of [23].
Inference of worst-case UBs on the memory usage of Java like programs with garbage
collection is studied in [4]. The analysis accounts for memory freed by garbage collec-
tion, and thus infers more tight and realistic bounds. The analysis supports several
GC schemes. The analysis of [13] supports inference of memory usage, and accounts
for memory freed by destructive matching. In [16] live heap space analysis for a con-
current language has been proposed. However it uses a very limited model of shared
memory. Recently, a cost analysis for X10 programs [9] has been developed [3], which
infers UBs on the number of tasks that can be running in parallel. The concurrency
primitives of X10 are similar to ABS, but X10 is not based on concurrent objects.

Formal resource modeling happens mainly in the embedded domain. For example,
Verhoef et al. [22] use the timed VDM++ to model processing time, schedulability
and bandwidth resources for distributed embedded systems, but their approach is less
general and not used for memory consumption. Johnsen et al. modeled processing
resources in the context of deployment components in previous work [15], but this
work does not use cost analysis methods. There is not much work combining static
cost analysis and simulation to analyze resource usage. However, Künzli et al. [17]
combine exact simulation and arrival curves to model processing costs, decreasing the
needed simulation time by using arrival curves in their simulations to abstract from
some of the components in a SystemC model of specific hardware. In contrast, we use
cost analysis to generalize simulations on abstract, formally defined object-oriented
models.

8.7 Discussion

Software is increasingly being developed to be configured for different architectures,
which may be restricted in the resources they provide to the software. Therefore, it
is interesting to capture aspects of low-level deployment concerns at the abstraction
level of a software modeling language. In this paper, we have shown how a formally
defined executable concurrent object-oriented modeling language can be extended
with a notion of deployment component, which imposes a resource-constraint on the
execution of objects in the model.

In order to validate the behavior of the resource-restricted model, we propose to
combine static cost analysis with simulations. This combination is achieved by ap-

Chapter 8 Paper 4: Deployment Architectures and Worst-Case Cost Bounds 161

plying static cost analysis to the sequential parts of the modeling language, for which
practical cost analysis methods exist, while using simulation for the concurrent part,
for which static approaches would lead to a state-space explosion. Thus, the com-
plexity of applying static cost analysis to concurrent executions is avoided, and, in
addition, we obtain better results than concrete simulations because the sequential
parts of the model are simulated by the worst-case bounds. The technique is demon-
strated for memory consumption analysis on an example. The analysis of memory
consumption considered here could be strengthened by allowing explicit scheduling
and garbage collection policies to be included in the model. This is left for future
work.

Another interesting issue is how resource analysis carries over from executable
models to generated code. A code generator from ABS to Java is under development
that translates user defined abstract data types in ABS into object structures. Hence,
the symbolic UBs inferred for memory consumption of the ABS models correspond
to bounds on the number of objects in the corresponding Java code. Note that it
might not be possible to find similar correlations for other cost models such as the
number of execution steps. Another line of interesting future work is to set up actual
measurements on generated code and use these results to profile our analysis approach
for a given cost model.

162 8.7 Discussion

Bibliography

[1] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-Form Upper Bounds in
Static Cost Analysis. Journal of Automated Reasoning 42(6):161–203, 2011.

[2] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost Analysis of
Java Bytecode. In Proc. ESOP’07, LNCS 4421, pages 157–172. Springer, 2007.

[3] E. Albert, P. Arenas, S. Genaim, and D. Zanardini. Task-Level Analysis for a
Language with Async-Finish parallelism. In LCTES. ACM Press, April 2011.

[4] E. Albert, S. Genaim, and M. Gómez-Zamalloa. Parametric Inference of Memory
Requirements for Garbage Collected Languages. In ISMM, ACM Press, 2010.

[5] E. Albert, S. Genaim, M. Gómez-Zamalloa, E. B. Johnsen, R. Schlatte, and
S. L. Tapia Tarifa. Simulating concurrent behaviors with worst-case cost bounds.
Research Report 403, Dept. of Informatics, Univ. of Oslo, Jan. 2011.
http://einarj.at.ifi.uio.no/Papers/rr403.pdf

[6] F. Benoy and A. King. Inferring Argument Size Relationships with CLP(R). In
LOPSTR, LNCS 1207, pages 204–223. Springer, 1997.

[7] A. Bossi, N. Cocco, and M. Fabris. Proving Termination of Logic Programs by
Exploiting Term Properties. In TAPSOFT, LNCS 494.. Springer, 1991.

[8] D. Caromel and L. Henrio. A Theory of Distributed Object. Springer, 2005.

[9] P. Charles, C. Grothoff, V. A. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,
C. von Praun, and V. Sarkar. X10: An Object-Oriented Approach to Non-
Uniform Cluster computing. In OOPSLA, pages 519–538. ACM, 2005.

[10] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and C. L.
Talcott. All About Maude - A High-Performance Logical Framework, LNCS 4350.
Springer, 2007.

[11] F. S. de Boer, D. Clarke, and E. B. Johnsen. A complete guide to the future. In
Proc. ESOP’07, LNCS 4421, pages 316–330. Springer, 2007.

163

164 BIBLIOGRAPHY

[12] S. Gulwani, K. K. Mehra, and T. M. Chilimbi. Speed: Precise and Efficient
Static Estimation of Program Computational Complexity. In POPL, ACM 2009.

[13] J Hoffmann, Klaus Aehlig, and M. Hofmann. Multivariate amortized resource
analysis. In POPL, pages 357–370, ACM 2011.

[14] E. B. Johnsen and O. Owe. An asynchronous communication model for dis-
tributed concurrent objects. Software and Systems Modeling, 6(1):35–58, 2007.

[15] E. B. Johnsen, O. Owe, R. Schlatte, and S. L. Tapia Tarifa. Dynamic resource
reallocation between deployment components. In Proc. ICFEM, LNCS 6447,
pages 646–661. Springer, 2010.

[16] M. Kero, P. Pietrzak, and N. J. Live Heap Space Bounds for Real-Time Systems.
In APLAS, LNCS 6461, pages 287–303. Springer, 2010.

[17] S. Künzli, F. Poletti, L. Benini, and L. Thiele. Combining simulation and for-
mal methods for system-level performance analysis. In DATE, pages 236–241.
European Design and Automation Association, 2006.

[18] J. Meseguer. Conditional rewriting logic as a unified model of concurrency. The-
oretical Computer Science, 96:73–155, 1992.

[19] G. D. Plotkin. A structural approach to operational semantics. Journal of Logic
and Algebraic Programming, 60–61:17–139, 2004.

[20] K. Pohl, G. Böckle, and F. Van Der Linden. Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer, 2005.

[21] J. Schäfer and A. Poetzsch-Heffter. JCoBox: Generalizing active objects to con-
current components. In Proc. ECOOP 2010, LNCS 6183. Springer, 2010.

[22] M. Verhoef, P. G. Larsen, and J. Hooman. Modeling and validating distributed
embedded real-time systems with VDM++. In Proc. FM 2006, LNCS 4085,
pages 147–162. Springer, 2006.

[23] B. Wegbreit. Mechanical Program Analysis. Comm. of the ACM, 18(9), 1975.

[24] A. Welc, S. Jagannathan, and A. Hosking. Safe futures for Java. In Proc.
OOPSLA’05, pages 439–453. ACM Press, 2005

